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Abstract

Voting outcomes can differ from underlying preferences due to selection into 
voting. One source of such selection is lower participation of shareholders with 
popular preferences (free-rider effect) relative to that of those with unpopular pref-
erences (underdog effect). We illustrate these strategic effects in a rational choice 
model in which the voting participation decision depends on the probability of 
being pivotal and the costs and benefits of voting. Based on the model, we struc-
turally estimate unobservable shareholder preferences in US data. We show that 
strategic selection into voting is relevant: 13% of voting outcomes in shareholder 
governance proposals represent the minority.
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April 2020

Abstract

Voting outcomes can differ from underlying preferences due to selection into voting. One
source of such selection is lower participation of shareholders with popular preferences (free-rider
effect) relative to that of those with unpopular preferences (underdog effect). We illustrate these
strategic effects in a rational choice model in which the voting participation decision depends
on the probability of being pivotal and the costs and benefits of voting. Based on the model, we
structurally estimate unobservable shareholder preferences in US data. We show that strategic
selection into voting is relevant: 13% of voting outcomes in shareholder governance proposals
represent the minority.

Keywords: voting participation; corporate governance; shareholder proposals; shareholder democ-
racy; structural estimation

∗We thank Mike Burkart, Cecilia Bustamante, Andras Danis, Amil Dasgupta, Alex Edmans, Daniel Ferreira,
Nickolay Gantchev, Emmanuel Guerre, Sarolta Laczo, Erica Li, Claire Lim, Aniol Llorente-Saguer, Michelle Lowry,
Nadya Malenko, Ernst Maug, Vikas Mehrota, Clemens Otto, Adam Reed, Jacob Sagi, Christian Strenger, Jason
Sturgess, Andrea Tamoni, Christoph Van der Elst, Michela Verardo, Lingling Zheng, the seminar participants at
the UNPRI, University of Amsterdam, Birkbeck College, Frankfurt School of Finance and Management, University
of Gothenburg, LSE, University of Mannheim, Queen Mary University of London, Swansea, AFA, EFA, ESCP
Workshop on Corporate Finance, Finance Theory Group Conference (evening session), European Summer Symposium
in Financial Markets (Corporate Finance, evening session), and ABFER, CEPR and CUHK Annual Symposium for
their comments. We thank Maya Jalloul for her research assistance and Pedro Saffi for sharing his data with us.
Groen-Xu and Zachariadis express their gratitude to STICERD at the LSE for financial support. K.Z. and M.G.
wrote the manuscript and analysed the data. K.Z. developed the model and the estimation methods. D.C. performed
the sample splits and contributed substantially towards the analysis and writing of earlier drafts.
§School of Economics and Finance, Queen Mary University of London. e-mail : k.e.zachariadis@qmul.ac.uk (cor-

responding author).
¶Warwick Business School, University of Warwick. e-mail : dragana.cvijanovic@wbs.ac.uk.
‖School of Economics and Finance, Queen Mary University of London. e-mail : moqi.xu@qmul.ac.uk.

1

Electronic copy available at: https://ssrn.com/abstract=2939744



1 Introduction

Shareholders have heterogeneous preferences over how their firms should be managed (Bolton, Li,

Ravina, and Rosenthal (2018); Li, Maug, and Schwartz-Ziv (2019)). Corporate voting mechanisms

aim to align managerial actions with the majority of shareholders by aggregating shareholders

heterogeneous preferences on corporate proposals. However, proponents of shareholder voting often

overlook that certain shareholders have discretion over their voting participation. This omission is

non-trivial, given that participation is on average 72%. A potential explanation for the observed

participation rates is the lower participation of shareholders with popular preferences (free-rider

effect) relative to the participation of shareholders with unpopular preferences (underdog effect).

Such strategic selection effects can result in voting outcomes that represent the preferences of a

minority while reducing the welfare of the majority of all shareholders (i.e., including non-voters).

In this paper, we examine how heterogeneity in shareholder preferences over proposals and strategic

selection into voting affect corporate voting outcomes.

Interpreting corporate voting outcomes with unobservable shareholder preferences and selection

effects is challenging for at least four reasons. First, direct measures of preferences on proposals

and of participation decisions are not available for individual shareholders. Second, although voting

outcomes aggregate the preferences of voters over proposals, they ignore selection on participation

and do not represent the preferences on proposals of non-voters. Third, share price reactions might

incorporate preferences of non-voters but potentially overlook non-shareholder value elements of

shareholder welfare (Hart and Zingales (2017)). Fourth, proxy advisory recommendations consider

shareholder welfare but can be biased and do not cater to all shareholders (Iliev and Lowry (2014)).

We overcome these challenges by examining a structural estimation of corporate voting and

shareholder preferences. The core of our estimation is an extension of Myatt’s (2015) political

elections pivotal voter model. As in Myatt (2015), we consider costly voting between two options

when voters have heterogeneous preferences. We extend Myatt (2015) to capture a key feature

of the corporate setup, differences in ownership structure, which give rise to different regimes

of voting participation. Specifically, we split shareholders into regular and discretionary voters.

Regular voters are investment funds, which are legally required to vote, or blockholders such as

family voting trusts that commit to voting. Discretionary voters are dispersed shareholders, such as
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hedge funds or private wealth managers, who choose whether or not to vote. There is uncertainty

over the preferences on proposals of discretionary voters, while those of regular voters are known.

We solve the model with the aim of estimating its key parameters using data on US corporate

governance shareholder proposals in 2003–2011. In the model, the following parameters determine

a discretionary voter’s participation choice: the ownership fraction of regular voters; the known

popularity of against vs. for amongst them; the benefit-to-cost ratio, associated with voting, of

discretionary voters; and the mean and standard deviation of the popularity of against vs. for

amongst them. Differences in ownership structure, regular vs. discretionary, result in a rich set of

plausible equilibria with full or no discretionary participation, in addition to the standard equi-

librium in political elections with partial participation from both sides. Participation rates per

equilibrium and equilibria regions are available in closed form, thus, allowing for better estimates.

Our estimation algorithm chooses the preference parameters (i.e., mean and standard deviation),

benefit-to-cost ratio per discretionary voter, and equilibrium with the smallest resulting distance to

the data.1 Our structural model predicts voting outcomes out-of-sample significantly better than

a linear ordinary least squares (OLS) model, based on the previous literature, even when the latter

includes a parsimonious set of fixed effects and explanatory variables.

Our results are as follows. First, in a key departure from the political elections setup, we

illustrate how participation and voting outcomes depend on the ownership structure. Consider

discretionary voters who agree with the majority of the regular voters. With a stronger majority,

their side is more likely to win, and therefore, any individual discretionary voter is less likely to

be pivotal. In equilibrium, agreeing discretionary voters will then free-ride on the regular voters

and participate less in voting; an effect comparable to free-riding in the context of takeover bids

(Grossman and Hart (1980)). In contrast, disagreeing discretionary voters turn out more with

weaker support by regular voters, an underdog effect.2 In the data, free-riding and underdog effects

increase the voting support of the minority party by 23% from its base popularity within the entire

shareholder population. The over-representation of the minority has an average probability of 13%

of swinging the vote towards the minority preference. This probability of a non-representative

voting outcome varies across proposal types, with the highest likelihood at 47%, in proposals on

1In the US, investment funds (representing 25% of shares, on average) have a fiduciary duty to vote and report
their vote on the N-PX form. We use these shareholders as an empirical approximation of the model’s regular voters.

2In the political science literature, where there is a single group of only discretionary voters, the underdog effect
refers to the higher participation rate of supporters of the option that is (ex-ante) less popular among the electorate.
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the ability to call special meetings.

Second, we show that the prevalent equilibrium in the corporate context features full partici-

pation by disagreeing voters and partial participation (i.e., a mixed strategy) by agreeing voters.

This is in contrast to the standard equilibrium in political elections with partial participation on

both sides. There, disagreeing voters turn out more to overcome their ex-ante disadvantageous

position, to the extent that the average equilibrium outcome is a tie, the so-called full underdog

effect. In contrast, the most popular equilibrium in our data exhibits a partial underdog effect:

the outcome is, on average, still the favorite of the regular voters, and the underdogs participate

over-proportionally despite only a small probability of swinging the vote in their favour. Because

of the very different implied outcomes, identifying the equilibrium is important for predictions

and counterfactuals—for example, for campaigns to reduce ex-ante uncertainty about discretionary

voters’ preferences, as in Lee and Souther (2018).

Third, the model exhibits how the cost and benefits of voting can affect participation and,

hence, the voting outcome. This is of particular policy relevance: recent major regulatory changes

such as the EU Shareholder Rights Directive have aimed to reduce the cost of voting (Pinto (2009)).

Counterfactuals allow us to draw the shape of selection effects. Equilibrium outcomes vary with

voting costs within the range between the full participation benchmark and the benchmark with

no discretionary participation. We locate the full participation benchmark (where the population’s

favorite option always wins) at a counterfactual voting cost of one quarter of the US level. In

contrast, maximum free-riding starts at 30 times the US level. Between these two extremes, the

probability of a minority win takes an inverted-U shape in the cost of voting, with a peak at 41%

at a voting cost of three times of the US level.

Fourth, a positive relationship between voting participation and the expected likelihood of a

close result (“closeness”) is a distinctive prediction of pivotal voter models. After all, these models

relate participation directly to how likely it is for a voter to affect the outcome (i.e., to be pivotal).

In contrast, such a relationship is incompatible with other models of voting participation, for ex-

ample, private information-driven voting (Feddersen and Pesendorfer (1996)), which the corporate

literature has mostly focused on thus far; or even civic duty/ethical reasons for voting (Feddersen

and Sandroni (2006)). We show that in our data, total discretionary voter participation does not

vary with realized closeness. This would seem to be proof against the pivotal motive of voting, if it
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were not for the two competing forces that the model highlights: free-riders vs. underdogs. Indeed,

participation on the underdog side increases significantly with closeness, while participation on the

free-riding side decreases significantly with it. These effects cancel each other out when added to

form total participation.

A natural concern is whether non-representative voting outcomes have real effects. Any disparity

between the preferences of the majority of the shareholder base and the resulting voting outcome is

a distortion to shareholder democracy. As such it may dissuade investors from equity markets. This

is akin to weak shareholder rights hindering investment in primary markets (LaPorta, de Silanes,

Shleifer, and Vishny (1997, 1998)), and may also result in less liquid and thus less efficient secondary

markets. Recently, regulators have taken action to encourage voting participation (SEC, 2015; EU,

2017) suggesting that under-participation has real effects.

Our structural estimation has advantages and disadvantages relative to the literature. The main

advantage is that the model allows us to interpret corporate voting outcomes. It accomplishes this

by unraveling what affects the strategic participation decision. In particular, the model formalizes

the distinction between how popular a proposal is (preferences) from how important voters think

winning is (benefit). Hence, for example, our theoretical setup allows for a very important (high

benefit) proposal to have low voting participation when most shareholders agree; and vice versa

for low importance, but high participation proposals due to disagreement. Therefore, using this

distinction offered by the model, we can estimate both unobservable preferences and the benefit-

to-cost ratio per voter, which allow us to shed light on observed voting outcomes.

The main disadvantage of our estimation is its reliance on a particular theoretical model. Like

any model, it makes assumptions, and two are of particular importance. First, we assume that vot-

ing participation is driven by heterogeneity in preferences (private values) rather than heterogeneity

in information (private information). In the latter case, the voting mechanism aggregates voters’

dispersed private information (e.g., Feddersen and Pesendorfer (1996)). Arguably, information ag-

gregation is particularly important for binding proposals such as those on Mergers & Acquisitions

and Financing. In contrast, we focus on non-binding shareholder proposals on corporate gover-

nance, where shareholders are less likely to have dispersed private information about the merits of

the proposal, but are more likely to disagree on principle, that is, have heterogeneous preferences.

Nonetheless, we show that our results are qualitatively similar for subsamples in which information

5

Electronic copy available at: https://ssrn.com/abstract=2939744



aggregation could be more relevant. Second, we assume that all discretionary voters have the same

homogeneous positive cost of voting. To show that this assumption does not drive our results, we

study a variant of the model with idiosyncratic costs that can range from zero to an unobserved

upper bound. This instance of the model has no closed-form solution, and so the estimation is

prone to common issues with numerical solutions. This numerical issue notwithstanding, using

the idiosyncratic costs model, the estimation results are qualitatively very similar to our baseline

case along several dimensions: the non-representative outcome probability, the participation rates,

preference parameters, and benefit-to-cost ratio. Ultimately, it speaks for our baseline model that

it predicts notably better than both the variant with idiosyncratic costs and the aforementioned

reduced-form OLS model based on the previous literature.

Related Literature. First, we contribute to the theoretical corporate voting literature. Most of

the current literature focuses on the aggregation of dispersed private information in a framework

with a common value (i.e., heterogeneous information and homogeneous preferences) and no differ-

ences in the ownership structure (Maug and Yilmaz (2002); Maug and Rydqvist (2009); Bond and

Eraslan (2010); Levit and Malenko (2011)). The aforementioned papers do not allow for voters to

abstain and hence do not cater for a study of voting participation.

Two theoretical papers are most related to us. As the aforementioned papers, Bar-Isaac and

Shapiro (2017) assume heterogeneous information and homogeneous preferences, but also consider

differences in the ownership structure (i.e., blockholders and dispersed shareholders) and allow for

abstention. They show that blockholders may not vote all their shares to assist the aggregation

of information in the voting process. Hence, their paper has normative implications on current

US regulation, which requires blockholders (i.e., regular voters in our terminology) to vote all

their shares. In a departure from the previous literature, Levit, Malenko, and Maug (2019) use

a setup with heterogeneous preferences to study the interplay between trading and voting. They

show that when shareholders have such preferences the stock price of the firm may not reflect

shareholders’ welfare. However, their model does not feature abstention in the voting game and

there are no differences in the ownership structure. We are the first to present a model where the

corporate voting participation decision is driven by both differences in the ownership structure and

heterogeneous preferences.
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Our theoretical work builds on and extends the extensive literature in political elections (for

overviews on participation in elections see Feddersen (2004); Geys (2006)). Our work is closer

to recent pivotal voter models, which introduce aggregate uncertainty, see Krishna and Morgan

(2012); Evren (2012); Myatt (2015). We contribute to this literature by introducing differences in

the ownership structure that result in a richer set of equilibria to emerge in the corporate context.

Second, we contribute to a nascent literature on corporate voting participation. Van der Elst

(2011) shows empirically that block ownership predicts corporate voting participation. Brav, Cain,

and Zytnick (2019) document that retail voters vote more when the firm is smaller, when their

ownership stake in the portfolio firm is higher and, consistent with informed choice, when the

shareholder receives more information from the firm about the agenda. We contribute to this

literature by building and estimating a structural model. Hence, we microfound the parameters

that affect the participation decision, and estimate their effect on voting outcomes.3

Third, we also contribute to the literature that estimates the benefit of voting. This literature

has used: the stock market reaction to the passing of proposals (Cuñat, Gine, and Guadalupe (2012,

2019); Bach and Metzger (2015); Gantchev and Giannetti (2019)); the market for votes in the equity

loan market (Christoffersen, Geczy, Musto, and Reed (2007); Aggarwal, Saffi, and Sturgess (2015));

the discrepancy between stock and option prices around voting (Kalay, Karakaş, and Pant (2014));

and trading patterns following voting outcomes (Li, Maug, and Schwartz-Ziv (2019)). We develop

an alternative method to estimate the benefit that relies on the voting participation decision.

Fourth, our study is close to papers that structurally estimate voting parameters in the corporate

setting. Matvos and Ostrovsky (2010), in the context of director elections, show that (in the

terminology of our paper) regular voters vote according to peer effects and heterogeneity in their

management friendliness. Bolton, Li, Ravina, and Rosenthal (2018) use a spatial model of voting to

show that regular voters vote according to their position in the ideological spectrum, that is, they

have heterogeneous preferences.4 We contribute to this literature by focusing on the participation

decision and preferences of discretionary voters.

3The empirical literature on corporate voting shows that voting outcomes affect the decision making of firms
(Thomas and Cotter (2007); Guercio, Seery, and Woidtke (2008); Cai, Garner, and Walkling (2009); Levit and
Malenko (2011); Becht, Polo, and Rossi (2016)).

4Bubb and Catan (2018) use model-based cluster analysis and also show that mutual funds (i.e., regular voters)
have heterogeneous preferences, in that they vote according to certain ‘party’ lines.
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2 Voting in US data

We begin our analysis with some simple facts about voting participation in US firms.

2.1 Data

We use aggregate voting data from the ISS Voting Results database. For Russell 3000 firms from

2003–2011, the data provides: the voting direction (total votes for, votes against, and empty votes

cast, or abstentions); the voting outcome (Pass/Fail); the appropriate base for calculating the

voting outcome (for plus against, for plus against plus abstain, or outstanding), the majority rule

(simple or super-majority); the recommendation of management and the ISS.

Following the literature on shareholder voting (e.g., Gordon and Pound (1993); Cuñat, Gine,

and Guadalupe (2012); Bach and Metzger (2015)), we focus on shareholder-sponsored proposals

to change corporate governance. Hence, we exclude other shareholder proposals, most notably

director elections because they fall under different voting standards, where abstentions have a

different interpretation as a “No” vote (Matvos and Ostrovsky (2010); Cai, Garner, and Walkling

(2013)).5 Moreover, we do not use management-sponsored proposals because most information

sensitive proposals (e.g., on mergers, spin-offs, bonds, equity issuance, etc.) fall under this category.

Our model is not suitable for cases where aggregation of dispersed private information is the main

goal of voting. Finally, in tune with our theoretical analysis, we only focus on simple-majority

elections —this is not very restrictive as super-majority voting contests are only 2% of our sample.

We combine the aggregate voting results with the ISS Mutual Fund Voting database, which

provides the number of votes per voting direction (for, against, and abstentions) of individual

investment funds for each proposal. The source for this database is the mandatory N-PX filing.

We aggregate fund-level voting information at the corresponding fund-family level.

We obtain data on institutional ownership from the quarterly 13F filings collected by Thomson

Reuters. Institutions that report 13F filings include investment funds, which also disclose their

votes on the N-PX forms, as well as hedge funds and other asset managers. We complement this

data with the ownership fraction of significant owners, by type (institutional or private), which we

5For our baseline analysis we also exclude shareholder proposals that are unrelated to corporate governance, e.g.,
on environmental and social issues (He, Kahraman, and Lowry (2019)) that are very heterogeneous and hence harder
to cluster for our estimation. However, we include them in robustness checks in Section 5.4.
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hand-collect from the proxy statements. In the proxy filing, which contains the voting invitation,

the firms must report the ownership of blocks greater than 5%.

2.2 Summary Statistics

Table 2 presents the summary statistics. Panel A provides the number of observations per year. Our

sample includes 1,460 meetings, for which shareholders submitted corporate-governance proposals.

There are, on average, 1.6 such proposals per meeting and 2,307 proposals in total. Panel B presents

the characteristics of the firms in our sample. Our firms are comparable to those in the samples

used by other papers on shareholder meetings (e.g., Cvijanović, Dasgupta, and Zachariadis (2016)),

with an average book asset value of $76 billion, leverage of 26%, and a market to book ratio of 1.7.

Panel C of Table 2 presents the summary statistics for share ownership at the meeting level. The

sample firms had, on average, 873 million outstanding shares, of which, on average, institutional

investors owned 72%. Among these, 25% reported their votes (N-PX shares). The blocks over

5% account for 17% of the shares. Most of these blocks belonged to institutional shareholders,

amounting to a total of 16% of the shares. Private shareholders with blocks over 5% accounted for

0.8% of all shares. Finally, directors owned, on average, 2.3% of the shares.

[Insert Table 2 about here]

2.3 Mandatory voting

In the US, during our sample period 2003–2011, certain shareholders must vote their shares, while

others can choose whether or not to vote. In particular, investment funds have a fiduciary duty

to vote on behalf of their clients (SEC Final Rule IA-2106). This duty is enforceable for mutual

funds and other registered investment management companies, which must disclose their votes on

the N-PX forms. As Table 2, Panel C shows, these shareholders hold a significant fraction, 25%,

of shares but not typically the majority.

To represent the participation decision accurately, we calculate discretionary participation rates

excluding the N-PX shareholders’ votes. To that end, we calculate the ownership fraction of the

regular voters (henceforth γ) as the fraction of N-PX voters from the 13F filings. To calculate

the number of votes by discretionary voters, we subtract the votes of regular (N-PX) voters from
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the aggregates in each category (for, against, and abstentions). These “NonN-PX” votes can

come from other institutional investors such as hedge funds and pension funds as well as from

individuals (such as insiders, directors, and dispersed shareholders). We then calculate discretionary

participation as the number of these NonN-PX votes out of the total number of NonN-PX shares.

Total participation is the number of all votes cast as a percentage of the shares outstanding, or the

sum of the discretionary and regular voting participation (100% by definition).

Regular voters can also formally cast abstention votes. The number of these abstentions votes is

very small: 1.1% of all N-PX votes. In our results going forward, we include the official abstention

votes to the sum of total votes cast.

2.4 Voting Participation: Stylized Facts

To set the stage for our analysis, we show basic summary statistics for voting support (as a fraction

of the valid base) and participation in Table 3. The base can be either the number of shares

outstanding or the number of voting shares, and depends on state laws and the company charters

(Bach and Metzger (2015)).

[Insert Table 3 about here]

Panel A of Table 3 shows that voting participation is non-trivial but also not full, on average.

Total participation averages 72% of shares outstanding, and discretionary participation averages

66%. These percentages are substantially higher than participation in political elections, such as

the 55% participation in the 2016 US presidential election. 6

Panel B of Table 3 reports the voting direction and participation by proposal type (see Appendix

B for the corresponding definitions). The proposals with the greatest support are on takeover

defense (49%). Proposals on executive compensation receive the least support (27%). Discretionary

voting participation ranges from 65% in compensation proposals to 67% in defense proposals.

Panel C of Table 3 shows the voting direction and participation by the type of sponsor. Proxy

advisors receive the highest support (37%), and proposals by firms and coalitions the highest

6Broker non-votes —cases where shareholders did not give voting instructions to the broker holding the shares “in
street name”— usually count towards quorum. All of our proposals achieve the simple majority quorum accounting
for broker non-votes, and all except for 27 would achieve it even if broker non-votes did not count towards quorum.
Broker non-votes are not counted towards the outcome of non-routine proposals such as the ones in our sample.
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discretionary participation (72% and 68%, respectively). Next, we present the theoretical model

on which we base our structural estimation.

3 Model

In this section, we present a rational-choice model of voting participation. In this model, which is an

extension of Myatt (2015), the important variation is that we allow for differences in the ownership

structure, which give rise to different regimes of voting participation. We solve the model with the

intent of unraveling new effects that are unique to corporate voting and of linking these effects to

certain parameters, which we then estimate using US voting data.

