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Abstract
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The provision of incentives in organizations is essential for economic e¢ ciency. A key question is

to determine appropriate performance measures for incentive pay. Managerial contracts often are a

combination of base-pay, based on narrowly de�ned division-speci�c performance measures (�pay-

for-performance�), plus a component linked to overall �rm pro�tability (i.e. bonuses, equity-based

pay, and other �aggregate�performance measures).1 This distinction is particularly important for

lower-level managers. The case for equity-based incentives for top managers is rather strong as they

are responsible for the performance of the overall �rm. Absent inter-dependencies across divisions,

the use of equity-based pay for division managers and rank-and-�le employees is more puzzling.

For lower-level employees, equity-based compensation reduces responsiveness of pay to actions,

weakening incentives at the cost of increasing their overall risk exposure. In addition, when cash-

�ows are positively correlated across divisions, to reduce harmful risk bearing incentive contracts

should display a relative-performance component, a feature more rarely observed in practice.

We study the impact of uncertainty (or �ambiguity�) aversion on the design of incentive con-

tracts in organizations.2 Our key feature is to acknowledge that most corporate decisions are taken

without full knowledge of the probability distributions involved, a situation characterized as uncer-

tainty (Knight, 1921). We consider a multi-division �rm with headquarters, HQ, and (two) division

managers. Division cash-�ows depend on unobservable e¤ort exerted by division managers, and can

be (positively or negatively) correlated. Division managers (and HQ) are uncertain on division pro-

ductivity, a¤ecting their incentives to exert e¤ort. To isolate the e¤ect of uncertainty on incentive

pay, we rule out synergies or other inter-dependencies across divisions (as in Holmström, 1982).

Traditional principal-agent theory (Holmström, 1979, 1982) suggests that, to limit risk exposure,

incentive contracts should depend only on performance measures that are informative on actions

(the �informativeness principle,� Holmström, 2017).3 An implication is that incentive contracts

should hedge division managers�risk by giving a negative (positive) exposure (only) to variables

positively (negatively) correlated to division cash-�ow�s residual risk. In our setting, HQ can use

1The use of aggregate performance measures, such as bonuses, is documented in the accounting literature (Bush-
man et al., 1995, Bouwens and Van Lent, 2007, and Labro and Omartian, 2022). See Frydman and Jenter (2010),
Oyer and Schaefer (2011), Murphy (2013), and Edmans et al. (2017) for extensive surveys.

2The importance of ambiguity aversion in a¤ecting individual decision making has been shown in both experimental
and empirical studies (e.g., Bossaerts et al., 2010, Hong et al., 2018, Anderson et al., 2009, Ju and Miao, 2012, Jeong
et al, 2015, Epstein and Schneider, 2008, and Machina and Siniscalchi, 2014).

3Responsiveness of CEO pay to risk factors not informative on their actions (�pay-for-luck�) has been documented
by several studies (e.g., Bertrand and Mullainathan, 2001; Choi, Gipper and Shi, 2020).
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cross-pay to (partially) hedge division-manager risk exposure. Risk hedging can be obtained by

o¤ering contracts with a relative-performance component for a positive correlation of division cash

�ows, or an equity-based component for a negative correlation.

These predictions change substantially in the presence of uncertainty aversion. We model un-

certainty aversion by adopting the multiple prior approach of Gilboa and Schmeidler (1989). In

this setting, uncertainty-averse agents do not have a single prior but, rather, are endowed with a set

of admissible priors (the �core belief set�) and assess random variables by selecting, from that set,

the measure that minimizes their expected utility. We model the core-beliefs set on the basis of the

relative entropy criterion of Hansen and Sargent (2001) and (2008). Intuitively, under the relative

entropy criterion uncertainty-averse agents consider as admissible only probability measures that

are not �too unlikely�to be the true distribution given a certain reference probability.

The presence of uncertainty creates endogenous disagreement between HQ and division man-

agers, and has two adverse e¤ects.4 First, traditional incentive contracts, by loading primarily on

division cash-�ows, lead ambiguity-averse managers to hold more conservative estimates (beliefs)

than HQ on the productivity of their own division, with a negative impact on their e¤ort. Similar

to Miao and Rivera (2016), we interpret �beliefs�broadly, as the probability measure that agents

adopt to assess random variables and consequences of actions. More conservative beliefs are due

to division managers�greater exposure to uncertainty on their own division than HQ, who instead

have exposure to the overall �rm. The implication is that HQ must increase pay-for-performance

sensitivity to elicit any desired level of e¤ort. Second, disagreement with HQ leads division man-

agers to value compensation contracts at discount with respect to the value attributed by the (more

con�dent) HQ, which makes it more di¢ cult to meet their participation constraint, increasing the

cost of incentive provision.

We argue that HQ can reduce the negative impact of disagreement by managing individual ex-

posure to uncertainty through contracts, with bene�cial e¤ects on incentives. The role of contracts

in managing agents�beliefs is novel in the theory of contract design. It is a direct consequence of the

property that beliefs held by uncertainty-averse agents are determined endogenously and depend

4 In a single-agent principal-agent model with uncertainty-averse principal and uncertainty neutral agent, Miao and
Rivera (2016) show that uncertainty aversion causes disagreement between principal and agent, a¤ecting incentive
contract design. In our model, we consider a principal-agent problem with multiple agents, where both principal and
agents are uncertainty averse.
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on their exposure to the sources of uncertainty. We interpret �beliefs�broadly, as the probability

measure that agents adopt to assess random variables and consequences of actions. Di¤erential ex-

posure to uncertainty may be due to the position in the organization (hierarchical exposure) or to

the contractual relationships that bind agents (contractual exposure). Hierarchical and contractual

exposure concur together to determine the prevailing structure of beliefs in an organization. By

design of incentive contracts, HQ can a¤ect agents beliefs with a positive impact on incentives. An

implication is that equity-based incentive contracts can be used to realign internal beliefs, which

generates consensus by promoting a �shared view�in the organization.5 The presence of a shared

view can reinforce the bene�cial e¤ect of equity in fostering internal cooperation.

The key economic driver in our paper is that uncertainty-averse division managers hold (weakly)

more favorable expectations on their own division, and thus are more con�dent, when incentive pay

depends on the performance of both divisions, that is, with cross-pay. This positive e¤ect on beliefs

is a consequence of the bene�ts of uncertainty hedging that stem from the �uncertainty aversion�

axiom of Gilboa and Schmeidler (1989). Intuitively, pay-for-performance in incentive pay makes

uncertainty-averse division managers concerned that the productivity of their own division is ex-

tremely low, depressing their e¤ort incentives. The presence of cross-pay hedges the uncertainty

faced by division managers. Consider, for example, an incentive contract with an equity-pay com-

ponent. The presence of equity-based pay makes division managers exposed to uncertainty from

both divisions and will regard the possibility that both divisions are characterized by extremely

low productivity su¢ ciently unlikely to be ruled out by the relative entropy criterion. The e¤ect

is to make division managers hold more favorable beliefs on their own division (in fact on both

divisions), improving their e¤ort incentives. A similar e¤ect of ruling out extreme beliefs can be

obtained with a relative-performance component in compensation, where division managers e¤ec-

tively have a negative (or a �short�) exposure in the other division (with the di¤erence that now

it will lead division managers to hold very unfavorable beliefs on the other division, due to their

short position).

5The role of equity-based compensation to promote consensus in organizations is examined in Organization Be-
havior literature, such as Klein (1987), Pearsall, Christian, and Ellis (2010), and Blasi, Freeman, and Kruse (2016),
among others. The importance of promoting a shared view is discussed in Zohar and Hofmann (2012). Advantages
and disadvantages of disagreement in organizations has been studied in several papers: Dessein and Santos (2006);
Landier, Sraer, and Thesmar (2009); Bolton, Brunnermeier, and Veldkamp (2013); and Van den Steen (2005) and
(2010).
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We show that optimal contracts depend on the level of uncertainty faced by division managers

and HQ. For expositional simplicity, we restrict our analysis to linear incentive contracts in a static

problem.6 In the simpler case where HQ are uncertainty neutral, optimal contracts depend on the

extent of division managers�exposure to uncertainty and on the sign of the correlation between

division cash-�ows. When division managers face low uncertainty, incentive contracts have the

same qualitative features as with no uncertainty: they have a component that depends on the

performance of a manager�s own division, the pay-for-performance part, plus a second component,

the risk-hedging part, that depends on the cash-�ow of the other division. When division cash-�ows

are positively correlated, incentive contracts display relative-performance compensation; when they

are negatively correlated, incentive contracts have cross-pay, that is, an equity component. With

respect to the no-uncertainty case, uncertainty increases the cost of incentive provision, with the

e¤ect of decreasing pay-for-performance sensitivity and cross-division exposure.