Setup. Consider a corporate proposal in which shareholders choose between two options, R and

L. Shareholders have heterogeneous preferences over the proposal. This means that if they vote

they do so according to a pre-determined preference type, R or L, regardless of others’ preferences

and voting participation decision. Furthermore, shareholders own in total n+1 voting shares, which

are split between two different groups.7 A fraction γ ∈ [0, 1) of the n shares belongs to regular

voters, while a fraction 1 − γ of n belongs to discretionary voters with a single voting share and,

thus, a single vote each —where the last voting share also belongs to a discretionary voter.

Regular voters always vote. We capture their voting preference by a constant q ∈ (1/2, 1), which

is the fraction of this group who vote for R. Thus, we can think of regular voters as: either i) two

subgroups (blockholders) with sizes q and 1− q supporting R and L, respectively; or, alternatively,

ii) coalitions of dispersed shareholders who always participate and vote in proportion q and 1 − q

for R and L, respectively. The choice of R as the favorite among regular voters (i.e., q > 1/2) is

without loss of generality.

Discretionary voters can choose to vote or not. They base their choice on: an incremental

benefit v > 0, which represents the difference in $/share accruing to a discretionary voter when

her pre-determined type wins vs. loses; and an opportunity cost c > 0, which they face when they

vote, regardless of the outcome. We assume all discretionary voters are risk neutral and share the

7The number of voting shares n can be thought of as the market capitalization of the firm divided by the average
holdings in that firm; for example, in a firm with $10M market capitalization and $10K average holdings, we have
n = 1000. For comparison, the average number of non-N-PX institutions in our sample is 829 (see Table 4).
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same v and c, regardless of their preference type R or L.8

The benefit v is private to a discretionary voter. Such so called ‘private values’ can still be

reflected in the firm’s stock market price depending on the preferences of the marginal post-voting

trader vis-à-vis those of the marginal voter.9 Possible sources of private values amongst investors are

different incentives (Chevalier and Ellison (1999)), portfolio concerns (Cohen and Schmidt (2009)),

or diverse ideologies (Bolton, Li, Ravina, and Rosenthal (2018)). Moreover, private values are

observationally equivalent to a common value (e.g., caring only for the stock price) when investors:

either i) ‘agree to disagree’, that is, have heterogeneous priors and do not learn, as in asset pricing

models (Harrison and Kreps (1978)); or ii) receive ‘extreme’ information, so they again do not learn

from the voting contest (Feddersen and Pesendorfer (1997); Yilmaz (2000)).

The cost c captures: i) the administrative cost of voting (e.g., time and effort, see Section 7

for a discussion); and ii) the opportunity cost to keeping one’s shares and voting. A significant

example of the latter is loan fees earned in the shares lending market. As Porras Prado, Saffi, and

Sturgess (2016, pp. 3212-3213) mention “...[i]nvestors may trade off the income from lending with

the potential risks of losing monitoring control through transferring shares to the equity lending

market...”. Indeed, loan fees are higher around voting record dates, see Aggarwal, Saffi, and

Sturgess (2015, Figure 1). Our model captures these fees via cost c.

Now, among discretionary voters, option R has ex-ante popularity p ∈ (0, 1). The crux of the

model is that p is unknown (in contrast to q), with strictly positive density f in (l, h) ⊆ (0, 1), and

mean p. Discretionary voters also face an ‘availability’ shock: even if they decide to vote they will

ultimately cast a vote with random probability a, which has density g in (0, 1] and a mean of a; p

and a are independent random variables, while q is known.

Upon voting, the outcome is the simple-majority of the votes cast, and in the case of a tie, a

fair coin toss is the tie-breaker. All the information above is common knowledge. The only choice

variable (strategy) is whether a discretionary voter votes. We look for symmetric strategies across

preference types R or L of discretionary voters, and the solution is determined by the Bayesian

8This latter assumption primarily assists identification in the estimation. As it will become clear in the analysis,
what really matters is the ratio v/c. Hence, our extension with idiosyncratic costs in Section C of the Appendix
addresses also (indirectly) any idiosyncrasies in v.

9A full analysis of the trading game is out of the scope of this paper; for coverage of post-voting trading —in a
model that, however, does not feature abstention in the voting game— see Levit, Malenko, and Maug (2019, Section
7.3). Our model assumes that any information on future actions, including trading, is common knowledge and already
embedded in the parameters discretionary voters use to decide on their participation.
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Nash Equilibrium. Note that for γ = 0 (i.e., no regular voters) we coincide with the model of

Myatt (2015). For a further discussion of the model’s assumptions, particularly, in relation to our

estimation, see Section 8. We now proceed to the model’s solution.

Primitives. For discretionary participation to be possible, we rule out the case in which either

type of regular voter can decide the outcome unilaterally. Since q > 1/2, we need only assume:

A1: γ < 1/ (2q).

Consider a focal discretionary voter (shareholder) of type i ∈ {R,L}. Let bR and bL be the votes

of nonfocal discretionary voters for each option. Then, the total votes for R are bR + qγn, and for

L, they are bL + (1 − q)γn. The focal shareholder is pivotal if either: i) her type is losing by one

vote; she pushes the score to a tie and the coin toss is favorable (with a probability of 1/2); or ii)

there is already a tie; the coin toss is against her type and with her vote, she gives a clear majority

to her type; that is,

Pr[Pivotal|R] =
Pr[bR + qγn = bL + (1− q)γn] + Pr[bR + qγn− 1 = bL + (1− q)γn]

2
,

Pr[Pivotal|L] =
Pr[bR + qγn = bL + (1− q)γn] + Pr[bR + qγn+ 1 = bL + (1− q)γn]

2
.

The shareholder votes if vPr[Pivotal|i] > c or Pr[Pivotal|i] > c/v and does not vote otherwise, for

i ∈ {R,L}. Hence, for any participation to be possible, we also assume that the cost should not be

higher than the benefit:10

A2: v ≥ c.

Now, if

Pr[Pivotal|i] =
c

v
(1)

for either type i ∈ {L,R}, then that type is indifferent between voting or not and follows a mixed

10We can strengthen this requirement to v ≥ 2c as a “benevolent dictator” would enforce it, but this would not
significantly change our subsequent calculations.
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strategy, and we have partial participation for i.

Large Elections. As Myatt (2015) notes, the pivotal probabilities are cumbersome to calculate

unless n is large. Let tR and tL denote discretionary voter participation rates, depending on the

shareholders’ type. Below, we present the pivotal probabilities as approximated for large elections

and the case in which a is equal to a (i.e., g is degenerate). The proof appears in Appendix A.

Lemma 1 (Pivotal Probabilities). Assume that g(a) = δ(a− a) —that is, the Dirac function—

and A1, then the pivotal probabilities for L and R in large elections are approximately:

Pr[Pivotal|L] ≈ 1

(1− γ)n

1

a(1− p)(tR + tL)
f (p∗) (1− p∗), (2)

Pr[Pivotal|R] ≈ 1

(1− γ)n

1

ap(tR + tL)
f (p∗) p∗, (3)

where

p∗ ≡ tL
tR + tL

− (2q − 1)γ

1− γ
1

a(tR + tL)
. (4)

The value p∗ is the average probability of support for R among the discretionary voters, for which

the total average support for R and L are equal; that is,

a(1− γ)p∗tR + γq = a(1− γ)(1− p∗)tL + γ(1− q). (5)

Although (2) and (3) are approximations, we use them as equalities in what follows. In that sense,

we are looking at approximate equilibria, as defined in Myatt (2015, p. 10). Note that since p∗ is a

probability, it should be in (0, 1), and, hence, we can see from (4) that tL cannot be zero:

Corollary 1. There is no equilibrium where discretionary voters of type L do not vote, so tL 6= 0.

Hence, ruling out trivial equilibria (with tL = 0 where R wins), there are six possible equilibria to

compute tL ∈ {(0, 1), 1}, tR ∈ {0, (0, 1), 1}.

For each equilibrium, we follow the steps: i) if tL and/or tR are a ‘corner’ solution (i.e., equal

to one or also zero for tR), then we derive regions in terms of parameters n, γ, and v/(cn) by
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imposing the relevant condition for the corresponding pivotal probability (i.e., Pr[Pivotal|i] ≶ c/v,

i ∈ {L,R}); ii) if tL and/or tR are internal (i.e., strictly between zero and one), then we solve for

the rate(s) using (1); iii) we supplement the parameter regions so that the computed internal rates

(if any) are well defined; assumptions A1 and A2 are satisfied; and the probability in (4) p∗ ∈ (l, h).

To illustrate, in the proposition below, we present the equilibrium with incomplete participation by

both types; that is, both L and R employ a mixed strategy, and so we designate such an equilibrium

as mm (the proof appears in Section A in the Appendix). We single out equilibrium mm, as it is

the centerpiece of the analysis in political elections (see Myatt (2015, Proposition 1)).

Proposition 1 (Equilibrium mm). Assume that g(a) = δ(a− a) —that is, the Dirac function—

and A1–A2. If

n ∈ Nmm ≡
(
f(p) (a(1− p) + 2q − 1)

a(2q − 1)
,∞
)
, (6)

γ ∈ Γmm ≡
(
f(p)(1− p)
n(2q − 1)

,
a(1− p)

a(1− p) + 2q − 1

)
, (7)

v

cn
∈ Vmm ≡

(
γ(2q − 1)

f(p)(1− p)
,min

{
(a− γ (a− 1 + 2q))

f(p)p
,
(a− γ (a+ 1− 2q))

f(p)(1− p)

})
(8)

then there exists an equilibrium with incomplete participation by both types; that is, tL, tR ∈ (0, 1)

given by

tL =
f(p)p

(1− γ)a

v

cn
+

(2q − 1)γ

(1− γ)a
, (9)

tR =
f(p)(1− p)

(1− γ)a

v

cn
− (2q − 1)γ

(1− γ)a
. (10)

Furhtermore, in equilibrium, the probability that either L or R is pivotal is equal to the common

cost-to-benefit ratio c/v (1), and the total expected votes for L and R are equal (5), i.e., p∗ = p, so

that the expected outcome is a tie.

Our approximations work well for large n. Therefore, we assume that there are many voters and

that the restriction imposed by n ∈ Nmm in (6) is innocuous. Then, the incomplete participation

equilibrium exists for a set of points (region) in the two-dimensional space (γ, v/ (cn)) —that is, the

space of the fraction of regular voters (henceforth, the regular block size) and the benefit-to-cost

ratio per voter. Conditional on a large n, the infimum of Γmm in (7) is essentially zero. Hence, we
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cover all plausible scenarios in the data. The interval Γmm depends on parameters q, p, f(p), and

a. The interval Vmm in (8) depends on all the above plus γ. The region Γmm × Vmm is depicted in

Figure 1, together with the corresponding regions of all other possible equilibria that we discuss in

Section 3.2. We pick parameters, primarily, motivated from our data in Table 4 and estimations in

Table 2: p ∼ U [l, h], h − l = 0.5, q = 0.8, a = 1, and values p = 0.3 and 0.7; the first choice of p

corresponds to disagreement between the (majority of) regular and the (majority of) discretionary

voters and the second to agreement.11

Where do the parameter restrictions (6)–(8) in Proposition 1 stem from? A large n guarantees

that the lower bound on γ does not exceed the upper bound, and, hence, an equilibrium with

incomplete participation exists. The lower bound on γ guarantees that v/c is higher than one (see

A2; equivalently v/(cn) ≥ 1/n), and, hence, some participation is possible. The upper bound on γ

guarantees that the lower bound on v/ (cn) does not exceed the upper bound. The lower bound on

v/ (cn) guarantees that the participation rate of discretionary voters, who support the favourite of

the regulars, i.e., tR, is positive. The upper bound on v/ (cn) guarantees that neither of the types

participates fully. In summary, for (large enough n and) (γ, v/ (cn)) ∈ Γmm × Vmm, discretionary

participation is strictly between zero and one for both types L and R.

3.1 Comparative Statics

Before we begin our discussion, note that, in equilibrium mm, average participation of discretionary

voters t ≡ α (tRp+ tL(1− p)) and average total participation ttotal ≡ γ + (1− γ)t are given by

tdisc =
2p(1− p)f(p)

1− γ
v

cn
+

(2q − 1)(1− 2p)

1− γ
γ, (11)

ttotal = 2p(1− p)f(p)
v

cn
+ ((2q − 1)(1− 2p) + 1) γ. (12)

Now, the main selection effects —the underdog and free-riding effects— are visible in the formulas

for the rates (9)–(12). All rates are the sum of two terms. An intragroup term, also present in Myatt

(2015) (i.e., the instance of our model where γ = 0), captures the interactions among discretionary

voters. An intergroup term, unique to our corporate setup, captures interactions between regular

and discretionary voters.

11In both graphs, the maximum value of γ is 1/(2q) (see A1) and we set the maximum of v/ (cn), arbitrarily, to
2.5 (i.e., the blue region theoretically extends to plus infinity).
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We focus on the intergroup terms first. Note that L is the least populous option —that is, the

underdog among regular voters given our innocuous assumption that q > 1/2. Then, the stronger

the favoritism is for R among the regular voters, the more the supporters of the underdog L among

discretionary voters will participate (i.e., ∂tL/∂q > 0 in (9)). This is the intergroup (in contrast

to intragroup) underdog effect. In turn, the stronger the favoritism is for R among regular vot-

ers, the less the supporters of that favorite R among the discretionary voters will participate (i.e.,

∂tR/∂q < 0 in (10)) —that is, the (intergroup) free-rider effect. Both of these effects are combined

in discretionary participation and in total participation. The effect that dominates depends on the

identity of the underdog/favorite among the discretionary voters. If the discretionary voters also,

on average, prefer R, there is agreement between the discretionary and regular voters. Then, dis-

cretionary and total participation decrease, as the free-riding effect dominates the underdog effect

(i.e., ∂tdisc, ttotal/∂q < 0 in (11) and (12) if p > 1/2). In contrast, discretionary and total partici-

pation increase if there is disagreement and the underdog effect dominates (i.e., ∂tdisc, ttotal/∂q > 0

in (11) and (12) if p < 1/2).

Now, we turn to the intragroup terms (present also in the incomplete participation equilibrium

of Myatt (2015, Proposition 1)). More average p (support for R among the discretionary voters)

increases tL and decreases tR; this is the intergroup underdog effect, which is standard in political

elections. Moreover, tdisc and ttotal increase with (a measure of) closeness among discretionary

voters —that is, −|p − 1/2|— capturing the fact that (ignoring regular voters) close elections

command more participation. All rates: i) decrease with the size of the electorate n, since in a

larger pool of shareholders each voter has a smaller probability of being pivotal; ii) increase with the

concentration of the ex-ante beliefs around the mean f(p); and iii) increase with the benefit-to-cost

ratio v/c. As expected, the average availability shock a decreases both tL and tR and does not

affect tdisc and ttotal. Finally, the first parts of all rates increase with γ, capturing the fact that

more regular voters means fewer discretionary voters.

The parameters of our model also affect the region Γmm× Vmm of the incomplete participation

equilibrium. For example, for a large regular block size γ (or support for R among regular voters

q), the length of the interval of permissible values for the benefit-to-cost ratio per voter diminishes.

Intuitively, for high γ, high values of v/ (cn) (which were permissible for lower values of γ) lead to

full participation for voters of L, while low values of v/ (cn) (which were permissible for lower values
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of γ) lead to no participation for voters of R. Geometrically, this result means that the region of

equilibrium mm (which is not orthogonal) becomes narrower as γ (or q) increases, see Figure 1 and

expression (7). Moreover, the region is larger when there is disagreement (i.e., p < 1/2), capturing

the greater likelihood of a tie in this case.

[Insert Figure 1 about here]

3.2 Equilibria

Table 1: List of All Possible Equilibria

Eqm. Prop. tL tR γ ∈ v/ (cn) ∈ Avg. outcome

mm 1 ∈ (0, 1), (9) ∈ (0, 1), (10) Γmm, (7) Vmm, (8) Tie

1m 3 =1 ∈ (0, 1), (OA.4) Γ1m, (OA.2) V1m, (OA.3) Tie/Right

10 4 =1 =0 Γ10, (OA.6) V10, (OA.7) Right

11 5 =1 =1 Γ11, (OA.9) V11, (OA.10) Left/Tie/Right

m1 6 ∈ (0, 1), (OA.14) =1 Γm1, (OA.12) Vm1, (OA.13) Left

m0 7 ∈ (0, 1), (OA.18) =0 Γm0, (OA.16) Vm0, (OA.17) Right

We now proceed to all other possible equilibria, which we cover in detail in the Online Ap-

pendix.12 Table 1 reports for each equilibrium the pair (tL, tR) (in columns 2 and 3, respectively)

and the corresponding regions in the space (γ, v/ (cn)) (in columns 4 and 5, respectively), referring

the reader to the explicit formulas in the relevant propositions (column 2) and equations. It can

be shown that regions Γ× V are non-overlapping (a pictorial representation appears in Figure 1);

hence, given specific parameter values, the equilibrium prediction is unique (if an equilibrium exists

at all for those parameters). Moreover, outside of the parameter regions of the equilibria in Table

1, there are no equilibria in which the two types use symmetric strategies (pure or mixed).

The name of the equilibrium (column 1) denotes the participation by L and R, where m stands

for mixed, 1 for full, and 0 for no discretionary participation of that type.13 For equilibria in which

only one side uses a mixed strategy (i.e., 1m, m1, and m0), we need an additional assumption

regarding the distribution of p to obtain closed-form expressions for the participation rate of that

type. In particular, we assume that p ∼ U [l, h], i.e., uniform; throughout, we also maintain the

assumption that g(a) = δ(a− a).

12Available at https://bit.ly/2txlqgk.
13For all equilibria, we posit that n is large enough so that the equilibrium requirements are met, which is sensible

since our approximations work well for large n, and empirically, the number of voters is rarely small.
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Now, define the voting outcome with discretionary participation:

Odisc(p) ≡
total support for R︷ ︸︸ ︷
γq + a(1− γ)ptR − [

total support for L︷ ︸︸ ︷
γ(1− q) + a(1− γ)(1− p)tL] =

regular voters︷ ︸︸ ︷
γ(2q − 1) +

discretionary voters︷ ︸︸ ︷
a(1− γ) [tRp− tL(1− p)] .

(13)

Odisc(p) is the difference between total support for R and L when the ex-ante support for R among

discretionary voters is p. Alternatively, in the second equality, we decompose the outcome to the

contribution of regular and discretionary voters. For Odisc(p) > 0, R wins; for Odisc(p) = 0, there

is a tie; and for Odisc(p) < 0, L wins. From the definition of p∗ (see 5), we know that Odisc(p
∗) = 0.

Moreover, we can compute the average outcome of a voting contest as Odisc(p) (i.e., the outcome

for the average p). As we show in Proposition 1, for all (γ, v/(cn)) ∈ Γmm × Vmm the average

outcome in equilibrium mm is a tie, since p = p∗. However, this is not true for the other equilibria

listed in Table 1. For example, there are (γ, v/(cn)) ∈ Γ1m×V1m, where in equilibrium 1m we have

a tie and others where R wins, both on average. To highlight this, for each equilibrium in Table 1,

we mention the possible average outcomes (column 7), with the added simplifying assumption that

a = 1 . Hence, each average outcome can be consistent with several equilibria: L with equilibria

11 and m1; R with equilibria 1m, 10, 11, and m0; and a tie with equilibria mm, 1m, and 11; so

observing the average outcome of a voting contest does not lead to a unique equilibrium prediction.

Note that in Myatt (2015, Proposition 2) —that is, the instance of our model for γ = 0— we

have only equilibria mm, 1m (or m1 depending on whether p is smaller or larger than 1/2) and

11. So if we focus on the line γ = 0, then the equilibria intervals in terms of v/(cn) are identical

between disagreement and agreement —with the change that m1 is replaced by 1m (see Figure

1). Hence, equilibrium 1m does not exist for γ = 0 and disagreement. The intuition is that for

γ = 0 and disagreement, R supporters are the (intergroup) underdogs (since there are no regular

voters); alas, there cannot be an equilibrium in which the supporters of the “underdog” participate

incompletely, while those of the favorite (L in this case) participate fully. In general, the inclusion

of regular voters (i.e., γ > 0) not only enhances the space where certain equilibria exist, but also

results in a richer set of strategies for the discretionary voters (e.g., equilibrium m0).

Aggregate uncertainty regarding p plays a crucial role. First, it is essential for sustaining

equilibria with some participation; that is, it is necessary that l < h, otherwise, the regions Γ× V
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are empty. The intuition is that if voters were certain of the ex-ante preferences, then their perceived

probability of being pivotal would almost always be zero, and, hence, their incentives to participate

would be diminished. Furthermore, even when l < h, not all equilibria necessarily exist (see

Propositions 1 and 3–7): i) if l > 1/2 (strong agreement, omitted for brevity from Figure 1), then

equilibria 11 and m1 do not exist (all others do); ii) if l < 1/2 and p > 1/2 (agreement in Figure 1),

then equilibrium m1 does not exist (all others do); while iii) if p < 1/2 (disagreement in Figure 1),

then all equilibria exist. The intuition is that for supporters of the regular voters’ favourite R to

show up fully (i.e., tR = 1) it is necessary that at least some (positive mass of) discretionary voters

prefer L. In general, more disagreement (i.e., p < 1/2) should result in less of the free-riding effect

(e.g., with disagreement, equilibrium 1m occupies a smaller region, see Figure 1) and (OA.2)).

Importantly, (intergroup) underdog and free-riding effects are weakly present in all equilibria;

that is, tR (weakly) decreases in q, while tL increases. This is also the case for the intragroup

underdog effect since across all equilibria, tR (weakly) decreases in p, while tL increases. Finally,

the rest of the effects manifest, as well: all rates (weakly) increase in the benefit-to-cost per voter

ratio v/ (cn) and decrease in the number of voters n and in dispersion h − l. However, note that

although all these effects are monotonic (for a given equilibrium), they are not linear. All the

aforementioned observations guide our estimation process, which we discuss in the next section.

4 Estimation

4.1 Identification

For each proposal, we observe the following parameters in ex-post voting data: γ, the fraction of

regular voters; q, the fraction of regular voters in support of their favorite option R; dSuL, the

discretionary support of type L voters among those who vote; and dSuR, the discretionary support

of type R voters among those who vote.14 In the data, we standardize as R the direction (for

or against) that is most popular, on average, among the regular voters for a given proposal type.

Table 4 reports univariate statistics for these input variables.

We would like to estimate the following unobservable parameters: v/ (cn) (the benefit-to-cost

ratio per voter); p (the average fraction of discretionary voters in support of R); and std(p) (the

14Note that dSuL and dSuR correspond to tL(1− p) and tRp in the model.
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standard deviation of the fraction of discretionary voters in support of R).15 However, we can only

obtain a point estimate of v/(nc) in absence of ‘corner’ participation (i.e., participation strictly

in (0, 1)), which is true for equilibria mm, m1, m0, and 1m. Instead, for equilibria 11 and 10,

we reach a set estimate V =
[
v/ (nc)lower , v/ (nc)upper

]
. This is because all v/(nc) ∈ V in those

equilibria lead to the same estimates, as the particular value of v/ (cn) does not affect participation

rates tL, tR. Furthermore, we assume, throughout, that the average availability is a = 1 (we show

that our results are robust to varying a in Section E.2 ‘Availability’ in the Appendix). Therefore,

overall, we are estimating four parameters: v/ (nc)lower , v/ (nc)upper , p, and std(p).

We sort the data in terciles of γ × terciles of q × terciles of n (as an approximation, the number

of non-N-PX institutions filing 13F forms) × proposal types (see Section D in the Appendix). Our

unit of estimation is a bin in this quadruple-sort. For each bin we compute the average γ; the average

q; and the moments dSuL, dSuR, dSuL2, dSuR2. Hence, given the possibility of set estimates, we

use four moments to estimate four parameters; thus, our system is exactly identified.16

The bins are necessary because the observables dSuR, dSuL are in a firm×year×proposal type

dimension. Therefore, to compute meaningful averages for a given proposal type, we have to ‘fix’

the firm×year parameters of the model: γ, q and n. Hence, our identifying assumption is that

within each bin (i.e., a tercile of γ, a tercile of q, a tercile of n, and a proposal type), unobservable

{v/ (cn) , p, std(p)} are constant and the averages γ, q are representative (we do not use parameter n

in the estimation as it is ‘absorbed’ in the ratio v/ (cn)). We, essentially, postulate that variation in

p (the discretionary support for R) across proposals is the only variation that allows us to identify

the bin-specific parameters. Finally, we face the following tradeoff in choosing the size of each bin:

more observations within a bin make our computed moments more accurate, but also reduce the

‘representativeness’ of the computed γ and q. This tradeoff does not affect our results qualitatively

in robustness tests with respect to the bin size (see Section E.2 ‘Alternative Bins’ in the Appendix).

4.2 Algorithm

The algorithm performs an exhaustive search for every bin. We consider a dense grid of points

in the permissible space of the unobservable parameters {v/ (cn) , p, std(p)}: v/ (cn) is positive,

15Given our assumption on p ∼ U [l, h], we have p = (h+ l)/2 and std(p) = (h− l)/
√

12.
16Results are very similar when we include the third and fourth moments of dSuL, dSuR (see Section E.2 ‘Alter-

native Moments’ in the Appendix).

21

Electronic copy available at: https://ssrn.com/abstract=2939744



while from the above (see footnote 11), for tL, tR ≤ 1, we have p ∈
[
dSuR, 1− dSuL

]
and std(p) ∈[

max {std(dSuR), std(dSuL)} , 1/
√

12
]
, where std(dSuR) ≡

√
dSuR2 − dSuR2

and std(dSuL) ≡√
dSuL2 − dSuL2

.17 Given a point in the grid, the algorithm performs the following (sub)steps

for each possible equilibrium:

i) Calculates the interval Γ and asks if γ belongs in it; if it does, then the calculations continue

for that equilibrium. Otherwise, we proceed to the following equilibrium.

ii) If γ ∈ Γ, then the algorithm calculates the interval V and asks if the v/ (cn) under consider-

ation belongs in it; if it does, then calculations continue for that equilibrium. Otherwise, we

proceed to the following equilibrium.

iii) If γ ∈ Γ and v/ (cn) ∈ V , then the algorithm calculates tL and tR —using the corresponding

formulas for the equilibrium under consideration— and creates the estimates

dSuLest = tL(1− p), dSuRest = tRp,

dSuL2
est = (tLstd(p))2 + (tL(1− p))2 , dSuR2

est = (tRstd(p))2 + (tRp)
2 .

iv) Using these estimates, the algorithm calculates the error:

Estimation Error =
(
dSuLest − dSuL

)2
+
(
dSuRest − dSuR

)2
+

(
dSuL2

est − dSuL2
)2

+
(
dSuR2

est − dSuR2
)2
.

After we go through all the equilibria for all the points in the grid, in the final step, for the bin under

consideration, the algorithm picks the point in the grid with the lowest estimation error. Hence,

since we take an identity weighting matrix for our errors, we perform a single-step GMM (see

Hansen (1982); Hansen and Singleton (1982)), referred to as ‘Baseline’ henceforth.18 Recall that

for fixed parameters {γ, q, v/ (cn) , p, std(p)}, the model predicts a unique equilibrium. In addition,

the algorithm picks the parameter values that minimize the estimation error using an exhaustive

17Note that 1/
√

12 is the standard deviation of a uniform in [0, 1].
18Single-step estimates are consistent but not efficient. However, as Parker and Julliard (2005, bottom of p. 193)

and references therein note: “...GMM with a pre-specified weighting matrix has superior small-sample [as our bins
are] properties...”. Results are very similar for the two-step (efficient) GMM, simply ‘GMM’, estimation (see Section
E.2 ‘Two-Step GMM’ in the Appendix).
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search. Hence, we can be certain that no other parameter values (in the grid) and equilibrium

would result in a lower estimation error, given the data.

5 Results

5.1 Model Fit

Table 5 reports parameter estimates and quality-of-fit statistics.19 In terms of model fit, Panel A

provides the proposal-weighted model mean absolute error (MAE) for each of the moments. The

baseline MAE equals 0.9% for the first moment of dSuL and 0.6% for the first moment of dSuR.

The second moment MAE is higher, with an average of 2.2% for dSuL and 0.6% for dSuR. The

MAE from a two-step (efficient) GMM, to the right, is yet higher: 3.6% (4.5%) for the first (second)

moment of dSuL and 3.4% (3.2%) for dSuR. For comparison, the proposal-weighted mean dSuL

is 26% and the one of dSuR is 40%.

Panel B shows parameter estimates for v/(nc), p and std(p). The single-step and two-step

GMM estimates deliver qualitatively similar estimates with overlapping confidence intervals. In

the baseline single-step estimation, the benefit-to-cost ratio per voter, v/(cn), is 1.08 with a 95%

confidence interval of 1.03 to 1.14. To put these numbers into context, we can estimate v, the benefit

of voting, using rather primitive assumptions on c and n (see Section E.4 in the Appendix). For

an average ownership stake of $1.5 million —that is, the average holding size of insiders convicted

by the SEC (Ahern (2017))— and a cost of $1, the “return” is 2.1%. This result compares to an

average return of 1.6% for the passing of governance proposals by Cuñat, Gine, and Guadalupe

(2012). Assuming a higher cost linearly translates into lower returns.

Moreover, we estimate a 0.72 mean and a 0.17 standard deviation for the distribution of p

(Panel B in Table 5), the fraction of discretionary voters for R. The 95% confidence intervals are

0.67 to 0.73 for the mean and 0.15 to 0.18 for the standard deviation. To set these parameters in

context, we compare these estimates to q in Panel B of Table 5. The popularity of R among regular

voters differs from the one of discretionary voters, on average, by 12% in absolute distance. The

signed difference is 8% (i.e., p is on average greater than q), with a range of -15% to 68%. This

compares in magnitude to a standard deviation of q of 15%, and a mean of 80% (recall that q is

19For univariate statistics for the inputs to the algorithm see Table 4.

23

Electronic copy available at: https://ssrn.com/abstract=2939744



by definition above 50%, since it measures the regular voters’ preference for their favourite option,

which we denote by R). The small difference between regular and discretionary voter preferences

is consistent with the literature (Aggarwal, Erel, and Starks (2014)).

Our estimates imply a high turnout by L of 98% and a turnout by R of 57% (Panel C of Table

5). The large difference between the two sides implies that selection moves the voting outcome

away from the population preference. We revisit this result in detail below.

We also evaluate the fit of the model by comparing the precision of out-of-sample predictions

with that of a reduced form model with a parsimonious set of fixed effects (firm, year, and proposal

type) and explanatory variables based on the previous literature. To be more precise, our set of ex-

planatory variables is based on Table 3 of Malenko and Shen (2016) who link ISS recommendations

to voting support. To ensure that this model is directly comparable to ours, we add the information

that we use in our baseline estimation as explanatory variables: γ, q, and n. We use this model

to predict total participation, dSuL, dSuR, and the outcome index Odisc(p) in (13). We provide

the estimates in Table 12. Similar to Malenko and Shen (2016), negative ISS recommendation

(NegRec) predicts the outcome significantly.

To compare the prediction accuracy of our baseline model to the reduced-form model, we

calculate model parameters with data up to 2010. We then use these parameters (i.e., v/(cn) and

the distribution of p) to predict total participation, dSuL, dSuR, and Odisc(p) for 2011 proposals,

using 2011 data for any other input needed (i.e, the proposal type, γ, n, and q). The baseline model

produces smaller mean squared errors (MSE) than does the reduced-form model (Panel E in Table

5), by a factor of around two. The difference is significant according to a Diebold and Mariano

(1995) test; for this test, we treat the predictions as a time series with the meeting order as a time

stamp. The differences in MSE are the highest for total participation and dSuL. For dSuL, the

aforementioned reduced-form model obtains MSEs twice as high as for dSuR, while the difference

among our estimates are more comparable. This discrepancy is consistent with a prevalence of

corner equilibrium outcomes on the L side (i.e., equilibrium 1m).

5.2 Equilibria

Equilibria differ in terms of the expected outcomes and the relationship between the parameters

and participation rates (see Table 1). Graphically, this means that moving in any direction leads
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to different consequences in each region in Figure 1. Therefore, distinguishing current and possible

equilibria is important for any counterfactuals, campaigns, or regulatory actions.

Panel D in Table 5 reports the number of proposals that correspond to each equilibrium in

Table 1.20 The vast majority correspond to the 1m equilibrium (2,181 out of 2,305), in which

the intergroup underdogs (discretionary voters for L) participate fully, and intergroup free-riders

(discretionary voters for R) participate partially. In other words, discretionary voters against

regular voters are more likely to participate. In contrast, only 62 proposals correspond to the m1

equilibrium in which the R supporters participate fully and the L supporters partially. No proposals

correspond to equilibrium 10 or 11 (i.e., full participation only for L or full participation on both

sides, respectively).

Recall that in political elections, the typical equilibrium is the incomplete participation equi-

librium mm, in which the expected outcome is a tie. This equilibrium is the most appropriate

for only 62 of our sample proposals. The predominance of the 1m equilibrium differentiates the

corporate from the political context. The presence of differences in the ownership structure enables

the corner equilibrium with complete turnout by the underdogs. For outcomes, the low incidence

of the mm equilibrium means that ties are not as probable —and, in return, the absence of ties

does not imply that voters are irrational or do not follow pivotality arguments (we will return to

this argument below). For a campaign planner or regulator, this means that actions to increase

turnout by the minority side are unlikely to shift the outcome; campaign money is better spent on

changing preferences.

5.3 Selection Effects

In Table 6, we use the parameter estimates to quantify selection effects.

Full-participation and zero-participation benchmarks. In Panel A of Table 6, we compare

the average estimated outcome with discretionary participation (Odisc(p) in (32)) with the (average)

outcomes under two counterfactual benchmarks: i) when only regular voters participate (that is,

no discretionary participation; Oonly-reg in (34)); and ii) when all voters participate (that is, full

discretionary participation; Ofull(p) in (33)). Participation by discretionary voters increases, in

20We ‘project’ our algorithm’s results from the bins, where they were estimated, to the proposals within each bin.
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absolute terms, the support for R (the regular voters’ favorite option) by 10% relative to the zero-

participation benchmark (Odisc(p) vs. Oonly-reg). This is consistent with the average agreement

between regular and discretionary voters (the average q − p is 8%). In contrast, discretionary

participation reduces the support for R by 23% from the benchmark with full participation. The

substantial ‘loss’ of support for R is due to the free-riding and underdog effects: discretionary

supporters of R free-ride on regular voters and participate less than the underdogs L (the regular

voters’ minority option).

Non-representative voting outcomes. How often can selection swing the vote? In other

words, when is the outcome different to the benchmark under full discretionary participation?

We compute the probability of a non-representative outcome, denoted as P [Odisc(p)Ofull(p) ≤ 0],

using Monte-Carlo simulations over p under the per-bin parameter estimates for p and std(p). Any

difference between these probabilities stems from the (equilibrium) participation rate tL and tR.

According to our estimations, supporters of L —the underdogs— are over-represented (tL is on

average 98%), while supporters of R, the free-riders, are under-represented (tR is on average 56%)

relative to their popularity in the entire population of shareholders. Ultimately, our simulations

reveal that free-riders and underdogs lead to outcomes that with average probability 13% and

maximum 47% do not represent the majority of the entire shareholder base (Panel A of Table

6).21 Hence, non-representative outcomes occur substantially often and may lead to the adoption

of policies, which do not benefit the majority of shareholders; thus widening even more the gap

between ownership and control. The probability of non-representative outcomes exhibits substantial

heterogeneity —we explore this in greater detail in the next subsection.

Selection effects per equilibrium. The most stark case of over-representation of L occurs

in equilibrium 1m. In contrast, in the mm and m1 equilibria, the R side receives more support

under (some) discretionary participation than under full participation. Overall, the probability

of non-representative outcomes is 12% in 1m, 18% in mm, and 33% in m1 (Panel B of Table 6.

Because most of our proposals correspond to the 1m equilibrium, the sample average probability

of non-representative outcomes is close to the average in this equilibrium.

21We can do a similar exercise relative to the case where only regulars participate (see Section B.2 in the Appendix).
Then the outcome is different (relative to the data) with an average probability of 15%.
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Probability of closeness. Given the substantial rates of discretionary participation, surprisingly

few votes are close to the passing threshold —25% in the [-10%, +10%] range as reported by Cuñat,

Gine, and Guadalupe (2013). Why do shareholders vote if their ex-post probability of overturning

the outcome is so low? The predominance of the 1m equilibrium provides one explanation for the

low rates of close outcomes. Our estimates allow us to compute the ex-ante probability of voting

support for R, let Rsupport(p), within a given range [−x,+x] around the passing threshold, denoted

by P
[
Rsupport(p) ∈ (50%−x, 50%+x)

]
, and to compare them to their ex-post counterparts. Indeed,

the ex-ante probability for the [-10%, +10%] range is higher: 38% (Panel C in Table 6) than the

ex-post incidence of 33%. For a [-1%, +1%] range, the ex-ante probability is similarly higher, with

5%, than the ex-post incidence of 4%. Note that the probability of being in the [-10%, +10%] range

is highest for the m1 equilibrium, at 50%, while it is 38% and 35% for 1m and mm, respectively.

Success probabilities in close votes. Understanding ex-ante odds for close votes is important

for the interpretation of regression discontinuity tests that rely on the contrast between just-won

and just-lost contests (e.g., Cuñat, Gine, and Guadalupe (2012, 2015, 2019); Bach and Metzger

(2015); Babenko, Choi, and Sen (2018)). Our estimates imply that the probability of, say a win

by R conditional on an ex-ante close contest in the range [−x, x], denoted by P
[
Rsupport(p) >

50%
∣∣Rsupport(p) ∈ (50% − x, 50% + x)

]
(see Panel C of Table 6), differs between equilibria. In

the most prevalent 1m equilibrium, the ex-ante outcome probabilities are 78:22 (R:L) for close

proposals in the [-10%,10%] range and 66:44 for those in the [-1%,1%] range. In contrast, the odds

are roughly 50:50 in the mm equilibrium, in which both sides expect a tie. Taking these differences

into account can improve the precision of regression discontinuity estimates.

5.4 Heterogeneity in Preferences

In this section, we recompute the probability for non-representative outcomes for different subsam-

ples (Table 7, Panel A). The probability of a non-representative outcome differs across proposal

types, ranging between an average of 8% for takeover-defense proposals, 13% for board and execu-

tive compensation proposals and 16% for other governance proposals. We compare these numbers to

proposals outside our sample: management proposals as well as non-governance shareholder propos-

als (for example, CSR or finance). These proposals face small probabilities of outcome-preference
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misalignment between 3% and 4%. For all management proposals we estimate a probability of a

non-representative outcome of 4%, while for say-on-pay proposals the corresponding estimate is

close to zero.

The discrepancy between the shareholder proposals and the management proposals indicates

that the sponsor matters. Indeed, Table 7, Panel B shows the variation in the probability of a

non-representative outcome, ranging from an average of zero and 2% for corporate sponsors and

employee sponsors, respectively, to 16% for coalitions and union sponsors. Proposals by individual

activists also face a high probability of a non-representative outcome of 12%.

In Table 7, Panel C we report the outcomes of the estimation algorithm using bins of years

instead of proposal types. Non-representative outcome probabilities appear somewhat cyclical,

with higher probabilities in 2005, 2006 (13%, 12%) and 2009, 2010 (14%, 14%) and lower ones in

2003–4, 2005–6, and 2011 (in the range 6–9%).

Industries also vary according to their selection-driven non-representative outcome probabil-

ities, as Panel D in Table 7 shows. The probability of a non-representative outcome is highest

for the Energy and Information Technology (IT) sectors and lowest for Communication Services,

Industrials, and Consumer Staples.

Panel E in Table 7 shows how selection effects vary with past returns. Non-representative

outcome probabilities do not vary much when we we compare the population preference to actual

outcomes (11% in the lowest vs. 13% in the highest tercile). However, the actual outcome differs

more from that of the equilibrium with only regular voting participation for better performing firms

(13% in the lowest vs. 18% in the highest tercile).

Finally, selection effects display significant variation with respect to ownership structure (Panel

F of Table 7). Outcomes are more likely to be non-representative for firms with lower N-PX

ownership. Accordingly, proposals in the lower tercile of N-PX ownership are more likely to be in

the mm or m1 equilibrium. The probability of non-representative outcomes (13% on average in our

whole sample) is also smaller for firms with a large (i.e., holdings of over 5%) private blockholder

(9%) and those with more institutional ownership (10% for the highest, 13% for the lowest tercile).

In contrast, activist ownership does not seem to matter much for any of the selection estimates.
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6 Closeness and Participation

Closeness is central for voting participation decisions in pivotal voter models since it affects the

likelihood of being pivotal. However, realized voting outcomes are often far from close (Cuñat,

Gine, and Guadalupe (2012); Bach and Metzger (2015); Cuñat, Gine, and Guadalupe (2015)) and

close votes do not have higher participation rates. These observations cast doubts on the validity

of rational choice models in the context of corporate voting.

Our model provides an explanation for the flat relation between ex-post (realized) closeness

and participation rates: differential effects among free-riders and underdogs. More precisely, the

model predicts a positive relation between closeness and participation by underdogs, but a negative

one between closeness and participation by free-riders. In particular, close votes accentuate the

underdog effect (underdogs participate more in the hope of swaying the vote), while at the same

time, closeness is made possible by the free-riding effect. We now test these predictions empirically.

First, we confirm that close votes do not vary significantly with participation rates. Controlling

for γ, q, n, and proposal type fixed effects (Table 8, column 1), and firm as well as year fixed effects

(column 2), proposals with voting support (for the favorite) of 40% to 60% are actually decreasing

in discretionary participation per proposal tdisc ≡ dSuR + dSuL. The magnitudes are small, with

-0.5% without firm or year fixed effects and 0.1% with them. For a narrower band between 49% and

51%, the coefficient is of similar magnitude (column 3). Total participation per proposal (column

4) ttotal ≡ (1− γ)tdisc + γ follows a similar pattern with negative coefficients.

However, the flat relation between closeness and participation masks the two competing forces

that the model highlights. Columns 5–7 of Table 8 show a significantly negative relation between

closeness and dSuR, the discretionary support for the favorite option of the regular voters. That is,

potentially close votes exhibit more free-riding (less participation). In contrast, the relation between

closeness and dSuL is positive: discretionary voters participate over-proportionally against regular

voters, an underdog effect. These two effects are of similar magnitudes, with 11.3% less participation

by the R side in close votes (column 5) and 11.7% more participation by the L side (column 8).

These coefficients, essentially, sum up to the coefficients of total discretionary participation.

The asymmetric relations between majority and minority participation and closeness are consis-

tent with our model but difficult to reconcile with other models of voting. Information aggregation
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models (Feddersen and Pesendorfer (1996)) or ethical voting models (Feddersen and Sandroni

(2006)) do not predict any relationship between closeness and participation rates. Thus, these

results provide evidence in support of the empirical importance of our framework.

7 Counterfactuals on Cost

Here, we consider variations to the cost of voting c. Reducing the administrative cost of voting

is an objective of regulators around the world (e.g., see the Shareholder Rights Directive in the

European Union).22 Notable examples of cumbersome and costly voting procedures include pre-

registration requirements (e.g., in Switzerland), Power of Attorney requirements (e.g., in Sweden),

the non-availability of electronic voting outside the US and Europe (Eckbo, Paone, and Urheim

(2010, 2011); Council of Institutional Investors (2011)). In contrast, administrative costs of voting

are likely to be small in the US, as reflected in the high participation rate among L voters that

we estimate in the US data. Evidently, most firms in the US support electronic voting and do not

require cumbersome paperwork to prove ownership or pre-register for voting.

The cost in our model enters through the benefit-to-cost ratio per voter v/(cn). Hence, an in-

crease in the cost, keeping v and n constant, leads to a decrease in the v/(cn). Of course, our coun-

terfactuals are equivalent to changing these ratios directly, for example, by changing v and keeping

c and n constant. In Figure 3 (top panel) and Table 9, Panel A, we report P [Odisc(p)Ofull(p) ≤ 0],

that is, the probability of a non-representative outcome; and in Figure 3 (bottom panel) and Table

9, Panel B, we report the equilibrium incidence for different multiples of the cost of voting, keeping

all other parameters constant.

First, for cost levels of 0.25 and 0.5 times the current US level, full participation (i.e., equilibrium

11) is the only viable equilibrium. The probability of a non-representative outcome is 34% for the

55 proposals that qualify for the full participation equilibrium.

For voting costs above the US level, the probability of a non-representative outcome peaks at

41%, for costs of three times the US level. Beyond the peak, the probability of a non-representative

outcome decreases with costs. This is because costs of three times the US level lead to a high

incidence of the mm equilibrium: 1,104 out of 2,305 proposals (Panel B of Table 9). Recall that in

22Available online at http://bit.ly/2rtcZA5.
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that equilibrium, both types of discretionary voters use a mixed strategy and the average outcome is

a tie. The ultimate decision occurs by a coin flip, so conditional on an mm equilibrium, the favorite

loses with 50% probability. This randomness produces voting outcomes that are non-representative

of the full population in 46% of all proposals. At three times the US cost level, we also start seeing

more incidences of the 10 and m0 equilibria instead of the 1m equilibrium, so that discretionary

support for R even falls to zero. In other words, we obtain maximum free-riding on regular voters

from the discretionary voters who agree with their favorite outcome.

With increasing costs of voting, participation moves from full towards none. That is, we move

from the 11 equilibrium with full participation to the m0 equilibrium, in which almost only regular

voters and a few underdogs tend to participate. The representativeness of such high-cost elections

depends on the degree to which discretionary voters agree with regular voters. Regular voters that

perfectly agree with discretionary voters can represent all shareholders, even if voting is prohibitively

costly for discretionary voters. Such perfect alignment of preferences would support regulations that

force institutional investors to vote. However, our estimations above show that this is not always the

case. The average distance between q and p is 12%, which translates into a 15% overall likelihood

of an outcome different from the equilibrium with only regular voter participation (see Table 2,

Panel B). In summary, the relationship between P [Odisc(p)Ofull(p) ≤ 0] and c has an inverted-U

shape.