When uncertainty faced by division managers is su¢ ciently large, uncertainty aversion creates

the potential for a signi�cant divergence between beliefs held by division managers and HQ. In

this case, HQ �nd it desirable to hedge division managers�uncertainty by o¤ering compensation

contracts with greater cross-division exposure, but at the cost of greater risk. By hedging uncer-

tainty, HQ induce division managers to hold more favorable expectations on their divisions, with a

positive impact on e¤ort. Improvement of division managers beliefs also lowers the disagreement

discount and the cost of incentive provision. Interestingly, optimal contracts have cross-division

exposure even with uncorrelated cash-�ows, a sharp contrast with the informativeness principle in

principal-agent problems with no uncertainty.7

When HQ are uncertainty averse as well, their beliefs are also determined endogenously. HQ

uncertainty aversion introduces an additional source of disagreement with division managers mak-

ing it costlier to o¤er incentive contracts with relative performance. This happens because relative

performance pay essentially involves division managers holding a �short�position in the other di-

vision, while HQ hold a �long�position in both divisions, exacerbating the disagreement discounts.

The overall e¤ect is to make relative performance contracts costlier and equity-based pay more

6Building on Chen and Epstein (2002), in a Appendix A we show that the solution to a corresponding dynamic
problem with continuous e¤ort and stationary IID uncertainty is indeed characterized by the solution to the static
problem we study in our paper (generalizing the aggregation and linearity results of Holmström and Milgrom, 1987).

7More generally, our paper implies that increasing exposure to an uncertain random variables (such as, for example,
industry sector or other benchmarks) may o¤er bene�ts due to uncertainty hedging.

4

Electronic copy available at: https://ssrn.com/abstract=3285458



desirable. Interestingly, pure equity-based contracts are optimal when uncertainty is su¢ ciently

large, irrespective of the correlation between divisional cash-�ows.8

Overall, the optimal incentive contract will trade o¤ the relative costs and bene�ts of hedging

both risk and uncertainty. We argue that the presence of uncertainty can raise the cost of hedging

division managers� risk, creating a con�ict between risk and uncertainty hedging. The presence

of su¢ ciently large uncertainty may lead to incentive contracts that substantially deviate from

traditional contracts that hedge risk. Furthermore, incentive contracts that hedge division manager

uncertainty may also lead them to greater risk exposure, increasing the cost of incentive provision.

The potential tension between hedging risk and uncertainty is a new feature in incentive contract

design. An important question is the identi�cation and selection of the speci�c random variables

that are better suited to hedge uncertainty.9

Our model suggests that cross pay and aggregate performance measures (such as bonuses and

equity) can play an important role to hedge uncertainty of division managers (and, more generally,

employees) in �rms. We also show that the inclusion of aggregate, �rm-wide random variables has

the added bene�t of coordinating internal beliefs, facilitating the formation of a �shared view�in

the organization. Additional variables that may be used to hedge uncertainty include industry-

wide performance measures (among others). The identi�cation of speci�c random variables suited

to trade-o¤ risk and uncertainty hedging motifs will, in general, depend on the speci�c exposure to

risk and uncertainty of individual �rms, and we leave this interesting question for future research.

Our paper o¤ers several novel implications that help explain empirical regularities that are

di¢ cult to explain on the basis of risk aversion only. First and foremost, uncertainty aversion can

explain the bene�cial role of employee bonuses geared to the performance of the entire �rm (or one

of its larger subdivisions), rather than more narrowly de�ned performance measures. Second, it can

explain the more infrequent use of relative performance compensation and benchmarking, despite

their well established bene�ts within traditional risk aversion. Third, it can explain compensation

8Fleckinger (2012) shows that the bene�t of relative performance in incentive pay may depend on the impact
of e¤ort on the correlation in outcomes. In our paper, correlation is not a¤ected by e¤ort. DeMarzo and Kaniel
(2022) argue that relative-performance compensation is not desirable when division managers have �keep-up-with-
the-Joneses�preferences.

9For example, including exposure in incentive constracts to, say, the result of the Super Bowl may provide little
or no value in hedging uncertainty relative to its added risk exposure. Importantly, Section 4 shows that it would be
expensive for uncertainty-averse �rms to provide to their employees side bets (the two parties take opposite side of
a random event), making it more di¢ cult to meet the participation constraint.
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practices in business groups, whereby compensation depends on the performance of the entire group,

in addition to performance of individual units.10 Finally, our approach provides a framework for

belief formation in organizations that can explain the (endogenous) more optimistic aptitude toward

�rm future performance for managers in higher position in the corporate hierarchy with respect to

rank-and-�le employees.11

Our paper is linked to several streams of literature. The �rst one is the traditional principal-

agent theory and the theory of optimal contract design within organizations, building on the seminal

work by Mirrlees (1975), (1999) and (1976), Holmström (1979), (1982), and Grossman and Hart

(1983). Incentive contracts tailored to shareholder value, such as equity, are shown to be optimal

when agents can choose their hidden action from rich sets of possible action-pro�les (see, for exam-

ple, Diamond, 1998, and Chassang, 2013). Oyer (2004) suggests that equity-based compensation

(for example, through stock-option plans) have the advantage of directly adjusting employees�com-

pensation to their outside options (which may be correlated to �rm value), facilitating satisfaction

of the participation constraints.

The second stream is the emerging literature on contract theory under uncertainty. Lee and

Rajan (2020) study the optimal incentive contract between a principal and a single agent where both

parties are uncertainty-averse but risk-neutral and the source of uncertainty is the exact probability

distribution of the random cash-�ow. The paper shows that, contrary to basic case of uncertainty-

neutrality of Innes (1990), the optimal contract has equity-like components. Szydlowski and Yoon

(2022) considers a dynamic contracting model where an uncertainty-averse principal designs an

optimal (dynamic) contract for an uncertainty-neutral agent, and the source of uncertainty is the

agent�s cost of e¤ort. Di¤erent from our paper, uncertainty leads principals to increase pay-for-

performance sensitivity (to preserve incentives under the worst-case scenario). Miao and Rivera

(2016) consider the optimal contract between uncertainty-averse principal and an uncertainty- and

risk-neutral agent and shows that the principal�s preference for robustness can cause the incentive-

10For example, the compensation of mutual fund managers depends not only on the performance of their funds,
but also on the performance of the entire family of funds, implying a positive cross-fund exposure (see Ma, Tang,
and Gomez, 2019). However, the majority of funds are exposed to shared macroeconomic risk, suggesting a positive
correlation. Similar practices are common in the investment bank industry.
11 In Goel and Thakor (2008), greater optimism of senior management depends on (equilibrium) selection of agents

with heterogeneous beliefs. In contrast, in our model di¤erences in beliefs emerges endogenously among otherwise
identical agents as the outcome of di¤erences in their contractual and hierarchical exposure.
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compatibility constraint to be lax.12 In these papers, similar to ours, disagreement between principal

and agent arises as the outcome of the di¤erence in their attitude toward uncertainty. In contrast,

in our paper agents are both risk- and uncertainty-averse creating a new tension between hedging

their risk and uncertainty exposure through incentive contracts. When agents are both risk and

uncertainty averse, hedging uncertainty can interact with hedging risk, and the two goals can

con�ict with each other. When uncertainty is su¢ ciently large, the uncertainty-hedging motive can

overcome the risk-hedging motive, reversing important properties of optimal incentive contracts

absent uncertainty concerns.

Closer to our paper, Sung (2022) considers a model where both principal and the agent are

uncertain on both the mean and volatility of the technology controlled by the agent. The pa-

per shows that, consistent with common practice, optimal incentive contracts include exposure to

underlying volatility. Di¤erent from our paper, exposure to uncertain volatility allows principals

to design optimal contracts that achieve agreement with the agent. Kellner (2015) examines a

principal-agent model with multiple agents and moral hazard, where the principal is risk and un-

certainty neutral; agents can be risk and uncertainty averse and uncertainty is modeled as smooth

ambiguity (Klibano¤ et al., 2005). Because agents are exposed to the same source of uncertainty

in this setting, Kellner (2015) shows tournament incentives are optimal with su¢ cient uncertainty.

In Carroll (2015) a risk-neutral principal, who is uncertain about the set of actions available to

a risk- and uncertainty-neutral agent, optimally grants the agent a linear contract that aligns their

payo¤s. Linear (or a¢ ne) contracts are optimal robust contracts under very weak assumptions on

the source of uncertainty characterizing the set of technologies available to the agent.13 In the spirit

of Holmström (1982), Dai and Toikka (2022) examines a moral hazard in teams problem, where

a risk-neutral principal designs contracts that are robust to uncertainty regarding the underlying

game played by uncertainty-neutral agents. The paper shows that optimal robust contracts must

have the property that agents� compensation covaries positively, and provides conditions under

which optimal robust contracts are linear (or a¢ ne). Finally, Walton and Carroll (2022) show that,

under mild conditions, optimal contracts are linear within several possible con�gurations of the

organization structure, when principal are risk neutral and agents are risk and uncertainty neutral.

12Lee and Rivera (2021) consider optimal liquidity management under ambiguity.
13Carroll and Meng (2016) give a microfoundation of uncertainty with linear contracts.
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The paper is organized as follows. The general contracting problem is presented in Section

1. Section 2 examines the impact of contracts on beliefs and e¤ort under uncertainty. Optimal

incentive contracts by uncertainty-neutral HQ are derived in Section 3, and by uncertainty-averse

HQ in Section 4. In Section 5 we discuss robustness of our results to alternative speci�cation of

beliefs. The impact of uncertainty aversion on organizational beliefs discussed in Section 6. Section

7 presents empirical implications of our paper. Section 8 concludes with directions for further

research. All proofs are in the Technical (online) Appendix.

1 Uncertainty and Contracting
1.1 The Basic Model

We consider a �rm composed by two divisions (or business units) denoted by d 2 fA;Bg.14 Each

division is run by a division manager supervised by HQ. At the beginning of the period, t = 0, each

division manager chooses e¤ort, ad 2 R+, a¤ecting the probability distribution of their divisional

cash-�ow, Yd, realized at the end of the period t = 1. We assume that the cash �ows Y � (YA; YB)

have a joint normal distribution N(�;�) with mean � � (�A; �B) and variance-covariance matrix

�. Managerial e¤ort a¤ect the means of the distributions, and we set �d = adqd, where qd represents

the productivity of division d 2 fA;Bg. Division cash-�ows Yd are homoskedastic, with variance

�2, and may be (positively or negatively) correlated, with correlation coe¢ cient �; we assume that

e¤ort does not a¤ect the variance-covariance matrix, �.15

Exerting e¤ort is costly: each division manager su¤ers a monetary cost cd (ad), where cd : R+ !

R+ is a continuously di¤erentiable, increasing and convex function. For analytical tractability, we

set cd (ad) = 1
2Zd
a2d, where Zd characterizes e¤ort e¢ ciency of division managers. Division managers

have preferences with constant absolute risk aversion (CARA), while HQ are assumed to be risk

neutral, for simplicity.

E¤ort exerted by a division manager is not observable by either HQ or the other division

manager, creating moral hazard. To promote e¤ort, HQ o¤er division managers incentive contracts,

w � fwdgd2fA;Bg. Given a pair of incentive contracts w, division manager d 2 fA;Bg earns an

end-of-period payo¤U (wd) = �e�rwd , where r is the coe¢ cient of absolute risk aversion, which we

assume to be the same for both divisional managers.

14Our model can equivalently be interpreted a describing separate divisions of a company (such as, for example, a
conglomerate), or separate business units of a �pure-play��rm.
15Hemmer (2017) and Ball et al. (2020) study contracts when e¤ort a¤ects �.
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The game unfolds as follows. At the beginning of the period, t = 0, HQ choose incentive

contracts wd for each division manager d 2 fA;Bg; HQ can commit to contracts fwdgd2fA;Bg,

which are observable to both division managers. After incentive contracts are o¤ered and accepted,

division managers simultaneously choose their level of e¤ort, ad. At the end of the period, t = 1,

division managers are compensated according to the realized output Y , and consumption takes

place.

1.2 Uncertainty aversion

Contrary to the standard principal-agent paradigm of Holmström (1979), we assume both HQ

and division managers are uncertain on the exact probability distribution of the end-of-period

cash �ows for each division. Speci�cally, we assume that division managers and HQ are uncertain

on division managers�productivity, qd. The presence of such uncertainty a¤ects the (perceived)

marginal productivity of e¤ort and, thus, division managers�incentives to exert e¤ort.

Following Miao and Rivera (2016) and Dicks and Fulghieri (2019) and (2021), we model un-

certainty (or �ambiguity�) aversion by adopting the minimum expected utility (MEU) approach of

Gilboa and Schmeidler (1989) and Chen and Epstein (2002). A key feature of this approach is that

agents do not have a single prior on future events but, rather, they believe that the probability dis-

tribution on future events belongs to a certain set, P, denoted the �core-beliefs set,�and maximize

their minimum expected utility

Ua = min
p2P

Ep [U (w)] ; (1)

where p is a probability distribution, and U is a von Neumann-Morgenstern utility function. The key

feature of the MEU approach to uncertainty aversion is that beliefs are endogenous, as determined

by the minimum expected utility criterion. An important implication is that uncertainty-averse

agents weakly prefer randomizations over random variables (more precisely, over acts as described

in Anscombe and Aumann 1963) rather than each individual variable in isolation. This property

is a direct consequence of the uncertainty-aversion axiom of Gilboa and Schmeidler (1989) and is

known as �uncertainty hedging.�

The bene�ts of uncertainty hedging under uncertainty aversion are analogous to the traditional

bene�ts of diversi�cation under risk aversion. Intuitively, this feature can immediately be seen

by noting that, given two random variables, yj , j 2 f1; 2g, with joint distribution p 2 P, by the

9
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minimum operator, we have that

�min
p2P

Ep [U (y1)] + (1� �)min
p2P

Ep [U (y2)] � min
p2P

f�Ep [U (y1)] + (1� �)Ep [U (y2)]g (2)

for all � 2 [0; 1]. The key driver of our paper is that condition (2) can hold as a strict inequality.

In the spirit of Hansen and Sargent (2001, 2008), we model the core-beliefs set P by using the

notion of relative entropy. For a given pair of distributions P̂ and P , with corresponding densities

p̂ and p, de�ned on the same probability space, the relative entropy of P̂ with respect to P is the

Kullback-Leibler divergence of P̂ (x) with respect to P (x), namely

R
�
P̂ (x)jP (x)

�
�
Z
p̂(x) ln

�
p̂(x)

p(x)

�
dx: (3)

The core-belief set for uncertainty-averse agents is then de�ned as

P(P (x)) � fP̂ : R
�
P̂ (x)jP (x)

�
� �P g: (4)

where P represents a given reference probability and P̂ (x) is an admissible belief held by the agent.

From (3), it is easy to see that the relative entropy of P̂ (x) with respect to P represents the

(expected) log-likelihood ratio of P , when the �true�probability distribution is P̂ (x). Intuitively,

the core-beliefs set P (P ) can be interpreted as the set of probability distributions, P̂ (x), that, if

true, would not reject the (�null�) hypothesis P in a (log) likelihood-ratio test. The distribution P

can be interpreted as characterizing an agent�s �view�about the true probability P̂ (x), where the

parameter �P represents the degree of con�dence on P . A small value of �P represents situations

where agents have more con�dence that the distribution P , while a large value of �P corresponds

to situations where there is great uncertainty.16 Intuitively, the relative entropy approach considers

as admissible only beliefs that are not �too unlikely�to be the true probability distribution, given

the reference probability. The e¤ect is restrict the core-beliefs set by excluding as implausible

probability distributions that give too much weight to extreme events, e¤ectively �trimming�agents�

pessimism.

Because in our model agents view as uncertain the productivity qd of the two divisions, we

denote the set P̂ of beliefs held by agent i 2 fHQ;A;Bg on division productivity as q̂i � (q̂iA; q̂iB) 2
16As in Hansen and Sargent (2001, 2008), relative entropy characterizes the extent of �misspeci�cation error�when

agents believe that the model is P a when the true model is P:
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Ki(q̂ijqi), where q̂id represents the belief held by agent i on the productivity of division d, and qid
is the corresponding reference belief. A key property of relative entropy, and one which plays the

crucial role in our paper, is that under the relative entropy criterion the core-beliefs set Ki(q̂ijqi)

is a strictly convex set with smooth boundaries.17 This property allows (2) to hold has a strict

inequality, making uncertainty hedging valuable. Intuitively, when division managers are exposed

only to their own division uncertainty, they will be concerned about facing the lowest possible level

of division productivity, with a negative e¤ect on e¤ort. In contrast, when division managers are

exposed to uncertainty from both divisions, they will regard the possibility that both divisions are

characterized by extreme levels of productivity su¢ ciently unlikely to be ruled out by the relative

entropy criterion, excluding it from the (4) with a bene�cial e¤ect on e¤ort.18 This implies that,

by proper design of incentive contracts, HQ can a¤ect the probability measure used by division

managers to assess the productivity of their division, mitigating the adverse e¤ect of uncertainty on

e¤ort. In Section 5, we will discuss the case the limiting case of the core belief set is rectangular.19

Finally, at times, we will assume that divisions are symmetric:

(S) : ZA = ZB � Z; qA = qB � q; and Ki(qi) = K(q) for i 2 fHQ;A;Bg. (5)

1.3 The optimal contracting problem

At the beginning of the period, t = 0, company HQ o¤ers to division managers contracts wd(Y ),

d 2 fA;Bg, which may depend on realized output of both divisions. For ease of exposition, we

restrict our analysis to the case of a¢ ne incentive contracts. In Appendix A, we study a dynamic,

stochastic continuous-time version of our model with IID ambiguity as in Chen and Epstein (2002).

In the spirit of Holmström and Milgrom (1987), Theorem A1 in Appendix A shows that the solution

to the dynamic model is characterized by the solution of a corresponding static problem where HQ

o¤er only a¢ ne contracts that depend on end-of-period cash �ows, as considered in the main body

17For a general discussion, see Theorem 2.5.3 and 2.7.2 of Cover and Thomas (2006). The main results of our paper
depend only on the property that the core belief sets are strictly convex sets. In addition to core-belief sets based
on relative entropy, this property is shared by core-belief sets de�ned by divergences that are strictly monotonic and
continuous.
18 In Section 3 we will show that division managers owning a positive (�long�) exposure to the other division cash

�ow (due to an equity component in incentive pay) will be concerned about the other division having low productivity,
reducing the value of their own equity stake. Conversely, division managers with a negative (or �short�) position
in the other division (due to relative performance component in incentive pay) will be concerned about the other
division having high productivity, again reducing the value of their equity stake.
19The case of rectangular core belief set is discussed, for example, in Chen and Epstein (2002)
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of the paper.