8 Discussion and Robustness

To facilitate the interpretation of the estimations, we now point out the limitations imposed by

the model’s assumptions. Our model focuses on the strategic decision of whether to participate

in voting taking other potential decisions as given. In particular, the model abstracts from: why

shareholders make certain proposals; how they obtain their votes; choose their preference type; and

arrive at their common knowledge of the model’s parameters (i.e., the fraction and preferences of

the regular voters and the distribution of preferences among the discretionary voters). In reality,

however, these decisions are likely to be endogenous, and, hence, the participation decision may

depend on factors outside our model.

Of particular interest is how shareholders obtain decision-relevant information in practice.
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In the model discretionary voters have heterogeneous preferences and observe the parameters:

{γ, q, p, std(p), v, c, n, a}.23 Much of the relevant information is fairly easy to access today due to

disclosure regulations: the ownership structure (i.e., γ, n), which is disclosed in the invitation to

vote; voting manifestos by institutional investors (i.e., q); and recommendations of proxy advisors

such as the ISS and Glass Lewis (Iliev and Lowry (2014); Malenko and Shen (2016)), which can be

a proxy for average investor preferences p. Also, it is reasonable to assume that voters know their

cost of voting c.

Nevertheless, information can still be costly to acquire. For example, subscription services

such as Proxy Insights provide aggregate voting predictions using the past voting behavior of

institutional investors. Hence, shareholders may still need to acquire costly information about the

benefits of the proposals (i.e., v) and/or the (dispersion of) preferences of the other shareholders

(i.e., std(p)). From the perspective of our model any information acquisition cost is sunk at the

stage of the participation decision. Moreover, our key assumption is not that discretionary voters

have perfect information but that they are homogeneous in the amount of information they have.

Absent heterogeneity in information, the channel we are ‘shutting down’ is information aggregation.

In order to evaluate the robustness of our results to this channel, we perform our estimations

separately in more and less information demanding proposals: early vs. late meetings; and high

vs. low standard deviation of analysts’ forecasts (see Section E.3 ‘Importance of information’ in the

Appendix). We show that our qualitative results remain similar in each of these subsamples.

The cost of voting c is of crucial importance in the model. Although we take it as fixed for

all in our analysis, there can be idiosyncrasies even across discretionary voters (i.e., not ‘too big’

institutions), for example, hedge funds vs. investor groups. To capture this, we extend the model

to idiosyncratic voting costs (see Section C for the analysis and Section E.1 for the estimation

results, both in the Appendix). This allows us to accommodate investors even with zero cost of

voting. We focus on the mm equilibrium for this extension and show that parameter estimates are

qualitatively similar to our baseline ones, albeit with higher errors; thus reinforcing the robustness

of the baseline setup.

Another issue of practical relevance is equity lending. Aggarwal, Saffi, and Sturgess (2015)

23Our estimates already take into account any actions by major stakeholders to affect those very parameters. For
example investors buying shares to vote or managerial actions to affect the outcome (including campaigning, picking
the location of the Annual General Meeting, etc). In essence, our identifying assumption also requires that when
discretionary voters decide whether to vote these parameters are fixed and constant up until voting is over.
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report a 1.9 percentage points rise in recalls by institutions around record dates, leading to a

reduced supply and higher fees. In the presence of such a market, discretionary voters may decide

to lend their shares instead of voting, effectively increasing the opportunity cost component of c.

If voting constitutes a significant factor in the equity lending market, the demand, supply, and

interest should be endogenous to shareholder preferences and the voting decision. Given that the

expected benefits of voting are greater for shareholders with a preference for the underdog, they

should be willing to pay more to borrow shares. This will allow them to acquire more votes,

which will lead to closer votes than would occur in a world without equity lending. Closer voting

outcomes can lead to more incidences of the incomplete participation equilibrium mm, which is

rare in our data. However, the additional borrowing demand around the record date is small, with

estimates around 0.2% (Christoffersen, Geczy, Musto, and Reed (2007)) to 0.3% (Aggarwal, Saffi,

and Sturgess (2015)). Consistent with these magnitudes, our estimates do not change qualitatively

even in the top quintiles of equity demand and supply (see Appendix E.3 ‘Equity lending’).

We also make procedural assumptions that are standard in the literature (see Heard and Sher-

man (1987); McGurn (1989); Monks and Minow (2003) for further details about the mechanics of

proxy voting). First, we assume that voting occurs simultaneously. In practice, there might be

instances of early access to tabulations (Bach and Metzger (2015)). However, most voters and bro-

kers submit their votes at the deadline to prevent access to such information and to avoid having

to change their votes should they change their opinion. Second, we assume that regular voters

never abstain from voting, which is consistent with the data with fewer than 1% of empty votes

cast within our sample. Third, our model assumes that the vote is for a single issue/proposal

—i.e., abstracts from bundling, which occurs in reality. To address this, in Appendix E.3 ‘Number

of Proposals’ we show that our results hold qualitatively even in meetings with more proposals.

In Appendix E.2, we also show that our estimations are robust to alternative estimation choices:

‘Excluding the 1m equilibrium’, which is the most popular in our baseline estimations; ‘Two-step

GMM’, which is efficient; and ‘Medians instead of means’ for the representative γ and q per bin.
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9 Conclusion

We study the voting participation decision as a trade-off between the costs and benefits of voting.

The expected benefits of voting depend on the probability that a shareholder’s vote matters, which

in turn depends on the action of other shareholders. In a rational choice model, we show how:

shareholders with popular preferences participate less (free-rider effect) relative to those with un-

popular preferences (underdog effect). As a consequence, the less popular side is over-represented

in the voting results, and the outcome itself can be non-representative of the shareholder base.

Based on the model, we provide a tool to estimate the preferences of the underlying shareholder

base using US data. On average, support for the majority is 23% less relative to its popularity

among the entire shareholder base. This results in a considerable average probability of 13% of a

non-representative outcome.

Our estimation algorithm can help firms and regulators to identify which voting outcomes are

representative, and which proposals are more important to shareholders. The algorithm performs

very well, producing significantly smaller estimation errors than comparable models. The lower

prediction power in reduced form models reflects the non-linearity (with respect to key parameters

such as γ and v/(cn)) of the two main effects —free-riders and underdogs— that affect participation

rates in opposite ways. Taking these two competing effects into account can improve the prediction

power of parameters such as the voting support.

Regulators worry about potentially non-representative decisions and aim to reduce the costs

of voting. Our estimates of the model show how much such reductions could affect the likelihood

of non-participation effects. We show that the likelihood of non-representative outcomes is an

inverted-U-shaped function of the cost of voting given the current preference parameters in the

US data. Thus, decreasing the cost of voting from a very high level (above 3× the US level) will

first increase the probability of non-representative outcomes. However, these numbers assume that

regular and discretionary voters have similar preferences, as they have in the US: for diverging

interests, decreasing the cost of voting may still decrease the probability of non-representative

outcomes. We locate the current US cost of voting at 4× the full participation benchmark and far

below the peak of the non-representation likelihood.

Most of US voting features full participation on the side of the minority, contrary to the standard
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intuition of the political elections literature in which both sides participate partially to the extent

that the expected outcome is a tie. This is because in political elections, each voter has one

vote, whereas the voting power in corporate elections depends on the ownership structure. As

we exhibit, the existence and, in the case of the US, dominance of such corner solutions affects

the comparative statics and characteristics of counterfactuals. For example, campaigns to increase

voting participation are unlikely to sway the vote any further towards the underdog —if anything,

persuading more of the majority to vote less often could.

Some investors worry that voting results only represent certain parties such as mutual funds,

or the opinion of certain proxy advisors. We show how voting outcomes can be non-representative,

but also document that regular and discretionary voters in US firms have similar preferences (with

an average difference of 12%). Thus, mandating more investor types to vote or allowing any of them

to refrain from voting would not have a significant impact via the participation channel. Indeed,

both turnout and the likelihood of non-representative outcomes is lowest for firms with more N-PX

ownership (regular voters in our context).

Ours is a first attempt to infer information about underlying voter preferences from participation

rates —and to provide a guideline for interpreting voting support. It is a stylized and static attempt

that ignores many important forces such as information aggregation, the selection into ownership

structures, or the selection into the proposals that make it to the ballot. It is our hope that

this study provides the foundation for future work on the interaction of these forces with the

participation decision.
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APPENDIX

A. Proofs

Proof of Lemma 1 [Pivotal Probabilities]. Define uR ≡ aptR and uL ≡ a(1−p)tL, the actual

voting probabilities for R and L among discretionary voters, respectively, and the probability of

absentee votes u0 ≡ 1− uR − uL. Vector u ≡ (uR, uL, u0) lives in the two-dimensional unit simplex

simplex Λ and we, further, assume that beliefs regarding u are represented by continuous and

bounded density h(·|i), for i ∈ {R,L}. Then, the number of discretionary votes bR, bL, and (1 −

γ)n−bR−bL follow a multinomial distribution, with probabilities u ∈ Λ. Hence, by adapting Myatt

(2015, Eqs (4) & (5)), for our purposes, we calculate the probability of a tie with x discretionary

votes for R, by taking the following expectation over u:

Pr [bR = x, bL = x+ (2q − 1)γn|h(·|i)] =

∫
Λ

((1− γ)n)!uR
xuL

x+(2q−1)γnu0
(1−2qγ)n−2x

x!(x+ (2q − 1)γn)!((1− 2qγ)n− 2x)!
h(u|i)du ≈

h

(
x

(1− γ)n
,

x

(1− γ)n
+

(2q − 1)γ

(1− γ)
,
1− 2qγ

1− γ
− 2

x

(1− γ)n

∣∣∣i) Γ ((1− γ)n+ 1)

Γ ((1− γ)n+ 3)
≈

1

(1− γ)n

h

 x

(1− γ)n
,

x

(1− γ)n
+

(2q − 1)γ

(1− γ)
,
1− 2qγ

1− γ
− 2

x

(1− γ)n

∣∣∣i


(1− γ)n
,

for i ∈ {R,L}, where the first equality follows from the multinomial distribution; the first approxi-

mation relies on the observation that, for n large, most of the distribution will be concentrated at its

mode, and uses properties of the Dirichlet density; the second approximation follows from the defi-

nition of Γ(y+1) = y!, for y ∈ N, and that, for n large, (1−γ)n+1 ≈ (1−γ)n, (1−γ)n+2 ≈ (1−γ)n.

Then, by summing over all the possible x, the overall probability of a tie is:

n/2−qγn∑
x=0

Pr [bR = x, bL = x+ (2q − 1)γn|h(·|i)],
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where we assume in the context of this proof, primarily for simplicity, that both n/2 and γqn are

integers. Now, given the above approximations, for n large, the sum can be approximated by the

integral

1

(1− γ)n

∫ 1/2−qγ
1−γ

0
h(y, y + (2q − 1)γ/(1− γ), (1− 2qγ)/(1− γ)− 2y|i)dy.

Therefore, by employing Myatt (2015, Lemma 2 ), the probability of a tie and a near tie are equal

for a large n and, hence, for i ∈ {R,L}:

Pr[Pivotal|i] ≈ 1

(1− γ)n

∫ 1/2−qγ
1−γ

0
h(y, y + (2q − 1)γ/(1− γ), (1− 2qγ)/(1− γ)− 2y|i)dy.

(14)

Below, we revert the above expressions from vector u to vector (p, a) so that we can transition from

density h to densities f and g. Recall that uR = aptR, and uL = a(1 − p)tL; hence, the Jacobian

∂(uR, uL)/∂(p, a) has a determinant equal to atRtL. Moreover, note that each shareholder updates

her beliefs based on her own availability and so

h(x, y, 1− x− y|i) =
f (p(x, y)|i) g (a(x, y)|available)

a(x, y)tLtR
,

for any x, y ∈ (0, 1) and i ∈ {R,L}, where

g (a|available) =
g(a)a

a
, f(p|L) = f(p)

1− p
1− p

, f(p|R) = f(p)
p

p
.

Hence, for uR = y and uL = y + (2q − 1)γ/(1− γ) from (14), after some simple algebra, we define

p(a) ≡ tL
tR + tL

− (2q − 1)γ

1− γ
1

a(tR + tL)
,

a(y) ≡ y(tR + tL)

tRtL
+

(2q − 1)γ

1− γ
1

tL
,
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so that p(a) = p∗ (see (4)). By substituting all the above in the integrand of (14), we have

h(y, y + (2q − 1)γ/(1− γ), (1− 2qγ)/(1− γ)− 2y|R) =
f (p(a(y)) g (a(y)) a(y)p (a(y))

a(y)tRtLap

= p (a(y)) f (p(a(y)) g (a(y))
1

tRtLap

(15)

and, similarly,

h(y, y + (2q − 1)γ/(1− γ), (1− 2qγ)/(1− γ)− 2y|L) = (1− p (a(y))) f (p(a(y)) g (a(y))
1

tRtLa(1− p)
.

(16)

Now, to calculate the integral in (14), we change the variable from y to a = a(y). We have

da = dy(tR + tL)/(tRtL) and

a(0) =
(2q − 1)γ

1− γ
1

tL
,

a ((1/2− qγ)/(1− γ)) =
tR (1/2− γ(1− q)) + tL (1/2− γq)

(1− γ)tRtL
.

Then, we have that:

Pr[Pivotal|R] ≈ 1

(1− γ)n

∫ 1/2−qγ
1−γ

0
h(y, y + (2q − 1)γ/(1− γ), (1− 2qγ)/(1− γ)− 2y|R)dy.dy

=
1

(1− γ)n

1

ap(tR + tL)

∫ a((1/2−qγ)/(1−γ))

a(0)
f(p(a))p(a)g(a)da, (17)

where in the second line we substituted from (15); and also using (16)

Pr[Pivotal|L] =
1

(1− γ)n

1

a(1− p)(tR + tL)

∫ a((1/2−qγ)/(1−γ))

a(0)
f(p(a))(1− p(a))g(a)da. (18)

Since we are seeking to develop a simple formula that we can use with the data, we assume that

a follows a degenerate distribution around its mean; that is, g(a) = δ(a− a), where δ is the Dirac
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function. Then, to have a strictly positive probability of being pivotal, we need:

a(0) < a < a ((1/2− qγ)/(1− γ)) ⇐⇒ (2q − 1)γ

1− γ
1

tL
< a <

tR (1/2− γ(1− q)) + tL (1/2− γq)
(1− γ)tRtL

.

(19)

The above is a restriction on equilibrium tR, tL. Let us start with the lower bound on a in (19).

This restriction can be, equivalently, written as:

atL(1− γ) + (1− qγ) > qγ.

In words this says that if all expected support for R is zero (i.e., p = 0), then there is tL so that

L wins. This has to be true in any equilibrium for otherwise discretionary supporters of L would

never turn out. Now, the restriction imposed by the upper bound in (19) can be, equivalently,

written as:

tR (1/2− γ(1− q)) (atL − 1) + tL (1/2− γq) (atR − 1) < 0,

which is always true as (from q > 1/2 and A1): γ(1− q) < γq < 1/2; a ≤ 1; and tR,L ≤ 1. Hence,

(19) will always be satisfied in equilibrium. Also, note that for (17) and (18) not to be zero we

need p(a) = p∗ ∈ (l, h), which we will check for each equilibrium, separately. Therefore, given

g(a) = δ(a− a) and A1, we have that (18) leads to (2), and, similarly, (17) becomes (3), where p∗

is given by (4). �

In Proposition 2, below, we present the necessary and sufficient conditions for the existence of

equilibrium mm for any number of voters n. Then, Proposition 1 in the main text is the restriction

of Proposition 2 to large n (case (b), which is the only one that survives as n→∞).

Proposition 2 (Equilibrium mm for any n). Assume that q ∈ (1/2, 1), p ∈ (l, h), a ∈ (0, 1],

A1-A2, g(a) = δ(a− a) and

v

c
< min

{
n (a− γ (a− 1 + 2q))

f(p)p
,
n (a− γ (a+ 1− 2q))

f(p)(1− p)

}
.

In addition, consider the following disjoint parameter regions:
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(a) Small regular block size:

v

c
≥ 1,

n >
f(p)p

a
, and

(i) Many voters, high availability:

n >
f(p)(1− p)

a
, a > 2q − 1, and 0 ≤ γ < min

{
an− f(p)(1− p)

(a+ 1− 2q)n
,
an− f(p)p

(ā− 1 + 2q)n
,
f(p)(1− p)
n(2q − 1)

}
, or

(ii) Many voters, low availability:

n >
f(p)(1− p)

a
, a < 2q − 1, and 0 ≤ γ < min

{
an− f(p)p

(a− 1 + 2q)n
,
f(p)(1− p)
n(2q − 1)

}
, or

(iii) Few voters, low availability:

f(p) (a(1− p) + 2q − 1)

a(2q − 1)
< n <

f(p)(1− p)
a

, a < 2q − 1, p <
1

2
, and

an− f(p)(1− p)
(a+ 1− 2q)n

< γ <
an− f(p)p

(a− 1 + 2q)n
.

(b) Large regular block size (Many voters, any availability):

v

c
>

nγ(2q − 1)

f(p)(1− p)
,

n >
f(p) (a(1− p) + 2q − 1)

a(2q − 1)
, and

f(p)(1− p)
n(2q − 1)

< γ <
a(1− p)

a(1− p) + 2q − 1
.

These conditions are necessary and sufficient for the existence of an incomplete participation

equilibrium by both types —that is, tL, tR ∈ (0, 1), which are given by equations (9) and (10).

Furthermore, the average participation among discretionary voters tdisc and the average total par-

ticipation ttotal are given by (11) and (12). Finally, in such an equilibrium, the probability of being

pivotal for either R of L is equal to the common cost-to-benefit ratio c/v (1), and the expected votes

for R and L are equal (5), i.e., p∗ = p.
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Proof. We proceed in two steps. In the first, we derive the expressions for the rates, and in the

second, we determine the feasible parameter regions.

Step 1: Derivation of Rates Given the expressions for the pivotal probabilities, we now seek

to determine whether an equilibrium exists with incomplete participation for both L and R (i.e.,

tL, tR ∈ (0, 1)). From (1), we know that since the cost-to-benefit ratio is the same for both types,

the pivotal probabilities should also be the same for both types. Hence, using (3) and (2), in

equilibrium, we must have:

p∗ = p, (20)

which, given (5), means that at equilibrium, the total average supports for L and R are equal.

Hence, the expected outcome is a tie. From (20), the pivotal probabilities in equilibrium are:

Pr[Pivotal|R] = Pr[Pivotal|L] =
1

(1− γ)n

1

a(tR + tL)
f (p∗) .

Moreover, the pivotal probability for type R is equal to her cost-to-benefit ratio (1) in the equilib-

rium with incomplete participation; hence,

tR + tL =
1

(1− γ)na
f(p)

v

c
. (21)

Furthermore, according to the definition of p∗ (4) and the fact that it is equal to p (20), after some

simple algebra, we have

tL = (tR + tL)p+
(2q − 1)γ

1− γ
1

a
. (22)

Using (21) with (22), we derive the equilibrium tL and tR, as given in (9) and (10).

Step 2: Bounds on the Parameters Incomplete participation means that (tL, tR) ∈ (0, 1). In

order to ensure this, we now derive the restrictions on the parameters of the model —in particular,

n, γ and v/c or, equivalently, v/ (cn). By definition, what we need for incomplete participation is

(tL, tR) ∈ (0, 1). According to (9), it is evident that tL > 0 for all parameter values. The condition
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tL < 1 is equivalent to:

γ <
a

2q − 1 + a
, and (23)

v

c
<

n (a− γ (a− 1 + 2q))

f(p)p
. (24)

Given our assumption that q > 1/2, the upper bound on γ in (23) takes precedence over A1 (i.e.,

γ < 1/(2q)). Now, the condition tR > 0 is equivalent to:

v

c
>

nγ(2q − 1)

f(p)(1− p)
. (25)

For (25) to define the relevant lower bound on v/c given A2 (i.e., v/c ≥ 1), we need a lower bound

on the regular block size and the number of voting shares,

γ >
f(p)(1− p)
n(2q − 1)

, and (26)

n >
2qf(p)(1− p)

2q − 1
; (27)

otherwise, we just need to impose v/c ≥ 1 from A2. Finally, the condition tR < 1 is equivalent to:

v

c
<

n (a− γ (a+ 1− 2q))

f(p)(1− p)
. (28)

Hence, for the benefit-to-cost ratio v/c, we have two possible upper bounds: (24) and (28). Either

can be relevant, depending on the parameter values. Therefore, the upper bound on v/c is

v

c
< min

{
n (a− γ (a− 1 + 2q))

f(p)p
,
n (a− γ (a+ 1− 2q))

f(p)(1− p)

}
. (29)

For v/c, we also have a lower bound, which is either (25), if γ satisfies (26), or one. In either case,

we need to make sure that the lower bound is smaller than the upper bound on v/c in (29). Let us

look at each case in turn:

Case A: If (26) holds, then to ensure that the upper bounds on v/c in (29) are larger than the lower
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bound in (25), we have another restriction on γ,

γ <
a(1− p)

a(1− p) + 2q − 1
. (30)

From the two possible upper bounds of γ in (23) and (30), we can show that for q > 1/2, the

relevant bound is condition (30). Finally, we need to make sure that the lower bound of γ in (26)

is lower than the upper bound in (30). This puts a lower bound on the number of voting shares:

n >
f(p) (a(1− p) + 2q − 1)

a(2q − 1)
,

which supersedes the other lower bound of (27).

Case B : If (26) does not hold, then to ensure that the upper bound on v/c in (29) is higher than

the lower bound imposed by A2, we add the following two restrictions on γ,

n(a− (2q − 1))γ < an− f(p)(1− p), and

n(a+ (2q − 1))γ < an− f(p)p. (31)

For these to be satisfied, we need

n >
f(p)p

a
.

Observe, also, that the second restriction in (31) implies the upper bound in (23), so this latter

bound can be ignored in what follows. Then, we have the following subcases:

i) If n > f(p)(1 − p)/a and a < 2q − 1, then the only other restriction on γ (i.e., other than

γ < f(p)(1− p)/(n(2q − 1))) can be written as

γ <
an− f(p)p

(a− 1 + 2q)n
.

ii) If n > f(p)(1− p)/a and a > 2q − 1, then the added restriction on γ can be written as

γ < min

{
an− f(p)(1− p)

(ā+ 1− 2q)n
,
an− f(p)p

(a− 1 + 2q)n

}
.
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iii) If n < f(p)(1−p)/a and a > 2q−1, then there is no equilibrium with incomplete participation.

iv) If n < f(p)(1− p)/a, a < 2q − 1, and p < 1/2, then we need

an− f(p)(1− p)
(a+ 1− 2q)n

< γ <
an− f(p)p

(a− 1 + 2q)n
, for

f(p) (a(1− p) + 2q − 1)

a(2q − 1)
< n <

f(p)(1− p)
a

.