Given a¢ ne incentive contract, we set

wd(Y ) = sd + �dYd + 
dYd0 ;

where we can interpret the �xed component, sd, as a �base pay�and the variable component as

the �incentive pay.�The incentive pay for division managers may be composed of two parts. The

�rst part is the �pay-for-performance�component,�which depends on the realized output of their

own division Yd, and where the coe¢ cient �d represents the pay-for-performance sensitivity. The

second part is a �cross-pay�exposure, which depends on realized output of the other division, Yd0 ,

where setting 
d > 0 represents an equity-based component in compensation, and setting 
d > 0

makes compensation to depend on the relative performance of the two divisions.

Given CARA utility functions for division managers, we can write the HQ problem in certainty

equivalent form as follows. Let q̂d � (q̂dA; q̂dB) represent the beliefs held by division manager d on

the productivity of both divisions, and let q̂HQ � (q̂HQA ; q̂HQB ) the corresponding beliefs held by HQ.

Given an incentive contract wd, a division manager utility function in certainty equivalent form is

ud(q̂
d; a) � E

h
wdjq̂d; a

i
� r
2
V ar(wd)� cd (ad) ; (6)

where

V ar(wd) = �
2
�
�2d + 2��d
d + 


2
d

�
is the variance of incentive pay. Note that the expected value of the incentive pay to division

managers, E
�
wd(Y )jq̂d; a

�
, depends on both their beliefs on the productivity of their own division,

q̂dd, through the pay-for-performance component, and on the productivity of the other division, q̂
d
d0 ,

through the cross-pay component. Similarly, that the expected value of the incentive pay, will also

depend on the level of e¤ort exerted by the two division managers. In contrast, because agent view

as uncertain only division productivity and e¤ort does not a¤ect the variance-covariance matrix �,

the term V ar(wd) does not depend on a division manager beliefs and e¤ort levels.

The problem for HQ is to choose a pair of incentive contracts and action pro�les, fwd; adgd2fA;Bg,

that solves

max
fw;ag

min
q̂HQ2KHQ(a)

�(q̂HQ) �
X

d2fA;Bg
E
�
Yd(ad)� wd (Y ) jq̂HQ

�
(7)
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subject to the constraint that division managers maximize the certainty equivalent of their objective

function

max
~ad

min
q̂d2Kd(a)

ud(q̂
d; a) � E

h
wdjq̂d; a

i
� r
2
V ar(wd)� cd (ad) ; (8)

and to the participation constraints

min
q̂d2Kd(a)

ud(q̂
d; a) � u0 = 0 (9)

for d; d0 2 fA;Bg; and d 6= d0, where u0 is a division manager�s reservation utility, normalized to

zero.

Note that in problem (7) - (9) a division manager�s uncertainty exposure is endogenous and is

determined by the incentive contract, wd, o¤ered by HQ. Contractual exposure concurs to determine

a division manager�s beliefs, q̂d. Given their higher-level position in the �rm hierarchy, HQ exposure

to uncertainty is determined by their residual claim in �rm cash-�ow, given incentive contracts

o¤ered to both division managers in the �rm.20 HQ hierarchical exposure concurs to determine

HQ beliefs, q̂HQ. The triplet fq̂HQ; q̂A; q̂Bg determines the belief structure prevalent in the �rm.

De�nition 1 An equilibrium is a set of contracts , w = fwdgd2fA;Bg, and action pro�le faA; aBg,

such that:

(i) Given incentive contracts w, each division managers selects e¤ort, ad, optimally, solving (8),

given the other division manager�s action, ad0 for d0 6= d;

(ii) HQ o¤er contracts w that maximizes (7) subject to (8) - (9)

The main trade-o¤s faced by HQ in problem (7) - (9) can be decomposed as follows. Because

of translation invariance of CARA, the �xed component of incentive contracts, sd, is set to make

the participation constraint (9) bind in optimal contracts, giving

sd = cd (ad) +
r

2
V ar [wd (Y )]� E

h
wdjq̂d; a

i
:

20We assume HQ are full residual claimants in �rm cash-�ow. More generally, HQ act in the context of incentive
contracts from a compensation committee, exposing them to contractual exposure as well.
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after substitution into the objective function (7), we obtain

�(q̂HQ) =
X

d2fA;Bg

h
E(Yd(ad)jq̂HQd )� r

2
V ar [wd (Y )]� cd (ad)�

�
E
h
wdjq̂dd; a

i
� E[wdjq̂HQd ; a]

�i
:

(10)

HQ payo¤ consists of four components. The �rst one is the expected value of the two divisions,

which depends on e¤ort exerted by division managers, a; the second one is given by the required risk

premia for division managers, V ar [wd (Y )]; the third one is the cost of providing e¤ort by division

managers, cd (ad). These components are common to the traditional problem without uncertainty

aversion. The last component is new and is due to uncertainty aversion, and is discussed below.

Uncertainty aversion a¤ects HQ payo¤ in three separate ways. First, HQ valuation of both

divisions, E(Yd(ad)jq̂HQd ), is based on beliefs they hold, q̂HQ, which are endogenous. Second, from

the incentive constraint (8), e¤ort exerted by division managers depends on their �worst-case�

scenario, q̂d, negatively a¤ecting e¤ort. This implies that HQ must increase the pay-for-performance

sensitivity, �d, to elicit any desired level of e¤ort, increasing the cost of incentive provision. The

worst-case scenario, q̂d, however, is itself endogenous, and depends on a division manager�s overall

exposure to uncertainty through incentive contract, wd (Y ). A key feature of our paper is that, by

hedging uncertainty through incentive contracts, HQ can improve a division manager�s assessment

of her division productivity, q̂dd, promoting e¤ort.

The third e¤ect of uncertainty aversion, the last term in (10), is to create a divergence between

HQ and division managers on the valuation of compensation contracts, E
�
wdjq̂dd; a

�
�E[wdjq̂HQd ; a].

This terms acts through division managers�participation constraints (9), and re�ects the fact that

HQ value compensation contracts at their own worst-case scenario, q̂HQ, while division managers

value contracts at theirs, q̂d, creating a disagreement on the assessment of the value of an incentive

contract to division managers and its cost to HQ. In particular, if HQ are more con�dent than

division managers on their division productivity, q̂HQd > q̂dd, division managers value their com-

pensation contracts at a discount relative to HQ valuation, making it more costly (from HQ point

of view) to satisfy their incentive and participation constraint, (8)-(9). We denote this additional

cost of incentive-based pay as a �disagreement discount,�which represents the �Knightian�cost of

disagreement.
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2 Uncertainty and Incentive Contracts

As a benchmark, we �rst characterize the solution to the optimal contracting problem for our

two-division �rm without uncertainty, a setting similar to Holmström and Milgrom (1987).

2.1 The No-Uncertainty Benchmark

Absent uncertainty concerns, with KHQ = Kd = f0g, HQ and division managers share the same

beliefs and agree on the reference probability P a.

Theorem 1 (Holmström and Milgrom) Let HQ be risk neutral: optimal contracts are linear func-

tions of the end-of-period cash-�ows of both divisions: wd (h1) = sd+ �dYd;1+ 
dYd0;1, for all t and

d 2 fA;Bg, with

�d =
1

1 + r�2 (1� �2) =
�
Zdq

2
d

� ; 
d = ���d; (11)

and induce optimal e¤ort

ad = �dZdqd =
Zdqd

1 + r�2 (1� �2) =
�
Zdq

2
d

� : (12)

Under universal risk neutral, r = 0, the optimal contract makes division managers residual

claimants, �d = 1, leading to �rst-best e¤ort; cross-pay 
d is indeterminate because side bets are

irrelevant for risk-neutral agents. The presence of risk aversion increases the cost of incentive pro-

vision and reduces the pay-for-performance sensitivity, due to term r�2
�
1� �2

�
=
�
Zdq

2
d

�
. Optimal

contract depends now on the correlation of end-of-period cash-�ows of both divisions. If cash-�ows

are correlated, it is optimal for HQ to hedge division manager risk exposure. With positive corre-

lation, HQ set 
d < 0 and contracts display �relative-performance� compensation; with negative

correlation, HQ set 
d > 0 and incentive contracts display an equity component through cross-

pay. Hedging division manager risk exposure reduces the cost of incentive provision and allows HQ

to increase pay-for-performance sensitivity, improving incentives. When cash-�ows are uncorre-

lated, cross-pay generates only incremental risk exposure with no risk-hedging bene�t, and optimal

contracts set 
d = 0 (the �informativeness principle�).

2.2 Incentive contracts and beliefs

For tractability, and to generate closed-form solutions, similar to Dicks and Fulghieri (2019) and

(2021) we consider a parametric approximation of the core-belief set (4).21 Speci�cally, we assume

21 In our model, tractable closed-form solutions would be possible only for the case of uncertainty-neutral HQ.
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that HQ and division managers consider beliefs q̂i in a neighborhood of the reference probability

implied by the pair q = (qA; qB), as follows. De�ne �id =
��� q̂id�qdqd

��� as the relative error of player i
about division d and the distance measure D

�
�id
�
= � log

�
1� �id

�
. We denote the core-belief set

for agent i as

Ki(q̂ijqi) �
�
q̂ijD

�
�iA
�
+D

�
�iB
�
� �i

	
; (13)

for i 2 fHQ;A;Bg.22 The set described in (13) is plotted in Figure 1 on page 40, with relative

entropy for comparison.