We summarize all the above in the statement of Proposition 2. �

B. Notes on the Estimation

B.1 Delta Method

This subsection describes how we compute standard errors for our estimates using the Delta Method

approach (see Wooldridge (2010, pp. 44-45)). Given the momentsm ≡ [dSuL, dSuR, dSuL2, dSuR2],

denote the vector of estimated parameters by

θ ≡ [v/ (nc)lower , v/ (nc)upper , p, std(p)].

First, we use the data to numerically compute the sensitivity of these estimates to changes in

the moments; that is, ∂θi/∂mj , for i, j ∈ {1, 2, 3, 4}. Second, we estimate the variance-covariance

matrix —denoted by S— of the four errors that we base our estimation on (see Section 4.2); i.e.,

dSuLest − dSuL, dSuRest − dSuR, dSuL2
est − dSuL2, dSuR2

est − dSuR2.

Then, the variance of our error in estimating parameter θi is given by

∆i × S ×∆T
i ,

where vector ∆i ≡ [∂θi/∂m1, ∂θi/∂m2, ∂θi/∂m3, ∂θi/∂m4], for i = {1, 2, 3, 4}. These are reported

in Table 2.
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B.2 Probabilities of Misalignment and Closeness

This subsection describes how we compute the probabilities of non-representative outcomes and

closeness. First, per bin given our estimates for p, std(p), we simulate proposals p ∼ U [l, h]. Second,

for each p given our estimates for tL, tR in the corresponding bin, we compute:

i) The outcome index under discretionary participation:24

Odisc(p) ≡
total support forR︷ ︸︸ ︷
γq + (1− γ) tRp−

total support forL︷ ︸︸ ︷
γ (1− q) + (1− γ) tL(1− p) . (32)

ii) The outcome index under full participation:

Ofull(p) ≡
total support forR︷ ︸︸ ︷
γq + (1− γ) p −

total support forL︷ ︸︸ ︷
γ (1− q) + (1− γ) (1− p) . (33)

The signs of Odisc and Ofull determine whether the proposal passes or fails under discretionary

and full participation, respectively. Hence, a measure of the difference in the decision between

discretionary and full participation is the indicator

I (Odisc(p)Ofull(p) ≤ 0) .

Then, we average for all p in our simulation, and this gives us, a per bin estimate of the probability

of misalignment with respect to full participation, P [Odisc(p)Ofull(p) ≤ 0].

We would like to highlight the following for this measure. First, Odisc for every p is computed

using estimations of tR, tL and the bin-specific γ, q, and not the actual dSuR, dSuL. This is because

we would like our non-representativeness measure to be ‘free’ from estimation error. Second, the

only difference between Odisc and Ofull is the appearance of rates tR and tL —which exactly capture

the selection effect we aim to quantify— in the former but not the latter.

Moreover, we can perform exactly the same exercise as above, but instead of full participation

as our benchmark, use the case of no discretionary (i.e., only regular) participation. To this end,

24The difference between (13) in the main text and (32) below is that in the latter we use the per bin ‘representative’
q, instead of the per proposal q in the former.
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define:

Oonly-reg ≡
regular support forR︷︸︸︷

γq −
regular support forL︷ ︸︸ ︷

γ (1− q) = γ(2q − 1). (34)

Note that: i) Oonly-reg does not depend on p, which is relevant only to discretionary voters; and ii)

given our assumption that q > 1/2 (i.e., R wins by definition if only regulars vote), Oonly-reg is always

positive. Hence, when we average for all p, we estimate the per bin probability of misalignement

with respect to no discretionary participation as P [Odisc(p)Oonly-reg ≤ 0] = P [Odisc(p) ≤ 0].

Now, under discretionary participation define the ratio

Rsupport(p) ≡

total support forR︷ ︸︸ ︷
γq + (1− γ) tRp

γq + (1− γ) tRp︸ ︷︷ ︸
total support forR

+ γ (1− q) + (1− γ) tL(1− p)︸ ︷︷ ︸
total support forL

,

of total support for R to total participation ttotal(p) (note that in Proposition 1, ttotal ≡ ttotal(p)).

The fraction of supporters forR, Rsupport(p) allows us to define closeness of level x ∈ {1%, 2%, 5%, 10%}

for every p as

I (Rsupport(p) ∈ (50%− x, 50% + x)) .

Given that the voting outcome is determined by a simple majority: if Rsupport < 50% (or, equiva-

lently, Odisc is negative), then L wins, while if Rsupport > 50% (or, equivalently, Odisc is positive),

then R wins. Hence, this measure captures how close a vote is expected to be, a key determinant

of participation in any pivotal voter model. Averaging over all simulated proposals p, within each

bin, provides the ex-ante closeness probability P
[
Rsupport(p) ∈ (50%− x, 50% + x)

]
.

Finally, also averaging over all simulated proposals p, within each bin, gives the probability of

an R win conditional on ex-ante closeness of level x ∈ {1%, 2%, 5%, 10%} as

P
[
Rsupport(p) > 50%

∣∣Rsupport(p) ∈ (50%− x, 50% + x)
]

=
P
[
Rsupport(p) ∈ (50%, 50% + x)

]
P
[
Rsupport(p) ∈ (50%− x, 50% + x)

],
where the equality is due to Bayes’ rule.
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C. Idiosyncratic Voting Costs Model

In this section, we derive equilibrium mm under the alternative assumption that the cost of voting

is not constant but, rather, a random variable in [0, c] (see Myatt (2015, p. 19) for the case γ = 0).

This allows us to capture idiosyncrasies in the cost among discretionary voters, allowing a positive

mass of them to even have zero cost of voting. We maintain the structure and all other assumptions

in the model, including A1 (i.e., regular voters cannot decide the outcome unilaterally) and a variant

of A2 that v > c to allow for even very-high-cost voters to have a meaningful pivotal probability.

Now, for t ∈ [0, 1], let C(t) be the inverse of the distribution function of voting costs so that

t = P[c ≤ C(t)]. In particular, for c ∼ U [0, c], we have C(t) = ct. As we know in the mm

equilibrium:

P[pivotal|i] =
C(ti)

v
=
cti
v
, for i ∈ {L,R}.

Clearly, this imposes the restriction ti < v/c for i ∈ {L,R}. Now, using Lemma 1 and the

expressions for the pivotal probabilities (3) and (2), we have

1

(1− γ)n

1

ap(tR + tL)
f (p∗) p∗ =

ctR
v
, (35)

1

(1− γ)n

1

a(1− p)(tR + tL)
f (p∗) (1− p∗) =

ctL
v
. (36)

Dividing (35) by (36), also using the definition of p∗ in (4), we arrive at:

tL − (2q − 1)γ/ ((1− γ)a)

tR + (2q − 1)γ/ ((1− γ)a)
=

tRp

tL(1− p)
. (37)

Now, adding (35) and (36), also using the definition of p∗ in (4) and additionally assuming that

p ∼ U [l, h], after some algebra, we have:

1

(1− γ)n

1

a(tR + tL)2

1

d

[
tL/p+ tR/(1− p) +

(2q − 1)γ

(1− γ)a
(1/p− 1/(1− p))

]
= (tR + tL)c/v,

(38)

where d = h− l, as before. Unfortunately, the system of equations (37) and (38) for tL, tR does not
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have a closed-form solution in the general case with regular voters (i.e., γ > 0). For our estimation

(presented in Section E.1 below), we seek numerical solutions in which we also need to ensure that

tL, tR ∈ (0, 1) and the resulting p∗ ∈ [l, h].

Our coverage of the idiosyncratic costs case focuses only on the mm equilibrium. This is for two

reasons. First, equilibrium mm is the centrepiece of the analysis in political elections (e.g., Myatt

(2015)). Second, in view of the first reason, one may find the prevalence of the 1m equilibrium

in our data curious and may attribute it to the specifics of the model, including the constant cost

assumption. Hence, as, a robustness test, we also derive the mm equilibrium with idiosyncratic

costs and show (in Section E.1 in the Appendix) that even then, the 1m equilibrium with constant

cost fits the data better. Note that in the mm equilibrium with idiosyncratic costs, we have a

partial underdog effect in that, on average, R wins; contrast this with the full underdog effect of

the mm equilibrium under constant costs, which results in a tie, on average.

D. Proposal Classification

The ISS’s functional classification of proposals into 257 types is fine enough to risk obscuring the

economic meaning of each proposal type. For example, ISS assigns a different proposal type for

“Amend Articles/Bylaws/Charter to Remove Antitakeover Provisions (S0326),” “Approve/Amend

Terms of Existing Poison Pill(S0322),” and “Submit Shareholder Rights Plan (Poison Pill) to Share-

holder Vote (S0302),” even though these proposals address the same economic issue —takeover

defense. For this reason, it is useful to work with a coarser, more economically meaningful, classi-

fication. Our classification groups corporate governance proposals into four economically relevant

types. We list these types along with their frequency in our sample in Table 3. The set of types is

chosen to reflect leading issues arising in the literature on voting and corporate governance (see, for

example, Knoeber (1986); LaPorta, de Silanes, Shleifer, and Vishny (1998); Grullon and Michaely

(2002); Gompers, Ishii, and Metrick (2003); Bebchuk, Cohen, and Ferrell (2009); Becht, Franks,

Mayer, and Rossi (2009); Bebchuk and Fried (2009); Ferri and Maber (2012)). Once the set of

types is chosen, the proposals are classified in a straightforward way, based on their description, as

illustrated in the example above. In Table 11, we list the top three proposals per type.
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E. Robustness

Now, we conduct several robustness checks of our estimation, which are reported in Table 10.

E.1 Alternative model with idiosyncratic costs

The estimates of our baseline model imply a predominance of the 1m equilibrium with high turnout

by the underdog tL despite an expected win by R. A concern is whether this result holds if we

change our constant positive cost assumption to idiosyncratic costs of voting (see Section C in

the Appendix and Myatt (2015, p. 19)). This is because under idiosyncratic costs of voting, the

expected outcome is a win by R, even in the mm equilibrium, and not necessarily a tie (a so-called

partial underdog effect).

In order to address this concern, we estimate the variant of our model with idiosyncratic costs

(Section C in the Appendix). In these estimations, we allow some discretionary voters to have very

small costs —including zero— and others to have larger costs of voting. Unfortunately, closed-form

expressions for the turnout rates are not attainable, which makes the estimations of such a model

more susceptible to numerical error and longer in computation time.

To assess the performance of the alternative model with idiosyncratic costs, we compare its

estimation errors to those of our baseline estimations. Table 10 Panel A reveals an MSE of 0.051

with idiosyncratic costs, which is significantly higher than our baseline (i.e., with constant costs)

MSE of 0.026, as well as an alternative estimation in which we exclude the 1m equilibrium (see

Section E.2, MSE of 0.042). Despite the higher errors, the alternative model yields qualitative

conclusions similar to our baseline estimates. The probability of a misalignment in the outcome

between discretionary and full participation, P [Odisc(p)Ofull(p) ≤ 0], is almost identical to that in

the baseline (12% vs. 13%); the underdog participates almost fully, with a tL of 92%; the average

participation of the majority side is significantly lower, at 48%.

[Insert Table 10 about here]

E.2. Alternative Estimation Methods

In this section, we show how robust our estimations are to alternative estimation choices. For all

of the following variations, MSEs are significantly smaller than the comparison model, and the 1m
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equilibrium remains dominant.

Excluding the 1m equilibrium. How robust is our allocation of proposals to equilibria, espe-

cially the most popular 1m equilibrium? If allocating proposals to other equilibria increases errors

only marginally but changes our results significantly, we should consider those alternative results

more seriously. In Table 10 Panel A, we report MSEs and equilibrium allocations excluding the 1m

equilibrium. Doing so increases our MSEs by a factor of 2. Out of 2,181 proposals that our baseline

estimation allocates to 1m, 1,155 are now in mm and 1,026 in 11. Despite the different equilibrium

allocation, the predicted probability of a minority win is lower, at 8%, and participation rates are

similar to those of the baseline estimation. This indicates that the equilibrium allocation does not

change the conclusions about our estimates qualitatively.

Two-step GMM. Our baseline estimations use a non-weighted one-step GMM because the two-

step optimization does not usually perform well for small numbers of observations, as in our bins.

Here, we show that a two-step GMM procedure yields similar MSEs (simply referred to as ‘GMM’

in Table 10 Panel A). The equilibrium instance distribution is also similar, with more mm estimates

(472, vs. 62 in the baseline) but still a predominance of the 1m equilibrium. The probability of a

misrepresentative outcome is slightly lower than baseline at 9%.

Availability. Our baseline estimations assume that all shareholders are available to vote (a = 1).

For proposals in the 1m equilibrium, this implies votes from all shareholders against R. However,

Holderness and Pontiff (2016) document that not all shareholders participate in valuable rights

offerings, suggesting that some shareholders miss even high-impact corporate events. Assuming an

a of 0.9 or 0.8, instead, increases estimation errors by 0.0025 and 0.0027, respectively. With a 10%

(20%) of shareholders not participating, participation rates within the remaining shareholder base

is higher, with 98% (99%) on the left and 76% (64%) on the right. This decreases the probability

of a misrepresentative outcome to 10% or 7%, respectively.

Alternative bins. Our baseline estimations use bins per proposal type×γ tercile×n tercile×q

tercile. In Table 10 Panel A, we report the performance and equilibrium incidence for bins using

quartiles of γ, q, and n instead. The estimates are very similar to the baseline ones .
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Alternative moments. Our baseline estimations use the first and second moments. In Table

10 Panel A, we report the performance and equilibrium incidence when we also match the third

and fourth moments of dSuL, dSuR. The equilibrium assignments do not change, and the MSE

does not improve. Therefore, we maintain the use of only the first two moments as our baseline

estimation.

Medians instead of means. Our baseline estimations use the means of γ and q per bin as

representative. In Table 10 Panel A, we report the performance and equilibrium incidence using

medians instead. Using medians does not change the model performance or equilibrium allocation

significantly.

ISS recommendations. Proxy advisors have a large influence on the voting direction of regular

voters (Iliev and Lowry (2014); Malenko and Shen (2016)). To reflect this influence, we compute

alternative estimates for bins of ISS recommendation×proposal type×γ tercile×n tercile×q tercile.

Errors are similar, and the 1m equilibrium still dominates.

E.3. Sample Splits

In this section, we examine our model’s performance and the robustness of the estimates for sub-

samples in which our assumptions are less likely to hold. All results are reported in Table 10 Panel

B.

Equity lending. In the presence of an equity lending market, discretionary voters may decide to

lend their shares instead of voting, effectively increasing the opportunity costs of voting. Currently,

the US equity lending market operates over-the-counter, and data are available from Markit for

the period 2001-2016.25 The Markit database covers over 90% of that market and contains firm-

quarter level information on the supply of lendable shares for the majority of stocks listed in public

exchanges. Following Campello and Saffi (2015), we define equity lending supply as the difference

between the value of a firm’s lendable shares and the number of lendable shares currently on loan,

divided by the firm’s market capitalization. This calculation gives us a precise measure of the

net lendable supply. We define equity lending demand as the value of shares actually borrowed

25We are most grateful to Pedro Saffi for providing us with part of this dataset.
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divided by the firm’s market capitalization. We then compare the firms above and below the

median in terms of the demand and supply of equity lending and investigate the effect on our

estimation results. We obtain similar estimates for the probability of non-representative outcomes,

participation rates, and equilibrium allocation.

Number of proposals. Since our model focuses on one proposal, results for meetings with only

one non-routine proposal should be more representative. Indeed, the MSEs for meetings with

a bundle of proposals is 0.004 higher than those for meetings with only one proposal. However,

neither the estimates nor the equilibrium allocation differ significantly between the two subsamples.

The incidence of the 1m equilibrium is dominant for both subsamples.

Ownership concentration. Our model assumes equal holdings by dispersed shareholders. To

see how relevant this assumption is, we split the sample into terciles of the Herfindahl concentration

index of institutional ownership. Indeed, the MSEs for firms with more concentrated ownership are

higher by 0.009. However, neither the estimates nor the equilibrium incidence differ significantly

across the subsamples.

Importance of information. An important ingredient of the voting process that is not included

in our model is information aggregation of dispersed private information. Hence, the algorithm

should be more suitable when information aggregation is less important. This should be the case

for firms with a lower variation in analyst forecasts (see Thomas (2002); Moeller, Schlingemann,

and Stulz (2007)), and for proposals later in the proxy season, after shareholders have already

observed the voting preferences in many firms and guidance on the respective proposal types. We

split the sample by the terciles of standard deviation of analyst forecasts, of the day and month

of the meeting within each year, as well as by whether ISS has already issued recommendations in

both directions for the same proposal type in the same season (“Early/Late meeting/ISS”). The

MSEs are actually not that much different for low-variance and late meetings in which information

should matter less: none of the subsample MSEs are more than 0.004 apart from the baseline

MSEs. The estimates and equilibrium incidences are similar across the subsamples and similar to

the base algorithm.
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E.4. The magnitude of the benefits of voting

The algorithm estimates the benefit-to-cost ratio per voter v/ (cn). In this section, we set these

estimates into the context of the literature. Because we are the first to estimate the benefit-to-cost

ratio, we transform it to a more comparable measure, the return on investment conditional on a win

of one’s preferred side. This transformation requires assumptions on two unknowns: the number

of shareholders n and the cost of voting c. For this section, we will vary n and assume c = 1;

please see Section 7 for a in-depth discussion of the cost of voting. Assuming a higher cost would

linearly translate into lower returns. Under this assumption, one can interpret the ratio between

the benefit-to-cost ratio per voter v/(cn) and the average ownership stake in dollars ($) as the

average return of winning.

[Insert Figure 2 about here]

Figure 2 depicts the “return on winning” as a function of the ratio of market capitalization and

n, that is, the average value of shares held prior to the vote. We exclude estimations in which the

benefit-to-cost ratio is lower than 1 (i.e., irrelevant proposals). The graph shows that an average

ownership stake over $500,000 can yield realistic estimates of the benefit-to-cost ratios (below 20%).

For an average ownership stake of $1.5 million (the average holding size of insider holdings convicted

by the SEC (Ahern (2017)), the return is 2.0%. This result compares to an average return of 1.6%

for the passing of governance proposals in Cuñat, Gine, and Guadalupe (2012). Hence, as in Ahern

(2017), using the average ownership stake yields estimates that are roughly comparable to those of

the previous literature.

F. Tables and Figures
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Table 2: Univariate Statistics

This table shows the univariate statistics for a sample of proposals voted upon in US firms from 2003–
2011. Panel A shows the number of proposals and meetings. Panel B shows the firm characteristics (at the
firm-year level). Panel C shows the summary statistics for ownership of voting shares (at the meeting level).

Panel A: Number of observations per year

Year Proposals Meetings

2003 31 21

2004 511 293

2005 117 76

2006 313 187

2007 287 164

2008 236 162

2009 315 207

2010 461 319

2011 36 31

Panel B: Firm characteristics

Variable Obs Mean Std. Dev. Min Max

Assets 1,355 76,374 243,761 23 2,265,792

Leverage 1,355 0.26 0.17 0 1.20

M/B 1,355 1.72 0.97 0.69 10.17

Return (annual) 1,258 0.08 0.39 (1.98) 3.62

Panel C: Summary statistics for ownership

Variable Obs Mean Std. Dev. Min Max

% institutional ownership 1,460 71.77 16.15 0.60 99.27

of which: N-PX 1,460 0.25 0.09 0.00 0.56

% >5% ownership 1,363 16.78 13.95 0 95.87

of which: institutional 1,363 16.00 13.32 0 82.10

of which: private 1,363 0.78 3.81 0 53.48

% management ownership 1,460 2.33 5.02 0 50.36

% activists 1,460 4.18 3.82 0 40.56

Shares outstanding 1,444 873M 1,760M 1.607M 29,100M

n 1,460 871.29 915.65 0 5,933
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Table 3: Proposals

This table shows the univariate statistics for a sample of proposals voted upon in US firms from 2003–2011.
Panel B (C) shows the frequency of proposals, per proposal (sponsor) type.

Panel A: Summary Statistics

Variable Mean Std. Dev. Min Max

Total participation 0.72 0.09 0.09 0.98

Discretionary participation 0.66 0.12 0.09 0.99

Outcome in (−10, 10) 0.33 0.47 0 1

Outcome in (−5, 5) 0.16 0.37 0 1

Outcome in (−2, 2) 0.07 0.25 0 1

Outcome in (−1, 1) 0.04 0.19 0 1

Panel B: Proposals per proposal type

Participation (%)

Proposal type Frequency Support (%) Total Discretionary

Board 738 26.50% 72.37% 66.26%

Executive compensation 763 23.04% 70.39% 64.80%

Takeover defense 409 49.24% 73.80% 67.01%

Other governance 397 31.29% 72.52% 66.01%

Total 2,307 30.21% 71.99% 65.87%

Panel C: Proposals per sponsor type

Participation (%)

Sponsor type Frequency Support (%) Total Discretionary

Individual activist 869 29% 71% 64%

Pension fund 461 30% 72% 66%

Union 215 30% 72% 66%

Fund 131 30% 72% 67%

Social group 103 24% 70% 66%

Coalition 26 37% 75% 68%

Employee 9 21% 61% 47%

Corporate 2 16% 73% 72%

Proxy advisor 2 37% 68% 63%

Other 489 33% 73% 67%
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Table 4: Algorithm Input Parameters

This table shows univariate statistics for the input parameters of the algorithm.

Variable #N Mean Std. Dev. Min Max

dSuL 2,305 0.26 0.08 0.08 0.42

dSuR 2,305 0.40 0.07 0.25 0.61

dSuL2 2,305 0.09 0.04 0.01 0.23

dSuR2 2,305 0.18 0.06 0.07 0.38

γ 2,305 0.25 0.09 0.00 0.56

q 2,305 0.80 0.15 0.55 1.00

n 2,305 829.46 943.51 0 5,933
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Table 5: Estimation Results

This table shows the univariate statistics per proposal for the estimation results of the algorithm run for
the bins of proposal type×tercile of γ×tercile of n× tercile of q. Panel A shows the mean average errors
of our estimated moments (first and second of dSuL and dSuR). Panel B shows parameter estimates for
v/(nc), p and std(p) with their confidence intervals and standard errors, which are computed using the Delta
Method (see Section B.1 in the Appendix). Panel C reports participation rates and distances between regular
and discretionary voter preferences implied by the parameter estimates. Panel D reports the incidence of
equilibria and implied average participation rates and distances between regular and discretionary voter
preferences by equilibrium. Panel E reports the mean squared error (MSE) of our baseline estimations and
the ones in Table 12, their difference, the test statistic and the p-value of the Diebold-Mariano test for
equality of predictive accuracy.

Panel A: Mean average errors

Baseline GMM

dSuLest 0.0086 0.0364

dSuRest 0.0059 0.0341

dSuL2
est 0.0217 0.0454

dSuR2
est 0.0060 0.0322

Panel B: Parameter estimates

Baseline GMM
Estimate 95% Confidence interval Estimate 95% Confidence interval

Benefit-to-cost ratio per voter
v/(cn) 1.08 1.03 1.14 0.99 0.94 1.08
[s.e.] [0.03203] [0.02622] [0.04564] [0.02759]

Popularity of R among discretionary voters p
p 0.72 0.67 0.73 0.68 0.60 0.74
[s.e.] [0.0083] [0.02546] [0.03135] [0.0398]

std(p) 0.17 0.15 0.18 0.17 0.15 0.18
[s.e.] [0.0053] [0.00668] [0.00607] [0.00743]

#N 2,305 2,213

Panel C: Implied parameters

Mean Std. Dev. Min Max

tL 97.8% 9.8% 49.3% 100%

tR 56.4% 9.8% 43.8% 100%

q − p 8% 13.3% -15.3% 68.2%

|q − p| 12.3% 9.4% 0.2% 68.2%
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Panel D: Equilibria

mm 1m m1

#N 62 2181 62

% 2.7% 94.6% 2.7%

tL 66.5% 100% 52.7%

tR 76.1% 54.6% 100%

q − p 42% 6.4% 29%

|q − p| 42% 11% 29%

Estimation error 0.02% 0.20% 0.02%

Panel E: Diebold-Mariano comparison between reduced-form and baseline forecasts

Participation dSuL dSuR Odisc(p)

In-sample

MSE algorithm 0.010 0.013 0.015 0.026

MSE Malenko-Shen 0.398 0.182 0.110 0.215

Difference -0.388 -0.169 -0.094 -0.190

S(1) -171.190 -70.669 -48.203 -48.244

p-value <0.0000 <0.0000 <0.0000 <0.0000

Out-of-sample

MSE baseline estimation 0.018 0.025 0.032 0.066

MSE reduced-form 0.403 0.232 0.130 0.318

Difference -0.385 -0.207 -0.098 -0.251

S(1) -22.500 -7.813 -6.109 -5.637

p-value <0.0000 <0.0000 <0.0000 <0.0000
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Table 6: Selection

This table shows implied distances between the actual voting support and the preference estimates for the
entire shareholder population. Panel A includes the mean, standard deviation, minimum, and maximum for
the whole sample. Panel B shows the mean for each equilibrium. Panel C shows the probability of close
votes. For the definitions of Odisc, Ofull, Oonly-reg, and Rsupport and the corresponding probabilities involving
them, see Section B.2 in the Appendix.

Panel A: Distance between underlying preferences and voting outcomes

Mean Std. Dev. Min Max

P [Odisc(p)Ofull(p) ≤ 0] 12.8% 14.1% 0% 46.6%

P [Odisc(p)Oonly-reg ≤ 0] 15.1% 17.4% 0% 67.9%

Odisc(p)−Oonly-reg 10.1% 11.6% -19.9% 53.3%

Ofull(p)−Oonly-reg 32.7% 19.6% -43.1% 85.2%

Odisc(p)−Ofull(p) -22.6% 11.4% -34.0% 31.7%

|Odisc(p)−Ofull(p)| 24.9% 4.4% 12.4% 34%

Panel B: By equilibrium

mm 1m m1

P [Odisc(p)Ofull(p) ≤ 0] 17.5% 12.1% 32.8%

P [Odisc(p)Oonly-reg ≤ 0] 50% 12.9% 58.6%

Odisc(p)−Ofull(p) signed 9.1% -24.9% 28.4%

|Odisc(p)−Ofull(p)| unsigned 21% 24.9% 28.4%

Odisc(p)−Oonly-reg -7.9% 11.2% -7.8%

Panel C: Probability of close votes

All mm 1m m1

P
[
Rsupport(p) ∈ (40%, 60%)

]
38.4% 35.4% 38.1% 50.1%

P
[
Rsupport(p) ∈ (45%, 55%)

]
20.8% 17.7% 20.8% 25.1%

P
[
Rsupport(p) ∈ (48%, 52%)

]
8.8% 7.1% 8.8% 10.1%

P
[
Rsupport(p) ∈ (49%, 51%)

]
4.6% 3.5% 4.6% 5.1%

P
[
Rsupport(p) > 50%

∣∣Rsupport(p) ∈ (40%, 60%)
]

76.1% 50.7% 77.5% 52.9%

P
[
Rsupport(p) > 50%

∣∣Rsupport(p) ∈ (45%, 55%)
]

72.8% 50.3% 74.0% 51.7%

P
[
Rsupport(p) > 50%

∣∣Rsupport(p) ∈ (48%, 52%)
]

69.2% 49.9% 70.2% 50.8%

P
[
Rsupport(p) > 50%

∣∣Rsupport(p) ∈ (49%, 51%)
]

65.5% 49.6% 66.4% 50.4%
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Table 7: Heterogeneity

This table shows average parameter estimates by proposal type (Panel A), sponsor type (Panel B), year (Panel C), GICS 1-digit industry (Panel D),
performance in the previous year (Panel E), and ownership structure (Panel F). For the definitions of Odisc, Ofull, Oonly-reg and the corresponding
probabilities involving them, see Section B.2 in the Appendix.

Panel A: Shareholder preferences by proposal type

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Proposal type P [Odisc(p)Ofull(p) ≤ 0] P
[
Odisc(p)Oonly-reg ≤ 0

]
tL tR Odisc(p)−Ofull(p) q − p mm 1m m1 Total

Board 13% 16% 98% 56% -23% 5% 0 709 29 738

Compensation 13% 14% 100% 54% -26% 5% 28 380 0 408

Defense 8% 11% 97% 59% -21% 18% 0 141 0 141

Other governance 16% 21% 94% 60% -18% 9% 34 330 33 397

Non-sample proposals for comparison

Non-governance shareholder proposals

CSR 3% 3% 100% 58% -27% 7% 0 762 0 762

Finance 3% 3% 100% 56% -27% 5% 0 141 0 141

Management proposals

All 4% 7% 100% 71% -20% 7% 26 12,273 0 12,299

Say-on-pay 0% 0% 100% 70% -22% 6% 0 2,116 0 2,116
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Panel B: Shareholder preferences by sponsor type

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Sponsor type P [Odisc(p)Ofull(p) ≤ 0] P
[
Odisc(p)Oonly-reg ≤ 0

]
tL tR Odisc(p)−Ofull(p) q − p mm 1m m1 Total

Coalition 0.07 16% 94% 62% -16% 12% 0 25 6 31

Corporate 0.00 0% 100% 60% -33% -7% 0 1 0 1

Employee 0.02 2% 100% 33% -39% 4% 0 9 0 9

Fund 0.08 15% 98% 57% -23% 11% 29 262 16 307

Individual activist 0.12 13% 100% 53% -27% 7% 0 1,017 0 1,017

Pension fund 0.14 18% 100% 54% -24% 6% 0 659 0 659

Proxy advisor 0.06 6% 100% 52% -30% -17% 0 2 0 2

Social group 0.09 10% 99% 56% -24% 6% 15 430 0 445

Union 0.13 16% 97% 60% -19% 8% 0 271 22 293

Panel C: Shareholder preferences by year

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Year P [Odisc(p)Ofull(p) ≤ 0] P
[
Odisc(p)Oonly-reg ≤ 0

]
tL tR Odisc(p)−Ofull(p) q − p mm 1m m1 Total

2003 0.07 11% 98% 56% -25% 15% 0 52 3 55

2004 0.09 11% 98% 56% -24% 10% 8 386 15 409

2005 0.13 19% 94% 59% -22% 11% 5 107 17 129

2006 0.12 15% 98% 57% -23% 6% 6 267 9 282

2007 0.06 9% 99% 56% -22% 8% 0 245 8 253

2008 0.08 10% 99% 53% -23% 9% 0 217 7 224

2009 0.14 21% 91% 61% -16% 11% 7 248 56 311

2010 0.14 22% 92% 65% -15% 13% 28 320 58 406

2011 0.08 12% 95% 70% -15% 10% 0 28 4 32
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Panel D: Shareholder preferences by industry

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Industry P [Odisc(p)Ofull(p) ≤ 0] P
[
Odisc(p)Oonly-reg ≤ 0

]
tL tR Odisc(p)−Ofull(p) q − p mm 1m m1 Total

Energy 12% 18% 92% 60% -18% 9% 8 132 19 159

Materials 10% 15% 96% 59% -20% 11% 0 94 11 105

Industrials 8% 17% 96% 63% -17% 12% 3 276 36 315

Consumer discretionary 11% 16% 97% 60% -20% 9% 5 273 13 291

Consumer staples 8% 19% 94% 67% -15% 12% 6 134 21 161

Health care 10% 16% 93% 62% -17% 11% 5 191 26 222

Financials 11% 16% 94% 60% -19% 14% 16 325 38 379

IT 12% 15% 96% 52% -26% 5% 14 168 6 188

Communication services 7% 10% 96% 54% -25% 8% 0 81 6 87

Utilities 9% 10% 99% 50% -29% 6% 0 201 5 206

Panel E: Shareholder preference by performance

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

P [Odisc(p)Ofull(p) ≤ 0] P
[
Odisc(p)Oonly-reg ≤ 0

]
tL tR Odisc(p)−Ofull(p) q − p mm 1m m1 Total

Stock return

Tercile 1 11% 13% 99% 56% -23% 7% 4 647 13 664

Tercile 2 12% 16% 97% 59% -21% 9% 15 605 42 662

Tercile 3 13% 18% 97% 56% -22% 9% 12 607 39 658

Market-to-book ratio

Tercile 1 12% 16% 97% 57% -22% 10% 6 656 52 714

Tercile 2 11% 15% 96% 59% -20% 10% 25 646 42 713

Tercile 3 12% 15% 99% 56% -24% 7% 0 691 21 712
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Panel F: Shareholder preference by ownership structure

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

P [Odisc(p)Ofull(p) ≤ 0] P
[
Odisc(p)Oonly-reg ≤ 0

]
tL tR Odisc(p)−Ofull(p) q − p mm 1m m1 Total

N-PX ownership γ

Tercile 1 17% 22% 94% 59% -22% 10% 46 662 62 770

Tercile 2 13% 13% 100% 54% -26% 6% 0 767 0 767

Tercile 3 8% 10% 99% 56% -20% 8% 16 752 0 768

No-private blockholder

13% 14% 99% 55% -24% 8% 0 1953 59 2012

Private blockholder

9% 19% 94% 65% -16% 13% 8 238 45 291

Institutional ownership

Tercile 1 13% 20% 94% 55% -24% 10% 35 658 73 766

Tercile 2 11% 14% 98% 56% -22% 8% 25 725 18 768

Tercile 3 10% 13% 98% 61% -18% 10% 2 738 28 768

Activist ownership

Tercile 1 12% 16% 96% 57% -22% 9% 0 695 73 768

Tercile 2 11% 14% 99% 56% -23% 9% 17 734 15 766

Tercile 3 12% 16% 97% 58% -21% 8% 21 713 34 768
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Table 8: Closeness

This table shows OLS regression estimates. The dependent variables are in the table caption. Independent variables are indicators for ex-ante or ex-post
closeness —that is, the probability or the proportion of proposals to receive voting support within 10% or 1% away from the threshold, respectively.
Rsupport is the (realized) support for R (the preferred option of regular voters); tdisc is discretionary participation; ttotal is total participation (i.e.,
including regular voters); dSuR is discretionary participation of R voters; and dSuL is discretionary participation of L voters. Standard errors are in
parentheses. *, **, and *** represent significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent variable tdisc tdisc tdisc ttotal dSuR dSuR dSuR dSuL dSuL dSuL

Rsupport ∈ (40, 60) -0.005 0.001 -0.002 -0.113*** -0.106*** 0.117*** 0.107***

(-0.81) (0.15) (-0.69) (-17.76) (-15.35) (20.28) (16.47)

Rsupport ∈ (49, 510) 0.001 -0.056*** 0.058***

(0.11) (-6.82) (6.83)

γ FE, q FE, n-tercile FE Y Y Y Y Y Y Y Y Y Y

Proposal type FE Y Y Y Y Y Y Y Y Y Y

Firm FE Y Y Y Y Y Y Y

Year FE Y Y Y Y Y Y Y

R2 0.03 0.64 0.64 0.70 0.64 0.70 0.25 0.48 0.39 0.44

#N 2,283 1,909 1,909 1,909 1,909 1,909 2,180 1,816 1,816 1,824
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Table 9: Counterfactuals

This table shows P [Odisc(p)Ofull(p) ≤ 0] (see Section B.2), the probability of a non-representative outcome (Panel A) and the number of proposals per
equilibrium (Panel B) for varying values of c, holding all other parameters constant. The column caption states the value of c as a multiple of the
estimates presented in Table 2.

Panel A: Probability of non-representative outcome across cost multiple

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

0.25× 0.5× 0.75× 1× 1.25× 1.5× 1.75× 2× 3× 4× 5× 10× 20× 30×
All 34.3% 34.3% 19% 12.8% 23.3% 29.9% 34.4% 37.4% 40.9% 38.1% 34.8% 19.6% 6.2% 4.2%

Equilibrium

mm 17.5% 42.4% 44.6% 46.2% 46% 46% 45% 44% 45% 41% 41%

1m 12.7% 12.1% 18.1% 22.2% 23.5% 27%

10 28% 27% 24% 21%

11 34% 34%

m1 69.5% 32.8%

m0 45% 38% 34% 17% 6% 3%

Panel B: Equilibrium Incidence across cost multiple

0.25× 0.5× 0.75× 1× 1.25× 1.5× 1.75× 2× 3× 4× 5× 10× 20× 30×
Equilibrium

mm 0 0 0 62 494 789 1,112 1,225 1,104 910 678 204 80 62

1m 0 0 848 2,181 1,811 1,516 1,193 1,080 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 644 606 462 183 0 0

11 55 55 0 0 0 0 0 0 0 0 0 0 0 0

m1 0 0 106 62 0 0 0 0 0 0 0 0 0 0

m0 0 0 0 0 0 0 0 0 557 789 1,165 1,918 2,215 2,051
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Table 10: Robustness

This table reports alternative estimations. In Panel A we maintain the whole sample and change some attribute of our algorithm. The first column
describes whether the algorithm matches the moments of terciles, the moments of quartiles, the median instead of the mean, or, instead of a proposal
type×tercile γ×tercile n×tercile q bin, an ISS recommendation×proposal type×tercile γ×tercile n×tercile q bin. In Panel B we maintain the baseline
algorithm and look into different (sub)samples. The first column reports whether the entire sample or a subsample was used, where “High/Low
forecast standard deviation” refers to the highest/lowest tercile of analyst forecast standard deviation); “Early/Late meetings” refer to meetings held
before/after the median proxy meeting date; “Early/Late meetings–ISS” refer to meetings held before/after ISS has issued recommendations for the
respective proposal type in both directions; and “High/low equity lending supply/demand” refers to the quarterly highest/lowest quintile in equity
lending supply/demand. In both panels we report: the MSE (column (1)); the probability of an outcome non-representative of the population preference
or the preference of regular voters (columns (2) and (3), respectively); the expected turnout against and for the majority of regular voters (columns (4)
and (5), respectively); and the incidence of each equilibrium, as well as the total, for these estimations (columns (6)–(12)).

Panel A: Whole sample

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Algorithm MSE (Odisc(p)) P [Odisc(p)Ofull(p) ≤ 0] P
[
Odisc(p)Oonly-reg ≤ 0

]
tL tR mm 1m 10 11 m1 m0 Total

Base 0.026 13% 15% 98% 56% 62 2,181 0 0 62 0 2,305

Malenko-Shen 0.215

Idiosyncratic costs 0.051 12% 21% 92% 48% 2,305 0 0 0 0 0 2,305

No 1m 0.042 8% 30% 77% 86% 1,217 0 0 1,026 62 0 2,305

GMM 0.031 9% 19% 93% 56% 472 1,730 0 0 11 0 2,213

a = 0.9 0.028 10% 15% 98% 64% 44 2,199 0 0 62 0 2,305

a = 0.8 0.028 7% 16% 99% 76% 28 2,197 0 0 80 0 2,305

Quartiles 0.026 11% 15% 97% 57% 79 2,136 0 0 90 0 2,305

Six moments 0.028 13% 15% 98% 57% 62 2,181 0 0 62 0 2,305

Eight moments 0.028 13% 15% 98% 57% 62 2,181 0 0 62 0 2,305

Median 0.028 13% 15% 98% 56% 62 2,181 0 0 62 0 2,305

ISS 0.024 13% 16% 98% 56% 44 2,192 0 0 66 0 2,302
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Panel B: Baseline algorithm

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Sample MSE (Odisc(p)) P [Odisc(p)Ofull(p) ≤ 0] P
[
Odisc(p)Oonly-reg ≤ 0

]
tL tR mm 1m 10 11 m1 m0 Total

Low equity lending supply 0.025 13% 23% 90% 63% 12 212 0 0 59 0 283

High equity lending supply 0.028 12% 14% 99% 56% 29 1,681 0 0 22 0 1,732

Low equity lending demand 0.032 12% 14% 99% 56% 22 1,139 0 0 50 0 1,211

High equity lending demand 0.022 13% 18% 97% 57% 7 778 0 0 34 0 819

Single proposal 0.024 11% 17% 96% 60% 8 286 0 0 26 0 320

Bundle 0.028 12% 14% 98% 55% 31 1,413 0 0 37 0 1,481

Low ownership concentration 0.021 14% 15% 98% 56% 0 733 0 0 38 0 771

High ownership concentration 0.030 12% 17% 96% 58% 37 693 0 0 35 0 765

Low forecast standard deviation 0.029 14% 15% 98% 56% 0 733 0 0 38 0 771

High forecast standard deviation 0.022 12% 17% 96% 58% 37 693 0 0 35 0 765

Early meeting 0.025 12% 15% 97% 57% 20 969 0 0 47 0 1,036

Late meeting 0.026 11% 16% 98% 56% 37 623 0 0 23 0 683

Early meeting–ISS 0.027 11% 17% 92% 66% 7 253 0 0 50 0 310

Late meeting–ISS 0.028 13% 15% 99% 55% 28 1,933 0 0 34 0 1,995
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Table 11: Proposal type classification

Proposal type Most frequent ISS proposal descriptions

Board Separate Chairman and CEO, Require a Majority
Vote for the Election of Board, Require Independent
Board Chairman

Executive compensation Advisory Vote to Ratify Named Executive Officers’
Compensation, Limit Executive Compensation, Sub-
mit Severance Agreement to Shareholder Vote

Takeover defense Declassify the Board of Directors, Submit Shareholder
Rights Plan (Poison Pill), Reduce Supermajority Vote
Requirement

Other governance Amend Articles/Bylaws/Charter, Provide Right to
Act by Written Consent
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Table 12: Comparison of Estimation Methods

This table compares the prediction accuracy of the algorithm to reduced-form models for each proposal. For the dependent variable and the relevant
sample see the table caption. Independent variables are the input variables to the algorithm γ, q, n, and the dependent variables from Table 3 of
Malenko and Shen (2016), most importantly: NegRec, which equals one if ISS gives a negative recommendation, and zero otherwise; BelowCutoff,
which equals one if the firm is below the cutoff (MaxTSR < 0), and zero otherwise; and the interaction of these variables. Standard errors are in
parentheses. *, **, and *** represent significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable
Total

participation
dSuL dSuR Odisc(p)

Total

participation
dSuL dSuR Odisc(p)

Sample All All All All Excl. 2011 Excl. 2011 Excl. 2011 Excl. 2011

Regression OLS OLS OLS OLS OLS OLS OLS OLS

γ 0.355*** 0.152*** 0.044 -0.159*** 0.152*** 0.048 -0.165*** 0.348***

(4.820) (4.508) (0.825) (-2.746) (4.484) (0.901) (-2.851) (4.759)

q 0.705*** 0.025*** -0.141*** 0.132*** 0.025*** -0.142*** 0.133*** 0.709***

(18.721) (2.674) (-5.440) (4.930) (2.698) (-5.401) (4.898) (18.539)

n 0 0 0 0 0 0 0 0

(-0.700) (-0.445) (-0.249) (-1.250) (-0.166) (-0.122) (-1.165) (-0.740)

NegRec 16.510 -1.505 -16.44 14.743 -1.679 -16.243 14.525 16.277

(0) (0) (0.000*) (0) (0) (0.000*) (0) (0)

MaxTSR -0.950 0.350 1.916 -0.401 0.644 1.862 -0.169 -0.843

(0.002***) (0.001**) (-0.001) (0.002***) (0.001**) (-0.001) (0.002***) (0.002***)

BelowCutoffMaxTSR 0.002*** 0.001** -0.001 0.002*** 0.001** -0.001 0.002*** 0.002***

(2.789) (2.453) (-1.333) (3.688) (2.515) (-1.135) (3.451) (2.594)

Total compensation 0.000* 0 0 0.000** 0 0 0.000** 0.000*

(1.745) (0.900) (-0.740) (2.185) (0.954) (-0.764) (2.268) (1.820)

TDC1 change 0 0 0 0 0 0 0 0

(-0.221) (-0.419) (0.413) (-0.028) (-0.390) (0.589) (-0.127) (-0.372)

Continued on next page
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Continued from previous page

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable
Total

participation
dSuL dSuR Odisc(p)

Total

participation
dSuL dSuR Odisc(p)

% Stock compensation -0.578 0.068 0.812 0.159 0.090 0.697 0.231 -0.455

(-0.004*) (0) (0.003*) (-0.003*) (0) (0.003*) (-0.003*) (-0.004)

Director holdings % -1.752 0.682 1.889 -1.933 0.782 1.735 -1.796 -1.578

(-0.015) (0.002) (0.002) (-0.01) (0.003) (0) (-0.01) (-0.013)

Log equity -0.015 0.002 0.002 -0.01 0.003 0 -0.01 -0.013

(-1.205) (0.465) (0.195) (-1.045) (0.486) (0.047) (-1.012) (-1.090)

ROA 0.102 0.071 0.008 0.174** 0.067 0.016 0.161** 0.086

(1.039) (0.961) (0.0978) (2.432) (0.908) (0.203) (2.264) (0.877)

Market-to-book ratio -0.009 -0.008* 0 -0.01 -0.008* -0.001 -0.01 -0.008

(-0.700) (-1.774) (0.00022) (-1.183) (-1.808) (-0.091) (-1.119) (-0.620)

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Proposal type FE Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.709 0.704 0.559 0.51 0.705 0.559 0.509 0.709

#N 1,666 1,737 1,672 1,667 1,715 1,652 1,647 1,646
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Figure 1: Equilibria regions under disagreement and agreement across the group of voters (a = 1,
h− l = 0.5, q = 0.8, p ∼ U [l, h]).

Disagreement (p = 0.3)

Agreement (p = 0.7)
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Figure 2: Benefit-to-cost ratio vs. average ownership stake.
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Figure 3: Counterfactuals
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Online Appendix

“Freeriders and Underdogs: Participation in Corporate Voting”

Konstantinos E. Zachariadis, Dragana Cvijanović, and Moqi Groen-Xu

In this Online Appendix, we present the propositions and corresponding proofs for the equilibria

where at least one type of discretionary voter has a ‘corner’ participation rate (Section OA.1).

OA.1 Equilibria with ‘Corner’ Participation

Throughout, assume that q ∈ (1/2, 1), p ∈ (l, h) ⊆ (0, 1), a ∈ (0, 1], g(a) = δ(a− a), where δ is the

Dirac function, A1–A2, and let d ≡ h− l.