We start with the characterization of division managers�belief assessments on the productivity

of both divisions, which depend on the pair of incentive contracts o¤ered by HQ. From (6), given

incentive contract w = fwdgd2fA;Bg, division managers beliefs q̂d(a;w) solve

argmin
q̂d

ud(q̂d) = E
h
wdjq̂d; a

i
� r
2
V ar(wd)� cd (ad) ; (14)

s:t: ln

0@ 1

1�
��� q̂A�qAqA

���
1A+ ln

0@ 1

1�
��� q̂B�qBqB

���
1A � �d;

for d 2 fA;Bg: Note that incentive contracts o¤ered by HQ will have �d > 0, so that division

managers will exert strictly positive e¤ort, ad > 0.

Lemma 1 Let �dad > 0 and

Hd �

dad0qd0

�dadqd
: (15)

A division manager�s assessment of the productivity of both divisions, q̂d(wd) = fq̂dd; q̂dd0g, for d; d0 2

fA;Bg; and d 6= d0, depends on her contractual exposure, wd, and is equal to:

i) q̂dd = qd, and q̂
d
d0 = e

��dqd0 for Hd � e�d

ii) q̂dd = (e
��dHd)

1
2 qd and q̂dd0 =

�
e��d 1

Hd

� 1
2
qd0 for Hd 2 (e��d ; e�d)

iii) q̂dd = e
��dqd and q̂dd0 = qd0 for Hd 2 [�e��d ; e��d ]

iv) q̂dd = (e
��d jHdj)

1
2 qd and q̂dd0 =

�
2�

�
e��d 1

jHdj

� 1
2

�
qd0 for Hd 2 (�e�d ;�e��d)

v) q̂dd = qd and q̂
d
d0 = (2� e��d)qd0 for Hd � �e�d

Division managers beliefs toward division productivity depend on the relative exposure to the
22Note that this characterization of the core-beliefs set allows a great degree of tractability: when an economic

agent has su¢ cient positive exposure to both divisions, so that q̂id < qd, the minimization problem is isomorphic
to the cost minimization problem with Cobb-Douglass utility. Further, the set is symmetric around q = (qA; qB),
making uncertainty hedging neutral with respect to positive or negative exposure to cross-division uncertainty.
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cash-�ow from each division, measured by Hd, as a¤ected by incentive contract wd. Because Hd

a¤ects the relative exposure to uncertainty of the two divisions, we refer to Hd as the �uncertainty

hedging�ratio. Note that sign(Hd) = sign(
d) and that Hd is an increasing function of 
d.

Several features emerge from Lemma 1. When HQ grant pay-for-performance only, 
d = 0 = Hd,

or a small exposure to the other division cash-�ow, as in case (iii), division managers will assess

the prospects of their own division conservatively, with q̂dd = e
��qd, and they are less con�dent on

their own division productivity, disincentivizing e¤ort.

Division manager assessments of productivity of their own division, q̂dd, is however an increasing

function of their exposure to the other division, j
dj. Thus, incentive contracts that o¤er progres-

sively increasing exposure to the other division, as in case (ii) and (iv), induce division managers

to become more con�dent on their own division, q̂dd. Finally, if incentive contracts o¤er signi�cant

exposure to other division, a large value of j
dj, as in case (i) and (v), division managers will become

very con�dent on their own division, setting q̂dd = qd. This bene�cial e¤ect on division manager

beliefs can be obtained with either cross-pay, 
d > 0, or relative-performance, 
d < 0.

The impact of j
dj on a division manager�s assessment of the productivity of the other division

depends on the sign of 
d. If the incentive contract includes cross-pay, 
d > 0, increasing exposure

to the other division progressively worsens the assessment of that other division productivity, as

in cases (ii) and (i). If the incentive contract includes relative performance, 
d < 0, increasing

exposure to the other division (lower 
d) progressively improves the assessment of its productivity,

as in cases (iv) and (v), where in both cases q̂dd0 > qd0 . The more optimistic assessment re�ects

the fact that, when 
d < 0, better performance in the other division reduces a division manager�s

compensation.

2.3 Incentive contracts and e¤ort

Given division managers�beliefs, characterized in Lemma (1), e¤ort is determined by solving

max
ad

ud(a; q̂
d(a;w)) = E

h
wdjq̂d; ad; ad0

i
� r
2
V ar(wd)� cd (ad) ; (16)

for d 2 fA;Bg and d 6= d0. The Nash equilibrium of e¤ort selection by division managers is

determined in the following.

Lemma 2 Given incentive contracts, fwd = (�d; 
d)gd2fA;Bg, there is a unique Nash equilibrium
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e¤ort, faA; aBg where ad = �dZdq̂dd and division manager beliefs, q̂dd, are as in Lemma 1. Equilib-

rium e¤ort ad is increasing in pay-performance sensitivity, �d, exposure to the other division, j
dj,

e¢ ciency of e¤ort, Zd, and decreasing in uncertainty �d. Further, if jHdj 2 (e��d ; e�d), ad is also

increasing in �d0, j
d0 j, and Zd0, and decreasing in �d0.

Lemma 1 and 2 imply that incentive contracts a¤ect division manager e¤ort through two distinct

channels. The �rst is the traditional e¤ect of inducing e¤ort by rewarding division managers on

the basis of direct performance measures, and captured by �d. The second channel is through the

impact of incentive contracts on managerial assessment of the success probability of their projects,

q̂d(wd). This implies that HQ can use incentive contract design to lead uncertainty-averse division

managers to hold more favorable assessment of the productivity of their own division, with positive

e¤ect on e¤ort. This channel due to uncertainty hedging is the key driver of our paper.

If division managers are uncertainty neutral, their optimal level of e¤ort in (12), ad, is increasing

in her own division-based pay, �d, but is not a¤ected by either their cross-division pay, 
d, nor the

action of the other division manager, ad0 . The only e¤ect of cross-division exposure is to hedge a

division manager�s risk exposure, reducing the cost of incentive provision. In contrast, if division

managers are uncertainty averse, the presence of cross pay, j
dj 6= 0, reduces the relative exposure

of division managers to the uncertainty on their division, potentially improving the assessment of

their division productivity.

Note also that uncertainty aversion introduces a strategic complementarity across division man-

agers�e¤ort. From Lemma 1, exposure to the other division, j
dj > 0, makes e¤ort exerted by a

division manager, ad, increasing in e¤ort of the other division manager, ad0 . Greater e¤ort from

the other manager decreases the relative exposure of a division manager to uncertainty on her own

division, leading to more favorable beliefs and greater e¤ort. This new source of externality is due

to uncertainty hedging, and is driven solely by beliefs.

We examine two possible con�gurations of HQ beliefs: uncertainty neutrality and uncertainty

aversion. Because uncertainty-neutral HQ hold �rm beliefs on division productivity, we can denote

this case as one of a �visionary leadership.�In contrast, uncertainty-averse HQ pragmatically adapt

(in equilibrium) their beliefs to �rm characteristics, we can denote this case as one of �pragmatic

leadership.�
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3 Uncertainty-Neutral Principal

When HQ are uncertainty neutral, they hold beliefs q̂HQd = qd for both divisions. Given Lemma

A1, problem (A12)-(A14) becomes

max
fwd;adgd2fA;Bg

X
d2fA;Bg

E [Yd(ad)� wd (Y ) jqd] (17)

subject to the incentive and participation constraints

max
ad

min
q̂d

ud = E
h
wdjq̂d; ad; ad0

i
� r
2
V ar(wd)� cd (ad) ; (18)

min
q̂d

ud = E
h
wdjq̂d; ad; ad0

i
� r
2
V ar(wd)� cd (ad) � 0; (19)

for d 2 fA;Bg and d 6= d0. To separate the e¤ect of uncertainty and risk aversion, we consider �rst

the case in which division managers are uncertainty averse but risk-neutral, allowing us to identify

more clearly their respective role in optimal contract design.

Theorem 2 If HQ are risk- and uncertainty-neutral and division managers are uncertainty averse

but risk neutral, optimal incentive contracts have

jHdj =
j
djad0qd0
�dadqd

= 1;

which induce division managers beliefs (q̂dd; q̂
d
d0) to be equal to

q̂dd = e�
�d
2 qd < qd; (20)

q̂dd0 = e�
�d
2 qd0 < qd0 for 
 > 0 and q̂dd0 =

�
2� e�

�d
2

�
qd0 > qd0 > q̂

d
d for 
 < 0

for d; d0 2 fA;Bg; and d 6= d0. Optimal contracts set

�d =
1

1 + 3
�
1� q̂dd=qd

� < 1; and j
dj = �d�d; where (21)

�d � adqd
ad0qd0

=
1� 3

�
1� q̂d0d0=qd0

�
1� 3

�
1� q̂dd=qd

� q̂dd=qd
q̂d

0
d0qd0

Zdq
2
d

Zd0q
2
d0
: (22)

Pay-for-performance sensitivity, �d, and e¤ort, ad, are both decreasing in uncertainty, �d. If con-

dition (S) holds, equity is optimal, �d = 
d, and q̂
d
d = q̂

d
d0 = e

� �
2 q < q:

If division managers are uncertainty averse but risk neutral, hedging risk is not a concern. The

presence of uncertainty, by making division managers less con�dent than HQ on the productivity of
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their own division, has two adverse e¤ects. First, it has the detrimental e¤ect on the incentives to

exert e¤ort by their managers. This implies that HQ must increase pay-for-performance sensitivity

to elicit any desired level of e¤ort. Second, more conservative beliefs reduce the value of the

incentive contract, wd, as assessed by division managers, relative to the value assessed by the more

con�dent HQ, making it more expensive for HQ to meet the their participation constraint (the

disagreement discount). The combined e¤ect is to make it costlier for HQ to induce e¤ort, leading

to a reduction of the pay-for-performance sensitivity �d in (21). Note that the pay-for-performance

sensitivity, �d, and thus e¤ort, ad, are both decreasing functions of the extent of the disagreement

between a division manager and HQ, represented by the term q̂dd=qd in (22).

The role of cross-division exposure, j
dj , is to improve division managers�beliefs by hedging

their uncertainty. From Lemma 1, an increase of cross-division exposure (partially) o¤sets the

negative e¤ect of uncertainty on beliefs, promoting e¤ort. Absent risk-aversion considerations, the

optimal contract hedges a division manager exposure to uncertainty by equalizing her exposure to

cash-�ow uncertainty from each division, setting the uncertainty hedge ratio jHdj = 1.

Note that, because of uncertainty neutrality, HQ are indi¤erent between granting compensation

with cross-pay, 
d > 0, or relative-performance, 
d < 0, as the optimal contracts depends only

on the size of the cross-division exposure, j
dj, and not by its sign. The extent of cross-division

exposure, j
dj, is still proportional to the pay-for-performance sensitivity parameter, with j
dj =

�d�d, where the proportionality factor �d depends on the relative exposure to uncertainty of the

two division managers, a¤ecting the term q̂dd=qd, and the relative size of the two divisions, captured

by the term Zdq
2
d=Zd0q

2
d0 in (22). This implies that cross division exposure is greater for (relatively)

less con�dent division managers and for larger divisions.

If divisions are symmetric, the uncertainty hedge ratio can be set to unity by use of pure equity

contracts: � = 
 < 1. Interestingly, in this case, both division managers hold the same beliefs

on their own as well as the other division, q̂dd = q̂dd0 = e�
�
2 q, leading to consensus (that is, a

�shared view�) in the organization. Also, HQ hold more optimistic beliefs than division managers,

q > q̂dd = e�
�d
2 q, making HQ to appear as �visionary� in the organization. Finally, absent risk

aversion, a contract with extreme relative performance, with 
 = �� , is also optimal. In this case,

from (20), we have q̂dd < q < q̂
d
d0 , and division managers are more con�dent on the other division

that they are on their own, creating envy and discord in the organization, a potentially undesirable
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con�guration of internal beliefs.

An important implication of Theorem 2 is that the optimal contract (21) di¤ers from the

corresponding case of risk-neutral division managers with no uncertainty of Theorem 1, where

division managers become full residual claimants in their own division, with �d = 1, and with no

role for cross-pay 
d. With uncertainty concerns, making division managers full residual claimant

exacerbates pessimism toward their own division, depressing e¤ort. In this case, HQ �nd it optimal

to reduce pay-for-performance sensitivity, �d < 1, and to hedge division manager uncertainty by

o¤ering exposure to the other division�s uncertainty, setting j
dj > 0:

The presence of risk-aversion a¤ects optimal contracts because hedging uncertainty creates a

risk exposure, which is costly for risk-averse division managers. Optimal contracts trade o¤ the

relative bene�ts of risk-hedging and uncertainty-hedging motives. For tractability, with risk-averse

division managers we focus on the symmetric case, (S).

Theorem 3 Let condition (S) hold. There is a threshold ��(r; �) (de�ned in Appendix), with

��(0; �) = 0, such that for d; d0 2 fA;Bg; and d 6= d0:

1. If � � ��, optimal incentive contracts induce division managers beliefs q̂dd = e��q and q̂dd0 = q, by

setting

� =
1

1 +
�
1� q̂dd=q

�
+ r�2 (1� �2) =(Zqq̂dd)

> 0; 
 = ���: (23)

Pay-for-performance sensitivity, �, and Nash equilibrium e¤ort, a, are both decreasing in uncer-

tainty, �; the threshold ��(r; �) is increasing in r and j�j.

2. If � > ��, optimal incentive contracts induce division managers to hold the same beliefs as in

(20) of Theorem 2 by setting

� =
1

1 + 3
�
1� q̂dd=q

�
+ 2r�2 (1� j�j) =(Zqq̂dd)

> 0; j
j = � (24)

with sign (
) = �sign (�) :When � = 0, HQ are indi¤erent between 
 = ��.

When division managers are risk averse, incentive contracts trade o¤ the bene�ts on uncertainty

hedging with the cost of deviating from optimal risk sharing. When division managers face low

levels of uncertainty, � � ��, uncertainty aversion does not signi�cantly a¤ect beliefs and, thus,

their incentives to exert e¤ort. At these low levels of uncertainty, the disagreement between division
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managers and HQ is relatively small, with q̂dd = e
��q < q, corresponding to case (iii) in Lemma 1. In

this case, the bene�ts of hedging uncertainty are too small relative to its cost, due to increased risk

exposure, and optimal incentive contracts mirror overall those in Theorem 1. The main di¤erence

is that the presence of uncertainty, by increasing the cost of incentive provision, reduces both pay-

for-performance sensitivity and e¤ort (due to the term 1� q̂dd=q in 23). The threshold level ��(r; �)

is increasing in both division manager risk aversion, r, and correlation coe¢ cient �, making this

case more relevant when risk-hedging is more valuable.

When division managers are su¢ ciently exposed to uncertainty on division productivity, � > ��,

HQ �nd it optimal to hedge their uncertainty and o¤er incentive contracts with greater cross-

division exposure, setting j
j = � > j�j�. In this case, the presence of such large uncertainty,

if left unchallenged, would signi�cantly depress e¤ort. By granting greater cross-division pay j
j,

HQ limit pessimism held by division managers, promoting e¤ort, but at the cost of greater risk

exposure. To hedge division-manager risk exposure, the sign of the cross-division exposure, 
,

is again the opposite to the sign of the correlation coe¢ cient, with sign (
) = �sign (�). When

the cash-�ows of the two divisions are uncorrelated, cross division exposure does not produce any

risk-hedging bene�t (but only uncertainty hedging), and HQ are again indi¤erent between setting


 = ��.23

Optimality of �pure-equity�compensation, j
j = �, in Theorem 3 is the consequence of division

symmetry, leading HQ to grant equal exposure to both two divisions. If divisions are not symmetric,

and HQ wishes to implement interior beliefs, as in case (ii) and (iv) of Lemma 1, optimal contracts

still involve cross-division exposure, j
dj > 0: However, the composition of pay-for-performance

sensitivity, �d, and cross-division exposure, j
dj, will now depend on the relative size the two

divisions (which a¤ects division managers�uncertainty exposure) and their relative risk-exposure.

Corollary 1 Let the optimal contract be such that both division managers have interior beliefs,
23 Interestingly, costly deviations from optimal risk hedging occur only when the bene�ts from uncertainty hedging

are su¢ ciently large, generating a discrete jump in cross-division exposure, from j
j = j�j� to j
j = � > j�j�.
The discontinuity is due to the fact that, with low uncertainty, � � ��, division managers beliefs are in case (iii).
In this situation, small deviations from optimal risk-sharing have no impact on division managers beliefs, while
negatively a¤ecting their welfare. Deviations from optimal risk hedging occur only when they lead to su¢ ciently
large uncertainty-hedging bene�ts, due to improvements of division managers beliefs, leading HQ to set jHdj = 1.
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jHdj 2 (e��d ; e�d), and let adqd > ad0qd0, for d 6= d0. Then the optimal contract f�d; 
dgd2fA;Bg has

�dadqd + r�
2�2d = j
dj ad0qd0 + r�2
2d; (25)

with j
d0 j > �d0�d0 and j
dj < �d�d.

If the two divisions are of di¤ering size, and the optimal contract induces beliefs that are either

in case (ii) or case (iv) of Lemma 1, then the optimal contracts equates the total (expected) cost

to HQ of a division manager�s exposure to the two divisions, leading to (25). This cost is the sum

of two components: for their own division, it is the sum of the (expected) pay-for-performance

component, �dadqd, and of the corresponding risk premium, r�
2�2d, and for the other division is

the sum of cross-pay, j
dj ad0qd0 , and of the corresponding risk premium, r�2
2d. In addition, with

respect to the optimal contract in Theorem 2 the presence of risk aversion has the e¤ect increasing

cross-division exposure for the relatively smaller division, j
d0 j > �d0�d0 , and to decrease such

exposure for the larger division, j
dj < �d�d.