Proposition 3 (Equilibrium 1m). Assume that p ∼ U [l, h]. If and only if

n ∈ N1m ≡
(

max

{
(1− γ)a− (2q − 1)γ

4(1− γ)2a2pd
,

1

pd

l2

(1− γ)a− (2q − 1)γ

}
,∞
)
, (OA.1)

γ ∈ Γ1m ≡
(

a(1− 2p)

a(1− 2p) + 2q − 1
I
(
p <

1

2

)
,

a(1− l)
2q − 1 + a(1− l)

)
, (OA.2)

v

cn
∈ V1m ≡

(
max

{
(1− γ)2a2pd

(1− γ)a− (2q − 1)γ
,
(1− γ)a− (2q − 1)γ

p
d,

1

n

}
,

min

{
4(1− γ)2a2pd

(1− γ)a− (2q − 1)γ
,
(1− γ)a− (2q − 1)γ

l2
pd

})
, (OA.3)

where I is the indicator function, there exists an equilibrium with tL = 1 and tR ∈ (0, 1) given by

tR =
1

(1− γ)a

√√√√(1− γ)a− (2q − 1)γ

dp

v

cn
− 1. (OA.4)

Proposition 4 (Equilibrium 10). If and only if

n ∈ N10 ≡
(
f (p∗) p∗

(1− γ)ap
,∞
)
, (OA.5)

γ ∈ Γ10 ≡
(

(1− p)a
2q − 1 + (1− p)a

,
a(1− l)

2q − 1 + a(1− l)

)
, (OA.6)

v

cn
∈ V10 ≡

(
max

{
1

n
,
(1− γ)a(1− p)
f (p∗) (1− p∗)

}
,
(1− γ)ap

f (p∗) p∗

)
, (OA.7)

1
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there exists an equilibrium with tL = 1 and tR = 0, where from (4) p∗ = 1− (2q − 1)γ/ ((1− γ)a).

Proposition 5 (Equilibrium 11). If and only if l < 1/2 and

n ∈ N11 ≡ (0,∞) , (OA.8)

γ ∈ Γ11 ≡
(

max

{
0,

a(1− 2h)

a(1− 2h) + 2q − 1
I
(
h <

1

2

)}
,

a(1− 2l)

a(1− 2l) + 2q − 1

)
, (OA.9)

v

cn
∈ V11 ≡

(
max

{
(1− γ)ap

f (p∗) p
∗

2

,
(1− γ)a(1− p)
f (p∗) 1−p∗

2

,
1

n

}
,∞

)
, (OA.10)

where I is the indicator function, there exists an equilibrium with tL = 1 and tR = 1, where from

(4) p∗ = 1/2− (2q − 1)γ/ (2(1− γ)a).

Proposition 6 (Equilibrium m1). Assume that p ∼ U [l, h]. If and only if p < 1/2 and

n ∈ Nm1 ≡
(

max

{
(1− γ)a+ (2q − 1)γ

4d(1− γ)2a2(1− p)
,

(1− h)2

d(1− p) ((1− γ)a+ (2q − 1)γ)

}
,∞
)
,

(OA.11)

γ ∈ Γm1 ≡
(

0,
a(1− 2p)

a(1− 2p) + 2q − 1

)
, (OA.12)

v

cn
∈ Vm1 ≡

(
max

{
1

n
, d

(1− γ)a+ (2q − 1)γ

(1− p)

}
,

min

{
d

4(1− γ)2a2(1− p)
(1− γ)a+ (2q − 1)γ

, d
(1− p)((1− γ)a+ (2q − 1)γ)

(1− h)2

})
, (OA.13)

there exists an equilibrium with tL ∈ (0, 1) given by

tL =
1

(1− γ)a

√√√√(1− γ)a+ (2q − 1)γ

d(1− p)
v

cn
− 1, (OA.14)

and tR = 1.

Proposition 7 (Equilibrium m0). Assume that p ∼ U [l, h]. If and only if

n ∈ Nm0 ≡
(

max

{
(2q − 1)γ

d(1− γ)2a2(1− p)
,

1− p
d(2q − 1)γ

}
,∞
)
, (OA.15)

γ ∈ Γm0 ≡
(

0,
a

2q − 1 + a

)
, (OA.16)

v

cn
∈ Vm0 ≡

(
max

{
1

n
, d(1− p)(2q − 1)γ

}
,min

{
d

(1− γ)2a2(1− p)
(2q − 1)γ

,
d(2q − 1)γ

1− p

})
,

(OA.17)

2
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there exists an equilibrium with tL ∈ (0, 1) given by

tL =
1

(1− γ)a

√√√√(2q − 1)γ

d(1− p)
v

cn
(OA.18)

and tR = 0.

OA.1.1 Proofs of Propositions 3–7

Note that in equilibrium, it cannot be that tL = tR = 0 (see Assumptions 1 and 2); also, recall that,

tL = 0 (and tR ∈ (0.1]) can, also, not occur in any equilibrium (see Corollary (1)), as this would

imply that the probability p∗ in (4) is negative. Hence, the equilibria we need to inquire about are

(in addition to equilibrium mm, which we presented in Proposition 1 in the main text):

tL = 1, tR ∈ (0, 1), (1m)

tL = 1, tR = 0, (10)

tL = 1, tR = 1, (11)

tL ∈ (0, 1), tR = 1, (m1)

tL ∈ (0, 1), tR = 0. (m0)

We begin with equilibria 1m, 10, and 11 where tL = 1. Let:

K ≡ 1− (2q − 1)γ

(1− γ)a
, (OA.19)

so from (4), in those equilibria, p∗ = K/(1 + tR). Given this, we need K > 0, otherwise p∗ < 0, i.e.,

1 >
(2q − 1)γ

(1− γ)a
⇐⇒ a− aγ > (2q − 1)γ ⇐⇒ a > (2q − 1 + a)γ ⇐⇒ γ <

a

2q − 1 + a
. (OA.20)

This upper bound on γ takes precedent over the one required by assumption A1 (i.e., γ < 1/(2q)),

since a < 1.

We also need p∗ < 1, i.e.,

K
1

1 + tR
< 1 ⇐⇒ tR > K − 1,

3
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which is always true since K < 1 (see (OA.19)).

Moreover, for tL = 1, we must have:

P [pivotal|L] >
c

v
⇐⇒ 1

(1− γ)n

1

a(1− p)
f(p∗)(1− p∗)

1 + tR
>
c

v
⇐⇒ f(p∗)(1− p∗)

1 + tR
>
c

v
(1− γ)na(1− p)

⇐⇒ f

(
K

1

1 + tR

)
1 + tR −K
(1 + tR)2

>
c

v
(1− γ)na(1− p), (OA.21)

where in the second inequality we substituted for the pivotal probability from (2).

Now, we focus on each of the equilibria with tL = 1 in turn. The main goal of the proofs is to

derive the regions of n, γ, and v/(cn) so that, given tL = 1 we have that tR ∈ (0, 1) and probability

p∗ ∈ (l, h) (while also respecting assumptions A1 and A2).

Equilibrium 1m: Deriving the expression for tR: For tR ∈ (0, 1), we must have:

P [pivotal|R] =
c

v
⇐⇒ 1

(1− γ)n

1

ap

f(p∗)p∗

1 + tR
=
c

v
⇐⇒ f

(
K

1

1 + tR

)
K

(1 + tR)2
=
c

v
(1− γ)nap,

(OA.22)

where in the second equality we substituted for the pivotal probability from (3) and in the third

for p∗ = K/(1 + tR). Let us assume that p ∼ U [l, h], 0 ≤ l < h ≤ 1, and p∗ ∈ (l, h), which we check

below; then, p = (h+ l)/2, f(p∗) = 1/(h− l) = 1/d, and (OA.22) becomes:

1

d

K

(1 + tR)2
=
c

v
(1− γ)nap ⇐⇒ (1 + tR)2 =

K
dc
v (1− γ)nap

=

1−
(2q − 1)γ

(1− γ)a
dc
v (1− γ)nap

,

which if we solve yields (OA.4); where in the last equality we substituted for K from (OA.19).

Checking that tR ∈ (0, 1): We need to ensure that

tR < 1 ⇐⇒ (1− γ)a− (2q − 1)γ
dc
v np

1

(1− γ)2a2 < 4 ⇐⇒ v

c
< nd

4(1− γ)2a2p

(1− γ)a− (2q − 1)γ
, (OA.23)

where in the second inequality we substituted from (OA.4); and, similarly,

tR > 0 ⇐⇒ (1− γ)a− (2q − 1)γ
dc
v np

> (1− γ)2a2 ⇐⇒ v

c
> nd

(1− γ)2a2p

(1− γ)a− (2q − 1)γ
. (OA.24)

4

Electronic copy available at: https://ssrn.com/abstract=2939744



In addition, from (OA.21), for p ∼ U [l, h] we have that:

1

d

1 + tR −K
(1 + tR)2

>
c

v
(1− γ)na(1− p) ⇐⇒ 1

1 + tR
− K

(1 + tR)2
>
dc

v
(1− γ)na(1− p)

⇐⇒

√
dc
v np

(1− γ)a− (2q − 1)γ
(1− γ)a− dc

v
(1− γ)nap >

dc

v
(1− γ)na(1− p)

⇐⇒

√
v

dcn

p

(1− γ)a− (2q − 1)γ
> p+ 1− p ⇐⇒ v

c
> nd

(1− γ)a− (2q − 1)γ

p
, (OA.25)

where in the third inequality we substituted for tR from (OA.4).

Now, we compare the two lower bounds on v/c (OA.24) and (OA.25), to see if they either of

them can be relevant:

(1− γ)2ap2 > [(1− γ)a− (2q − 1)γ]2 ⇐⇒ a(1− p) < γ [a(1− p) + 2q − 1] ⇐⇒ γ >
a(1− p)

a(1− p) + 2q − 1
.

Is this last requirement consistent with the current lower bound on γ (OA.20)?

a(1− p)
a(1− p) + 2q − 1

<
a

2q − 1 + a
⇐⇒ (1− p)(2q − 1) + (1− p)a < a(1− p) + 2q − 1 ⇐⇒ p > 0,

which is always true, hence, either of (OA.24) and (OA.25) can be relevant.

Moreoever, for existence of equilibrium 1m, we need to check that the upper bound on v/c in

(OA.23) is larger than both the two possible lower bounds in (OA.24) and (OA.25). First, from

(OA.23) and (OA.25) we have existence if and only if

4(1− γ)2a2p2 > [(1− γ)a− (2q − 1)γ]2 ⇐⇒ 2(1− γ)ap > (1− γ)a− (2q − 1)γ

⇐⇒ (1− γ)a(1− 2p)− (2q − 1)γ < 0 ⇐⇒ a(1− 2p) < γ [a(1− 2p) + 2q − 1] . (OA.26)

We inquire on the validity of (OA.26) by considering the following cases:

Case A: If 1− 2p > 0 ⇐⇒ p < 1/2, then from (OA.26) we need:

γ >
a(1− 2p)

a(1− 2p) + 2q − 1
. (OA.27)

5
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For this to be consistent with the current upper bound on γ (OA.20), we further need:

a

2q − 1 + a
>

a(1− 2p)

a(1− 2p) + 2q − 1
⇐⇒ a(1− 2p) + 2q − 1 > (1− 2p)(2q − 1) + a(1− 2p) ⇐⇒ p > 0,

which is always true.

Case B : If 1−2p < 0 ⇐⇒ p > 1/2 and a(1−2p)+2q−1 > 0 ⇐⇒ p < (2q−1)/(2a)+1/2, that is,

if 1/2 < p < (2q − 1)/(2a) + 1/2, then (OA.26) is true without any further parameter restrictions.

Case C : If p > (2q − 1)/(2a) + 1/2 for (OA.26) to be true we need:

a(2p− 1) > γ [a(2p− 1)− (2q − 1)] ⇐⇒ γ <
a(2p− 1)

a(2p− 1)− (2q − 1)
. (OA.28)

We need to check how the above compares with the current upper bound on γ (OA.20):

2p− 1

a(2p− 1)− (2q − 1)
<

1

2q − 1 + a
⇐⇒ (2p− 1)(2q − 1) + (2p− 1)a < (2p− 1)a− (2q − 1)

⇐⇒ 2p− 1 < −1 ⇐⇒ p < 0,

which is false; so (OA.28) is weaker than (OA.20) and does not take precedence (i.e., is irrelevant).

Second, trivially, the lower bound on v/c in (OA.24) is smaller than the upper bound in (OA.23).

Let us summarize our findings up to this point: An equilibrium with tL = 1, tR ∈ (0, 1) given

by (OA.4) exists if:

max


(1− γ)2a2npd

(1− γ)a− (2q − 1)γ
,
(1− γ)a− (2q − 1)γ

p
nd

 (OA.29)

<
v

c
<

nd
4(1− γ)2a2p

(1− γ)a− (2q − 1)γ
, (OA.30)

and
a(1− 2p)

a(1− 2p) + 2q − 1
I(p < 1/2) < γ <

a

2q − 1 + a
, (OA.31)

where I is the indicator function.

6
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Checking assumptions A1 and A2: As mentioned, for all equilibria with tL = 1 the upper bound in

(OA.20) takes precedent over the one in A1. We continue with the requirement of A2 that v/c ≥ 1.

Hence, for an equilibrium to exist we need that expression (OA.30) (the current upper bound) is

higher than one:

d4(1− γ)2anp > (1− γ)a− (2q − 1)γ ⇐⇒ n >
(1− γ)a− (2q − 1)γ

4(1− γ)2a2pd
. (OA.32)

This implies a lower bound on the number of voters n. Next, we compare the lower bound imposed

by A2 with the current ones in (OA.29). In turn we have:

i) For the lower bound (OA.24) to be the relevant one we need:

relative to ‘1’→ n >
(1− γ)a− (2q − 1)γ

(1− γ)2a2pd
,

and relative to (OA.25)→ γ >
a(1− p)

a(1− p) + 2q − 1
.

ii) For the lower bound (OA.25) to be the relevant one we need:

relative to ‘1’→ n >
p

d [(1− γ)a− (2q − 1)γ]
,

and relative to (OA.24)→ γ <
a(1− p)

a(1− p) + 2q − 1
.

iii) For the lower bound in A2 (i.e., ‘1’) to be the relevant one we need:

relative to (OA.24)→ n <
(1− γ)a− (2q − 1)γ

(1− γ)2a2pd
,

and relative to (OA.25)→ n <
p

[(1− γ)a− (2q − 1)γ] d
.

Hence, depending on the parameters any of the three lower bounds on v/c can be the relevant one.

Checking that p∗ ∈ (l, h): Since p ∈ [l, h] we also need to check that l < p∗ < h. Recall that for the

equilibrium under consideration (i.e., 1m), p∗ = K/(1 + tR), where K is given by (OA.19) and tR

7
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by (OA.4). Hence, after some algebra we write the requirement on p∗ as:

l < p∗ < h ⇐⇒ 1

h2
<

1

p∗2
<

1

l2
⇐⇒ 1

h2
<

v

nc

1

dp

1

[(1− γ)a− (2q − 1)γ]
<

1

l2

⇐⇒ ndp[(1− γ)a− (2q − 1)γ]

h2
(OA.33)

<
v

c
<

ndp[(1− γ)a− (2q − 1)γ]

l2
. (OA.34)

How does these reconcile with the existing bounds (OA.29) and (OA.30)? In turn we have:

i) (OA.33) vs the second part of the maximum in the lower bound (OA.29) (i.e., the right-hand-side

(RHS) of (OA.25)):

(1− γ)a− (2q − 1)γ

p
d>dp

(1− γ)a− (2q − 1)γ

h2
⇐⇒ 1

p
>

p

h2
⇐⇒ p < h,

which is always true; hence, (OA.33) is never the relevant lower bound.

ii) (OA.34) vs the upper bound in (OA.30):

dp [(1− γ)a− (2q − 1)γ]

l2
>

4(1− γ)2a2pd

(1− γ)a− (2q − 1)γ
⇐⇒ [(1− γ)a− (2q − 1)γ]2 > 4(1− γ)2a2l2

⇐⇒ (1− γ)a− (2q − 1)γ > 2(1− γ)al ⇐⇒ (1− 2l)a > (2q − 1 + a(1− 2l))γ. (OA.35)

To inquire on the validity of (OA.35) we need to consider the following cases:

Case A: If 1− 2l > 0 ⇐⇒ l < 1/2, then we need γ < (1− 2l)a(2q − 1 + a(1− 2l)) for the current

upper bound on v/c in (OA.30) to be the relevant one. Otherwise, (OA.34) takes precedence. Note

that the above upper bound on γ is lower than our current one in (OA.31), and so, is in the feasible

region.

Case B : If 1− 2l < 0 ⇐⇒ l > 1/2, then:

B-1) If 2q − 1 + a(1 − 2l) > 0 ⇐⇒ a < (2q − 1)/(2l − 1) then (OA.34) is the relevant upper

bound.

B-2) If 2q − 1 + a(1 − 2l) < 0 ⇐⇒ a > (2q − 1)/(2l − 1), then we need γ > (2l − 1)a/(1 −

2q + a(2l − 1)) for the current upper bound on v/c in (OA.30) to be the relevant one. Otherwise,
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(OA.34) takes precedence. Note that, again, the above upper bound on γ is lower than our current

one in (OA.31), and so is in the feasible region.

Therefore, (OA.34) can be the relevant upper bound and, hence, we need to ensure that it is

larger than the existing possible lower bounds on v/c in (OA.29) and one (from A2). We have, in

turn:

i) Comparing (OA.34) vs ‘1’, leads to

(1− γ)a− (2q − 1)γ

l2
npd > 1 ⇐⇒ n >

1

pd

l2

(1− γ)a− (2q − 1)γ
. (OA.36)

How does (OA.36) compare with the existing lower bound on n in (OA.32)?

1

pd

l2

(1− γ)a− (2q − 1)γ
>

(1− γ)a− (2q − 1)γ

4(1− γ)2a2pd
⇐⇒ 2l(1− γ)a > (1− γ)a− (2q − 1)γ

⇐⇒ (1− γ)a(1− 2l) < (2q − 1)γ.

Hence, if 1 − 2l < 0 ⇐⇒ l > 1/2, then the above is always true and (OA.36) takes precedent.

While if 1− 2l > 0 ⇐⇒ l < 1/2, then we need: γ > a(1− 2l)/(2q− 1 + a(1− 2l)), which is within

the feasible for γ interval since l > 0. Therefore, for l < 1/2 either of (OA.36) and (OA.32) can be

the relevant lower bound on n. This results in region N1m defined in (OA.1).

ii) Comparing (OA.34) vs the first term in the maximum for the lower bound in (OA.29), leads to

(1− γ)a− (2q − 1)γ

l2
npd >

(1− γ)2a2npd

(1− γ)a− (2q − 1)γ
⇐⇒ (1− γ)a− (2q − 1)γ > (1− γ)al

⇐⇒ (1− γ)a(1− l) > (2q − 1)γ ⇐⇒ a(1− l) > [2q − 1 + a(1− l)] γ ⇐⇒ γ <
a(1− l)

2q − 1 + a(1− l)
.

(OA.37)

Now, the upper bound in (OA.37) is lower than the one in (OA.31) so it takes precedent (and it

is also larger than the current lower bound in (OA.31), since p > l). This, together with the lower

bound in (OA.31), results in region Γ1m defined in (OA.2).

iii) Comparing (OA.34) vs the second term in the maximum for the lower bound in (OA.30):

(1− γ)a− (2q − 1)γ

l2
npd >

(1− γ)a− (2q − 1)γ

p
nd ⇐⇒ p > l,
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which is always true.

Hence, the upper bound in (OA.30) needs to be amended to include (OA.34). While, as we

mentioned before, the lower bounds in (OA.29) need to be amended to include the bound imposed

by A2. These result in region V1m defined in (OA.3) (where we further divide all expressions by

n). This concludes the proof of Proposition 3. �

Equilibrium 10. Drawing inferences from the values of tL, tR: For tL = 1 and tR = 0, we have

that p∗ = K/(1+tR) = K, where K is defined in (OA.19). Moreover, no discretionary participation

of R means that (adapting (OA.22)) we have:

P [pivotal|R] <
c

v
⇐⇒ 1

(1− γ)n

1

ap

f(p∗)p∗

1 + 0
<
c

v
⇐⇒ v

c
<

(1− γ)nap

f(K)K
. (OA.38)

While for full discretionary participation of L we need from (OA.21):

v

c
>

(1− γ)na(1− p)
f(K)(1−K)

. (OA.39)

For existence of equilibrium we need the lower bound on v/c in (OA.39) to be smaller than the

upper bound implied by (OA.38). Hence,

(1− γ)na(1− p)
(1− γ)nap

<
f(K)(1−K)

f(K)K
⇐⇒ 1− p− (2q − 1)γ

(1− γ)a
< 0 ⇐⇒ γ >

(1− p)a
2q − 1 + (1− p)a

,

(OA.40)

where in the second inequality we substituted for K from (OA.19) and cancelled common terms.

Is this new lower bound smaller than the current upper bound in (OA.20)? That is, for existence

we need:

(1− p)a
2q − 1 + (1− p)a

<
a

2q − 1 + a
⇐⇒ (1− p)a [2q − 1 + a] < (2q − 1 + (1− p)a)a

⇐⇒ (1− p− 1)a(2q − 1) < 0 ⇐⇒ −pa(2q − 1) < 0,

which is always true, so the lower bound in (OA.40) is in the feasible region of γ without further

parameter restrictions.
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Checking assumptions A1 and A2: As mentioned for all the equilibria with tL = 1 the upper bound

in (OA.20) takes precedent over the one in A1. What about A2 that v/c ≥ 1? For existence, we

need ‘1’ to be smaller than the current upper bound in (OA.38):

1 ≤ (1− γ)nap

f(K)K
⇐⇒ n ≥ f(K)K

(1− γ)ap
, (OA.41)

which imposes a lower bound on the number of voters. This bound defines N10 in (OA.5). Then

the lower bound of v/c in (OA.39) together with ‘1’, and the upper bound in (OA.38) define V10

in (OA.7) (where we further divide all expressions by n).

Checking that p∗ ∈ (l, h): Since p ∈ [l, h] we also need to check that l < p∗ < h or, for equilibrium

10, l < K < h. Substituting for K from (OA.19) and after a bit of algebra we arrive at:

a(1− h)

2q − 1 + a(1− h)
(OA.42)

< γ <

a(1− l)
2q − 1 + a(1− l)

. (OA.43)

How does (OA.42) compare with the current lower bound in (OA.40)?

a(1− h)

2q − 1 + a(1− h)
<

a(1− p)
2q − 1 + a(1− p)

⇐⇒ 2q − 1

a(1− h)
>

2q − 1

a(1− p)
⇐⇒ p < h,

which is always true and therefore, the current lower bound stands.

How does (OA.43) compare with the current upper bound in (OA.20)?

a

2q − 1 + a
<

a(1− l)
2q − 1 + a(1− l)

⇐⇒ 2q − 1

a
>

2q − 1

a(1− l)
⇐⇒ l < 0,

which is never true, and so, (OA.43) takes precedence. Then this upper bound together with the

lower bound in (OA.40) define region Γ10 in (OA.6). This concludes the proof of Proposition 4. �
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Equilibrium 11. Drawing inferences from the values of tL, tR: For tR = 1 we have p∗ = K/2,

and we need (adapting (OA.22)) that:

P [pivotal|R] >
c

v
⇐⇒ 1

(1− γ)n

1

ap

f(p∗)p∗

2
>
c

v
, ⇐⇒ v

c
>

(1− γ)nap

f
(
K
2

)
K
4

. (OA.44)

For tL = 1, we have from (OA.21):

f

(
K

2

)
2−K

4
>
c

v
(1− γ)na(1− p) ⇐⇒ v

c
>

(1− γ)na(1− p)
f
(
K
2

)
2−K

4

. (OA.45)

Depending on parameter values either of (OA.44) and (OA.45) can be the relevant lower bound.

Checking assumptions A1 and A2: As mentioned for all the equilibria with tL = 1 the upper bound

in (OA.20) takes precedent over the one in A1. Now, lower bounds (OA.44) and (OA.45), together

with ‘1’ from A2 define region V11 in (OA.10) (where we divide all expressions by n). Note that

there is no upper bound on v/c in equilibrium 11.

Checking that p∗ ∈ (l, h): Since p ∈ [l, h] we also need to check that l < p∗ < h. Using that now

p∗ = K/2 and (OA.19) for K we arrive at the

1− 2h ≤ 2q − 1

a

γ

1− γ
≤ 1− 2l. (OA.46)

Therefore, for equilibrium to exist, we need 1 − 2l ≥ 0 ⇐⇒ l ≤ 1/2, and this is part of the

requirements in the statement of Proposition 5. Given this from the second inequality in (OA.46)

we have the requirement:

2q − 1

a

γ

1− γ
≤ 1− 2l ⇐⇒ γ ≤ (1− 2l)a

(1− 2l)a+ 2q − 1
, (OA.47)

which as an upper bound takes precedence over the current one in (OA.20). Now, for 1 − 2h we

consider two cases:

Case A: If 1− 2h < 0 ⇐⇒ h > 1/2, then the first inequality in (OA.46) is trivially true without

further restrictions on parameters.
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Case B : If 1− 2h > 0 ⇐⇒ h < 1/2, then we also need:

γ ≥ (1− 2h)a

(1− 2h)a+ 2q − 1
. (OA.48)

The lower bound on γ in (OA.48) is always smaller than the current upper bound in (OA.47);

putting them together leads to region Γ11 is (OA.9). Note, that we do not have any restriction on

the number of voters n and hence the region N11 in (OA.8) is the entire positive half-line. This

concludes the proof of Proposition 5. �

Below, me move on to the proofs pertaining to equilibria where tL < 1, i.e., m1 and m0. Again,

the main goal of the proofs is to derive the regions of n, γ, and v/(cn) so that, given tR = 1 or 0

we have that tL ∈ (0, 1) and probability p∗ ∈ (l, h) (while also respecting assumptions A1 and A2).

Equilibrium m1. Deriving p∗: Here, we inquire whether tL ∈ (0, 1), tR = 1 can be an equilib-

rium. First, from (4) we have that:

p∗ =
tL

1 + tL
− (2q − 1)γ

(1− γ)a

1

1 + tL
⇐⇒ 1− p∗ =

1

1 + tL

[
1 +

(2q − 1)γ

(1− γ)a

]
. (OA.49)

The term in the square brackets is positive so p∗ < 1 but we further need that

p∗ > 0 ⇐⇒ 1− p∗ < 1 ⇐⇒ 1 + tL > 1 +
(2q − 1)γ

(1− γ)a
⇐⇒ tL >

(2q − 1)γ

(1− γ)a
. (OA.50)

So, for an equilibrium where L play a mixed strategy to exist we must have

(2q − 1)γ

(1− γ)a
< 1 ⇐⇒ (2q − 1 + a)γ < a ⇐⇒ γ <

a

2q − 1 + a
, (OA.51)

which is the same as (OA.20) and so as there, this new upper bound on γ takes precedent over the

one required by A1 (i.e., γ < 1/(2q)).

Deriving the expression for tL: For tL ∈ (0, 1), tR = 1 to be an equilibrium we must have that the
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pivotal probabilities in (2) and (3), respectively, satisfy:

P [pivotal|L] =
c

v
⇐⇒ 1

(1− γ)n

1

a(1− p)(1 + tL)
f(p∗)(1− p∗) =

c

v
, (OA.52)

P [pivotal|R] >
c

v
⇐⇒ 1

(1− γ)n

1

ap(1 + tL)
f(p∗)p∗ >

c

v
. (OA.53)

Assume that p ∼ U [l, h], so that, provided that p∗ ∈ (l, h) (which we check below), we have

f(p∗) = 1/d, where d = h− l; then (OA.52) becomes:

1

(1− γ)n

1

a(1− p)
1

(1 + tL)

1

d

1 +
(2q − 1)γ

(1− γ)a

1 + tL
=
c

v
⇐⇒ (1 + tL)2 =

1 +
(2q − 1)γ

(1− γ)a

dc

v
(1− γ)na(1− p)

,

which, if we solve, yields (OA.14); where in the first equality we also substituted for 1 − p∗ from

(OA.49).

Checking that tL ∈ (0, 1): We need to ensure that given (OA.14):

tL < 1 ⇐⇒
√

(1− γ)a+ (2q − 1)γ
dc
v n(1− p)

1

(1− γ)a
< 2 ⇐⇒ v

c
< d

4(1− γ)2a2n(1− p)
(1− γ)a+ (2q − 1)γ

, (OA.54)

and

tL > 0 ⇐⇒ (1− γ)a+ (2q − 1)γ
dc
v n(1− p)

> (1− γ)2a2 ⇐⇒ v

c
> d

(1− γ)2a2n(1− p)
(1− γ)a+ (2q − 1)γ

. (OA.55)

Clearly, the upper bound on v/c imposed by (OA.54) is larger than the lower bound in (OA.55).

Drawing inferences from the values of tL, tR: In addition, from (OA.53), we have for p ∼ U [l, h]

that:

1

(1− γ)n

1

ap(1 + tL)2

1

d

(
tL −

(2q − 1)γ

(1− γ)a

)
>
c

v
⇐⇒

(
1

1 + tL
− L

(1 + tL)2

)
>
dc

v
(1− γ)nap

⇐⇒

√
dc
v n(1− p)

(1− γ)a+ (2q − 1)γ
(1− γ)a− dc

v
(1− γ)na(1− p) > dc

v
(1− γ)nap

⇐⇒

√
v
cdn(1− p)

(1− γ)a+ (2q − 1)γ
> 1 ⇐⇒ v

c
> nd

(1− γ)a+ (2q − 1)γ

1− p
, (OA.56)

14

Electronic copy available at: https://ssrn.com/abstract=2939744



where in the second line we substituted for the computed tL from (OA.14). Let us also see how

(OA.50) changes in terms of tL. Substituting we have:

√
(1− γ)a+ (2q − 1)γ

dc
v n(1− p)

1

(1− γ)a
− 1 >

(2q − 1)γ

(1− γ)a
⇐⇒ v

c
> nd(1− p) [(2q − 1)γ + (1− γ)a] .

(OA.57)

Note that since 1/(1 − p) > 1 − p, (OA.56) always supersedes (OA.57) as a lower bound on v/c.

How about the rank between the lower bounds on v/c imposed by (OA.55) and (OA.56). We have:

(1− γ)2a2(1− p)2 > [(1− γ)a+ (2q − 1)γ]2 ⇐⇒ (1− γ)a(1− p) > (1− γ)a+ (2q − 1)γ

⇐⇒ (1− γ)a(1− p− 1) > (2q − 1)γ ⇐⇒ −(1− γ)ap > (2q − 1)γ,

which is not true for any parameter value; therefore, (OA.56) supersedes (OA.55) and is the (up

to now) relevant lower bound on v/c.

Now, we need to check whether the upper bound on v/c in (OA.54) is larger than the lower

bound in (OA.56); otherwise equilibrium m1 does not exist. We have:

4(1− γ)2a2(1− p)2 > [(1− γ)a+ (2q − 1)γ]2 ⇐⇒ 2(1− γ)a(1− p) > (1− γ)a+ (2q − 1)γ

⇐⇒ (1− γ)a(2− 2p− 1) > (2q − 1)γ ⇐⇒ a(1− 2p) > γ [a(1− 2p) + 2q − 1] . (OA.58)

We consider the following cases to inquire on the validity of (OA.58).

Case A: If 1− 2p > 0 ⇐⇒ p < 1/2; then, we need:

γ <
a(1− 2p)

a(1− 2p) + 2q − 1
. (OA.59)

How does this compare with the current upper bound on γ in (OA.51)?

a

2q − 1 + a
>

a(1− 2p)

a(1− 2p) + 2q − 1
⇐⇒ p > 0,

which is always true; therefore, (OA.59) supersedes (OA.51) in this case. Hence, for p < 1/2 and

for γ less than the bound in (OA.59), inequality (OA.58) holds and equilibrium exists.
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Case B : If 1− 2p < 0 ⇐⇒ p > 1/2 and a(1− 2p) + 2q− 1 > 0 ⇐⇒ p < 1/2 + (2q− 1)/(2a), then

inequality (OA.58) does not hold for any γ > 0. Hence, equilibrium does not exist.

Case C : If 1 − 2p < 0 ⇐⇒ p > 1/2 and a(1 − 2p) + 2q − 1 < 0 ⇐⇒ p > 1/2 + (2q − 1)/(2a),

then, we need

a(2p− 1) < γ [a(2p− 1)− (2q − 1)] ⇐⇒ γ >
a(2p− 1)

a(2p− 1)− (2q − 1)
.

For equilibrium to exist, we need that this lower bound is smaller than the current upper bound of

γ in (OA.51), that is,

a(2p− 1)

a(2p− 1)− (2q − 1)
<

a

2q − 1 + a
⇐⇒ (2q − 1)2p < 0, (OA.60)

which is never true, so also in this case inequality (OA.58) does not hold and equilibrium does not

exist.

Therefore, equilibrium m1 only exists for p < 1/2 and so we add this restriction in the statement of

Proposition 6. Additionally, we need the upper bound on γ in (OA.59) that, hence, defines region

Γm1 in (OA.12).

Checking assumptions A1 and A2: As mentioned the upper bound on γ in (OA.59) supersedes the

one in (OA.51), which, in turn, supersedes the bound imposed by A1 (i.e., γ < 1/(2q)). Therefore

for p < 1/2, where equilibrium exists, (OA.59) is the relevant bound. How about A2 that v/c ≥ 1?

We check with the current upper bound in (OA.54) for existence:

1 < d
4(1− γ)2a2n(1− p)
(1− γ)a+ (2q − 1)γ

⇐⇒ n >
(1− γ)a+ (2q − 1)γ

4d(1− γ)2a2(1− p)
. (OA.61)

So this imposes a lower bound on the number of voters n. How does ‘1’ compare with the lower

bound in (OA.56)? Well if

n >
(1− p)

d [(1− γ)a+ (2q − 1)γ]
,

(OA.56) is relevant; otherwise, ‘1’ is relevant.

Checking that p∗ ∈ (l, h): Since p ∈ [l, h] we also need to check that l < p∗ < h. For the case
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tL ∈ (0, 1), tR = 1, we have from (4):

p∗ =
tL

1 + tL
− (2q − 1)γ

(1− γ)a

1

1 + tL
⇐⇒ 1− p∗ =

1

1 + tL
+

(2q − 1)γ

(1− γ)a

1

1 + tL

⇐⇒ 1− p∗ =

√
dcn

v
(1− p) ((1− γ)a+ (2q − 1)γ), (OA.62)

where in the last equality we used expression (OA.14) for tL and did a bit of algebra. Using (OA.62)

the requirement that l < p∗ < h, becomes:

1− h < 1− p∗ < 1− l ⇐⇒ (1− h)2 <
dcn

v
(1− p) ((1− γ)a+ (2q − 1)γ) < (1− l)2

⇐⇒ nd(1− p) ((1− γ)a+ (2q − 1)γ)

(1− l)2
(OA.63)

<
v

c
<

nd(1− p) ((1− γ)a+ (2q − 1)γ)

(1− h)2
. (OA.64)

We now compare the lower bound in (OA.63) with the current one in (OA.56):

(1− γ)a+ (2q − 1)γ

1− p
>

(1− p) [(1− γ)a+ (2q − 1)γ]

(1− l)2
⇐⇒ (1− l)2 > (1− p)2 ⇐⇒ l < p,

which is always true; therefore, (OA.56) supersedes the bound in (OA.63) and remains the relevant

lower bound on v/c.

How about (OA.64) vs the current upper bound on v/c in (OA.54)? We have:

4(1− γ)2a2(1− p)
(1− γ)a+ (2q − 1)γ

<
(1− p)((1− γ)a+ (2q − 1)γ)

(1− h)2
⇐⇒ 2(1− γ)a(1− h) < (1− γ)a+ (2q − 1)γ

⇐⇒ (1− γ)a [2(1− h)− 1] < (2q − 1)γ ⇐⇒ [2(1− h)− 1] a < [2q − 1 + (2(1− h)− 1) a] γ.

The sign, of the above inequality, depends on whether: 2(1 − h) − 1 > 0 ⇐⇒ h < 1/2 or not.

Hence, either of (OA.64) and (OA.54) can de the relevant bound, depending on parameter values.

We need to ensure that the new possible upper bound in (OA.64) is larger than the existing

lower bounds: the one in A2 (i.e., v/c ≥ 1) and the one in (OA.56). We have in turn:
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i) Comparing (OA.64) vs 1, leads to:

(1− p)((1− γ)a+ (2q − 1)γ)

(1− h)2
nd > 1 ⇐⇒ n >

(1− h)2

d(1− p)((1− γ)a+ (2q − 1)γ)
. (OA.65)

How does (OA.65) compare with the existing lower bound on n in (OA.61)? We have:

(1− h)2

d(1− p)((1− γ)a+ (2q − 1)γ)
>

(1− γ)a+ (2q − 1)γ

4d(1− γ)2a2(1− p)
⇐⇒ (1− γ)a(1− 2h) > (2q − 1)γ.

Hence, if 1− 2h < 0 ⇐⇒ h > 1/2, then the current bound (OA.61) is the relevant one.

While, if 1− 2h > 0 ⇐⇒ h < 1/2, then the current bound holds if and only if:

(1− γ)a(1− 2h) < (2q − 1)γ ⇐⇒ γ >
a(1− 2h)

2q − 1 + a(1− 2h)
.

How does this lower bound on γ compare with our current one in (OA.59)

a(1− 2h)

2q − 1 + a(1− 2h)
<

a(1− 2p)

2q − 1 + a(1− 2p)
⇐⇒ h > p,

which is always true. Therefore, either of the lower bounds on n in (OA.65) and (OA.61) can be

relevant for h < 1/2. And they are necessary for equilibrium to exist. These two lower bounds

together define interval Nm1 in (OA.11).

ii) Comparing (OA.64) vs (OA.56), leads to:

(1− p)((1− γ)a+ (2q − 1)γ)

(1− h)2
nd > nd

(1− γ)a+ (2q − 1)γ

(1− p)
⇐⇒ p < h,

which is, again, always true, so (OA.64) is larger than (OA.56) without any further restrictions on

parameters.

So, either of (OA.64) and (OA.54) can be the relevant upper bound on v/c; consistent with the

possible lower bounds from A2 (i.e., ‘1’) and in (OA.56). These bounds define interval Vm1 in

(OA.3). This concludes the proof of Proposition 6. �
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Equilibrium m0. Deriving p∗: Now, we inquire about the existence of equilibrium with tL ∈

(0, 1) and tR = 0. Then, p∗ in (4) becomes:

p∗ = 1− (2q − 1)γ

1− γ
1

atL
⇐⇒ 1− p∗ =

(2q − 1)γ

1− γ
1

atL
. (OA.66)

We have 1− p∗ > 0 but also need:

1− p∗ < 1 ⇐⇒ (2q − 1)γ < (1− γ)atL ⇐⇒ tL >
(2q − 1)γ

(1− γ)a
, (OA.67)

and for equilibrium m0 to exist, the right hand side in (OA.67) cannot exceed one, which yields:

γ <
a

2q − 1 + a
, (OA.68)

which is the same as (OA.51) and so as there, this new upper bound on γ takes precedent over the

one required by A1.

Deriving the expression for tL: For tL ∈ (0, 1), tR = 0 to be an equilibrium we must have that the

pivotal probabilities in (2) and (3), respectively, satisfy:

P [pivotal|R] <
c

v
⇐⇒ 1

(1− γ)nap

1

tL
f(p∗)p∗ <

c

v
, (OA.69)

P [pivotal|L] =
c

v
⇐⇒ 1

(1− γ)na(1− p)
1

tL
f(p∗)(1− p∗) =

c

v
. (OA.70)

Assume that p ∼ U [l, h], so that if p∗ ∈ (l, h) (which we check below) then f(p∗) = 1/d, where

d = h− l; then, (OA.70) becomes:

1

(1− γ)2na2(1− p)
1

t2L

1

d
(2q − 1)γ =

c

v
⇐⇒ tL =

√
(2q − 1)γ

n(1− p)d cv
1

(1− γ)a
,

which coincides with (OA.18).

Checking that tL ∈ (0, 1): We need to ensure that given (OA.18):

tL < 1 ⇐⇒ (2q − 1)γ

n(1− p)d cv
< (1− γ)2a2 ⇐⇒ v

c
< d

(1− γ)2a2n(1− p)
(2q − 1)γ

, (OA.71)

and tL > 0, which, in this case, is always true.
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Drawing inferences from the values of tL, tR: In addition, from (OA.69) we have for p ∼ U [l, h] :

1

(1− γ)nap

1

d

1

tL
p∗ <

c

v
⇐⇒ 1

(1− γ)nap

1

d

1

tL

(
1− (2q − 1)γ

1− γ
1

atL

)
<
c

v

⇐⇒

√
n(1− p)d cv
(2q − 1)γ

(1− γ)a− (2q − 1)γ

(1− γ)a

(1− γ)2a2n(1− p)d cv
(2q − 1)γ

< d
c

v
(1− γ)nap ⇐⇒ v

c
< d

n(2q − 1)γ

1− p
,

(OA.72)

where in the first equality we used f(p∗) = 1/d, in the second inequality we substituted for p∗ from

(OA.66), and in the third inequality we substituted for tL from (OA.18). Between (OA.71) and

(OA.72), which is the relevant upper bound for v/c?

d
n(2q − 1)γ

1− p
< d

(1− γ)2a2n(1− p)
(2q − 1)γ

⇐⇒ (2q − 1)γ < (1− γ)a(1− p) ⇐⇒ γ <
a(1− p)

2q − 1 + a(1− p)

(OA.73)

Hence, if (OA.73) is true, then (OA.72) is relevant; otherwise, (OA.71) is relevant. Note, that

(OA.73) is smaller than (OA.68), and hence in the feasible (up until now) region for γ.

Furthermore, let us see how (OA.67) changes in terms of the computed tL in (OA.18). We have:

√
(2q − 1)γ

n(1− p)d cv
1

(1− γ)a
>

(2q − 1)γ

(1− γ)a
⇐⇒

√
1

n(1− p)d cv
>
√

(2q − 1)γ ⇐⇒ v

c
> dn(1− p)(2q − 1)γ.

(OA.74)

For the existence of equilibrium m0, we need both possible upper bounds on v/c (OA.71) and

(OA.72) to be larger than the lower bound in (OA.74). We have in turn:

i) Comparing (OA.71) with (OA.74):

d
(1− γ)2a2n(1− p)

(2q − 1)γ
> dn(1− p)(2q − 1)γ ⇐⇒ (1− γ)2a2 > (2q − 1)2γ2 ⇐⇒ γ <

a

2q − 1 + a
,

which is identical to the current upper bound on γ in (OA.68), and, hence, true in the region we

are considering.
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ii) Comparing (OA.72) with (OA.74):

d
n(2q − 1)γ

1− p
> dn(1− p)(2q − 1)γ ⇐⇒ p > 0,

which is also always true.

Checking assumptions A1 and A2: As mentioned, the upper bound on γ in (OA.68) supersedes

the bound imposed by A1 (i.e., γ < 1/(2q)). This upper bound and the generic lower bound of

‘0’ define interval Γm0 in (OA.16). Now, we check the consistency of the upper bounds for v/c in

(OA.71) and (OA.72) with respect to A2 (i.e., v/c ≥ 1):

i) Comparing ‘1’ with the bound in (OA.71):

n >
(2q − 1)γ

d(1− γ)2a2(1− p)
. (OA.75)

ii) Comparing ‘1’ with the bound in (OA.72):

n >
1− p

d(2q − 1)γ
. (OA.76)

Expressions (OA.75) and (OA.76) impose lower bounds on the number of voters n. Either of them

can be relevant, depending on parameter values. Together they define interval Nm0 in (OA.15).

Checking that p∗ ∈ (l, h): Given that p ∈ [l, h], we need to also ensure that l < p∗ < h. From the

expression for p∗ in (OA.66) and tL given by (OA.18) we have:

1− p∗ =

√
(2q − 1)γ

dcn

v
(1− p)

so that

l < p∗ < h ⇐⇒ 1− h < 1− p∗ < 1− l ⇐⇒ (1− h)2 < (1− p∗)2 < (1− l)2

⇐⇒ nd(2q − 1)γ(1− p)
(1− l)2

(OA.77)

<
v

c
<

nd(2q − 1)γ(1− p)
(1− h)2

. (OA.78)
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How does the lower bound in (OA.77) compare with the existing one in (OA.74):

nd(2q − 1)γ(1− p)
(1− l)2

< nd(1− p)(2q − 1) ⇐⇒ (1− l)2 > 0,

which is always true, and hence, (OA.77) is never relevant.

Now, how does the upper bound (OA.78) compare with the existing ones in (OA.71) and

(OA.72). We have in turn:

i) Comparing (OA.78) with the bound in (OA.71):

(1− γ)2a2n(1− p)
(2q − 1)γ

<
nd(2q − 1)γ(1− p)

(1− h)2
⇐⇒ γ >

a(1− h)

2q − 1 + a(1− h)
. (OA.79)

Therefore, we need to inquire further. Note, that (OA.79) is smaller than (OA.68), and hence in

the feasible region of γ. Hence, either of (OA.71) and (OA.78) can be the relevant upper bound on

v/c.

i) Comparing (OA.78) with the bound in (OA.72):

d(2q − 1)γn

1− p
<
nd(2q − 1)γ(1− p)

(1− h)2
⇐⇒ p < h,

which is always true, and, hence, (OA.78) is never the relevant upper bound on v/c.

Putting together the lower bound (OA.77) with the one implied by A2 (i.e., v/c ≥ 1), and the

upper bounds in (OA.71) and (OA.72) defines interval Vm0 in (OA.17) (where we also divide all

parameters by n). This concludes the proof of Proposition 7. �
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