An important implication of Theorem 3 and Corollary 1 is that optimal incentive contracts have

positive cross exposure, j
j > 0, even when division managers are risk averse and division cash-�ows

are not correlated, a clear contrast with the traditional �informativeness principle.� This means

that the presence of (su¢ ciently large) uncertainty leads to incentive contracts that would not

otherwise be optimal under risk aversion alone.

4 Uncertainty-Averse Principal

Uncertainty aversion by HQ introduces an additional source of disagreement with division managers.

We show that the e¤ect of greater disagreement is to increase the cost of relative performance

incentive contracts. As a result, when the uncertainty faced by HQ is su¢ ciently large relative

to that faced by division managers, optimal incentive contracts have equity components and no

relative performance measures, even in the case of positively correlated division cash-�ows. This

result is, again, in sharp contrast with the standard optimal contracts absent uncertainty aversion.

Di¤erent from uncertainty-neutral principal, beliefs held by uncertainty-averse HQ are not �xed

but, rather, are determined endogenously as well. Since the properties of Lemma A1 applies also
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to HQ, their beliefs fq̂HQA ; q̂HQB g are determined by solving

min
fq̂HQA ;q̂HQB g2K q̂

HQ

�(q̂HQ) =
X

d2fA;Bg
E
�
Yd(ad)� wd (Y ) jq̂HQ

�
; (26)

where

KHQ �

8>><>>:q̂HQj ln
0BB@ 1

1�
���� q̂HQAqA � 1

����
1CCA+ ln

0BB@ 1

1�
���� q̂HQBqB � 1

����
1CCA � �HQ

9>>=>>; : (27)

Lemma 3 characterizes HQ beliefs for the case in which HQ have positive residual exposure in either

division, �d + 
d0 < 1 (which will be the relevant case in subsequent analysis).

Lemma 3 Let �d + 
d0 < 1, d 2 fA;Bg with d0 6= d, and

HHQ
d � (1� �d0 + 
d)ad0qd0

(1� �d + 
d0)adqd
; (28)

Headquarters assessment of both divisions, (q̂HQA ; q̂HQB ), is equal to:

i) q̂HQd = qd and q̂
HQ
d0 = e��HQqd0 for HHQ

d > e�HQ

ii) q̂HQd =
h
e��HQHHQ

d

i 1
2
qd, for HHQ

d 2
�
e��HQ ; e�HQ

�
iii) q̂HQd = e��HQqd and q̂

HQ
d0 = qd0 for HHQ

d < e��HQ

Similar to Lemma 1, HQ beliefs depend on their relative exposure to the two divisions, as measured

by the corresponding uncertainty ratio HHQ
d (note that HHQ

d0 = 1=HHQ
d ). When HQ have moderate

exposure to both divisions, as in case (ii) with HHQ
d 2

�
e��HQ ; e�HQ

�
, they have conservative beliefs

toward each division, q̂HQd < qd, and become less con�dent toward a division when relative exposure

to that division increases. When HQ have a su¢ ciently large exposure to a division, as in cases (i)

and (iii) with HHQ
d > e�HQ or HHQ

d < e��HQ , they will be even less con�dent toward that division,

q̂HQd = e��qd, and correspondingly more con�dent on the other division, q̂
HQ
d0 = qd0 .

Optimal incentive contracts depend on the extent of uncertainty faced by HQ relative to division

managers. We start again with the (simpler) case where division managers are uncertainty averse

but risk neutral. Beliefs for division managers are still given in Lemma 1, and their e¤ort levels in

Lemma 2. For expositional simplicity, we focus on the case in which division managers are exposed

to the same uncertainty: �A = �B = �.24 To separate the e¤ect of uncertainty and risk aversion

24 It is possible, although messy, to extend the analysis to the case in which division managers are exposed to
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on optimal incentive contracts, we start again with the case where both HQ and division managers

are uncertainty averse but risk neutral.

Theorem 4 Let both HQ and division managers be uncertainty averse but risk neutral. If divisions

are su¢ ciently homogenous, with Ĥd � (Zd0=Zd)
1=2 qd0=qd 2

�
e��HQ ; e�HQ

�
and the uncertainty

faced by HQ is positive but not too large relative to that faced by division managers, �HQ < ��2 ln 32 ,

optimal incentive contracts have HHQ
d = Hd = Ĥd with

q̂dd = q̂
d0
d = e

�
���HQ

2 q̂HQd = e�
�
2 qdĤ

1
2
d , and (29)

q̂HQd = e�
�HQ
2 qdĤ

1
2
d ; (30)

for d; d0 2 fA;Bg; and d 6= d0. Optimal incentive contracts o¤er pure equity:

�d = 
d =
1

1 + 3(1� q̂dd=q̂
HQ
d )

< 1: (31)

When divisions are su¢ ciently homogenous and HQ are not too uncertainty averse relative to divi-

sion managers,25 optimal incentive contracts are pure equity, �d = 
d. Beliefs, pay-for-performance

sensitivity and e¤ort levels mimic those in Theorem 2, with the di¤erence that now HQ beliefs are

endogenous and equal q̂HQd rather than qd. Absent risk-aversion, in optimal contracts HQ equate

their uncertainty-hedging ratio with respect to each division to the uncertainty hedging ratio of its

division manager by setting HHQ
d = Hd.

From (31), pay-for-performance sensitivity, �d, cross-pay, 
d, and e¤ort level, ad, now depend

on the di¤erence in beliefs held by HQ and division manager, q̂dd=q̂
HQ
d . In turn, from (29) and

(30) the di¤erence in beliefs depends of the di¤erence between the uncertainty faced by HQ and

division managers, �HQ�� < 0. In particular, an increase of the uncertainty faced by HQ, for given

uncertainty faced division managers, increases pay-for-performance sensitivity, cross-pay, and e¤ort.

This happens because a smaller di¤erence in uncertainty faced by HQ and division managers reduces

the disagreement discount. A smaller discount lowers the cost of incentive provisions and induce

HQ to o¤er contracts with larger pay-for-performance sensitivity, leading to greater e¤ort. Greater

pay-for-performance sensitivity, however, increases a division manager�s exposure to uncertainty,

di¤erent levels of uncertainty, �A 6= �B . The optimal contract in Theorem 4 is still equity, �d = 
d, but division
managers receive di¤erent equity shares: �A 6= �B .
25This condition ensures that HQ has a positive exposure to both divisions, 1��d� 
d0 > 0, and that their beliefs

fall in case (ii) of Lemma 3.
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which is o¤set by a corresponding increase of cross-pay. Beliefs held by HQ and division managers

are aligned in the sense that they both hold the same assessment on the relative productivity of

both divisions, q̂HQd =q̂HQd0 = q̂dd=q̂
d
d0 .

Optimal contracts with risk-averse division managers depend again on the trade-o¤ between

uncertainty hedging, with its bene�cial e¤ect on e¤ort provision, and risk-hedging. With uncer-

tainty averse HQ, they now depend on the level of uncertainty faced by HQ relative to division

managers�and on the sign of the correlation coe¢ cient of division cash �ows. For tractability, we

focus on the symmetric case, condition (S).

Theorem 5 (Low uncertainty) Let condition (S) hold. There are thresholds (�̂; �̂HQ) (de�ned in

the Appendix) such that if � � �̂ and �HQ � �̂HQ, optimal incentive contracts induce beliefs for

division managers and HQ q̂dd = e
��q < q̂dd0 = q and q̂

HQ
d = e�

�HQ
2 q < q by setting

� =
1

1 + 2(�� ��)
�

q̂d
d0

q̂HQ
d0

� 1
�
+

�
1� q̂dd

q̂HQd

�
+ r�2(1��2+��2)

Zq̂HQd q̂dd

; 
 = �(�� ��)�; (32)

where �� � q̂dd
�
q̂dd0 � q̂

HQ
d0

�
Z
r�2

= e��q2Z
r�2

�
1� e�

�HQ
2

�
> 0.

When overall exposure to uncertainty is su¢ ciently low, optimal contracts mirror again those

absent uncertainty of Theorem 1. The e¤ect of uncertainty is again to reduce pay-for-performance

sensitivity, �, and depend on the di¤erence of beliefs between HQ and division managers (captured

by the term q̂dd=q̂
HQ
d ).

Interestingly, relative-performance compensation, 
 < 0, is now optimal only with su¢ ciently

large correlation, � > �� � 0 (note that �� = 0 when �HQ = 0). The reason is that HQ uncertainty

aversion increases the disagreement discount, raising the cost of hedging division manager risk with

relative performance compensation. This happens because relative-performance compensation,for

division manager d, setting 
 < 0 generates a �short�exposure to the other division, d0, while HQ

still have a �long�position in that division, 1�
. From Lemma 3, when HQ are uncertainty averse

and hold a long position in d0, they are more pessimistic than the reference probability, q̂HQd0 < q.

In contrast, from Lemma 1, division managers with a short position, 
 < 0, are more con�dent

on the other division d0 than the reference probability, q̂dd0 � q. The combined e¤ect is that HQ

and division managers now hold more divergent views on the value of compensation contracts,
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increasing the disagreement discount and the cost of hedging risk.

The implication is that relative-performance compensation is optimal only when the risk-hedging

bene�ts are su¢ ciently large, that is, when � > ��. Correspondingly, the threshold �� is a decreasing

function of a division�s risk, and of division managers�risk aversion, and is an increasing function

of division size (which increases HQ exposure to a division�s uncertainty, exacerbating the disagree-

ment discount). If division cash-�ows are moderately positively correlated, 0 � � < ��, optimal

contracts have an equity component, 
 > 0, di¤erent from the benchmark case. Finally, HQ and

division managers are pessimistic on both divisions, and their assessment of division productivity

depends on their relative degree of uncertainty, with q̂dd ? q̂
HQ
d as

�HQ
2 ? �.

When uncertainty faced by either HQ or division managers is su¢ ciently large, optimal incentive

contracts depend on the sign of the correlation coe¢ cient between division cash-�ows. We start

with the case on negatively correlated division cash �ows.

Theorem 6 (Large uncertainty and negatively correlated cash �ows) Let condition (S) hold. If

� > �̂ or �HQ > �̂HQ and � � 0 optimal incentive contracts induce beliefs for division managers

and HQ equal to q̂dd = q̂
d
d0 = e

� �
2 q and q̂HQd = e�

�HQ
2 q by setting

� = 
 = �̂ � 1

1 + 3
�
1� q̂dd=q̂

HQ
d

�
+ 2r�2(1+�)

Zq̂HQd q̂dd

: (33)

When either HQ or division managers cash �ows face su¢ ciently large uncertainty, and division

cash-�ows are negatively correlated, � � 0, optimal contracts are again pure equity, with �d = 
d.

Furthermore, in this case, division managers have the same beliefs on the productivity of both

divisions, with q̂dd = q̂dd0 = e�
�
2 q, for d; d0 2 fA;Bg and d 6= d0, and again q̂dd ? q̂HQd as �HQ ? �:

Interestingly, if HQ and division managers face the same uncertainty, �HQ = �, they share the same

vision in the �rm, q̂dd = q̂
d
d0 = q̂

HQ
d = e�

�
2 q. Equity-based compensation has the desirable e¤ect of

coordinating internal beliefs in the organization, reaching consensus.

With positively correlated cash-�ows, optimal incentive contracts depend critically on the degree

of uncertainty a¤ecting HQ and division managers.

Theorem 7 (Positively correlated cash �ows) Let condition (S) hold. Let � > 0, and � > �̂. There

are values (�̂HQ1 ; �̂HQ2 ), with �̂HQ1 < �̂HQ2 , and �̂(�HQ) 2 (e��; 1) (de�ned in the Appendix) with

�̂ (0) = 1, such that
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(i) if �HQ � �̂
HQ
1 optimal incentive contracts induce beliefs equal to q̂dd = e

� �
2 �̂

1
2 q and q̂dd0 > q, and

q̂HQd = e�
�HQ
2 q < q, by setting

� =
1

1 +

�
q̂d
d0

q̂HQ
d0

� 1
�
�̂ + 2(1� q̂dd

q̂HQd
) +

2r�2(1���̂)
Zq̂HQd q̂dd

; 
 = ��̂� < 0; (34)

where �̂ is increasing in r, �, �, and decreasing in Z, q, and �HQ.

(ii) if �HQ > �̂HQ2 optimal incentive contracts induce beliefs for division managers equal to q̂dd =

q̂dd0 = e
� �
2 q and for HQ equal to q̂HQd = e�

�HQ
2 q < q by setting � = 
 = �̂.

When division cash-�ows are positively correlated and HQ are exposed to low levels of uncertainty,

�HQ � �̂HQ1 , while division managers are exposed to large uncertainty, � > �̂, optimal contracts

have a relative-performance component, with 
 < 0. Cross-division exposure is again proportional

to pay-for-performance sensitivity by a factor �̂, which represent the hedging component of division

manager compensation. Importantly, the hedging factor �̂ depends now on the level of division

managers�risk aversion and their exposure to uncertainty, relative to the uncertainty faced by HQ.

Greater managerial risk aversion and cash-�ow risk increase the importance of hedging division

manager�s risk, leading to more cross-division exposure (bigger �̂). Similarly, greater uncertainty

aversion by division managers increases the importance of uncertainty hedging, leading again to

more cross-division exposure. In contrast, greater uncertainty by HQ (greater �HQ) and exposure

to division uncertainty (larger values of Z and q), by exacerbating the disagreement discount,

increase the cost of both risk and uncertainty hedging. The e¤ect is to reduce optimal cross-

division exposure, 
, worsening division managers�con�dence in their own division: q̂dd = e
� �
2 �̂

1
2 q

(where �̂ < 1).

When HQ are exposed to su¢ ciently large uncertainty, �HQ > �̂HQ2 , optimal incentive con-

tracts are again pure equity with � = 
, with no relative-performance compensation even when

division cash-�ows are positively correlated. The reason is that large uncertainty exacerbates dis-

agreement on relative-performance compensation and results into a more signi�cant cost of hedging

division-manager risk. In this situation, hedging risk can con�ict with hedging uncertainty. With

su¢ ciently large uncertainty, the uncertainty-hedging motive overcomes the risk-hedging motive,

and HQ forego altogether the risk-hedging bene�ts of relative-performance. Rather, they o¤er
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pure-equity contracts that better aligns division managers beliefs with theirs, lowering the cost of

incentive provision and promoting e¤ort. This case is an important reversal of the predictions of

the standard optimal contracting problem with no uncertainty of Theorem 1.

Finally, note that equity compensation when HQ are uncertainty averse is optimal even in the

case of heterogenous divisions.

Corollary 2 Let the optimal contract be such that HQ granting positive exposure to both divisions,

�d; 
d > 0, and both division managers, as well as HQ have beliefs as in case (ii) of Lemma (1) and

(3), with Hd 2 (e��d ; e�d) and HHQ
d 2

�
e��HQ ; e�HQ

�
. Then the optimal contract f�d; 
dgd2fA;Bg

has

�dadq̂
HQ
d + r�2�2d = 
dad0 q̂

HQ
d0 + r�2
2d: (35)

In addition, (1 � �d � 
d0)adq̂
HQ
d = (1 � �d0 � 
d)ad0 q̂

HQ
d0 , and HQ grants equity compensation:

�d = 
d.

Similar to Corollary (1), the optimal contract with interior beliefs for both HQ and division

managers equates the total (expected) cost to HQ of a division manager�s exposure to both division,

giving (35). Di¤erent from Corollary 1, however, q̂HQ is now endogenous. From Lemma 3, when

HQ has interior beliefs, HQ equate expected exposure to each division, (1 � �d � 
d0)adq̂
HQ
d =

(1��d0�
d)ad0 q̂
HQ
d0 , which implies that �d = 
d. Corollary 2 shows that, when HQ are uncertainty

averse, optimality of equity compensation is the outcome of HQ desire to align division managers

beliefs with theirs.

5 Robustness and Discussion

An important assumption in our paper is that the core belief set is a strictly convex set with smooth

boundaries, a property satis�ed by the relative entropy criterion. Strict convexity guarantees that

belief held by uncertainty averse division managers and HQ respond to changes in compensation

contracts. This property does not hold when agents hold �rectangular�beliefs, for example where

the core belief set is

Ki(qi) � fq̂i : [qA � �i � q̂iA � qA + �i]� [qB � �i � q̂iB � qB + �i]:
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With rectangular beliefs, uncertainty averse agents do not bene�t from uncertainty hedging. In-

tuitively, the solutions to the minimization problems in the RHS and LHS of (2) are equivalent,

and the condition holds as an equality. In the context of our paper, division managers and HQ

beliefs on division productivity, the solutions to (14) and (26), are determined by a �xed �worst

case scenario� and do not depend on the relative exposure to division uncertainty generated by

incentive contracts.

Our prediction on the impact of uncertainty aversion on inclusion of relative performance in

incentive contract discussed in Section 4 hold also in the extreme case of �rectangular�beliefs. This

happens because relative performance contracts, where division managers and HQ have opposite

exposure to cross-division cash-�ow, lead them to hold extreme opposite beliefs on division pro-

ductivity. Speci�cally, in this case HQ hold a long position in both divisions and set beliefs at the

lower extreme of the belief range, qHQi � �HQ. In contrast, division managers hold a short position

in the cross-division cash-�ow, and are concerned when that division has high productivity, and

will set beliefs at the higher extreme of the belief range, qdd0 + �
d. Thus, rectangular beliefs lead

to extreme disagreement between HQ and division managers on the value of incentive contracts

with relative performance, exacerbating the disagreement discount. The e¤ect is to make even

more costly, from the point of view of HQ, to meet division managers�participation constraint.

As discussed in Section 4, increasing the cost of hedging division managers�risk through relative

performance makes such contracts less desirable. 26

One of the main results of our paper is to establish the bene�t of uncertainty hedging for

incentive provision. We study the case where HQ can hedge division manager uncertainty by o¤ering

cross-pay, either as equity-based or relative-performance compensation. More generally, HQ can

hedge division manager uncertainty by making incentive contracts to depend also on other external

variables, such as an appropriate benchmark. The potential bene�t of inclusion of benchmarks in

incentive pay to hedge uncertainty, however, must be balanced against two costs. The �rst cost

is due to the additional risk exposure that it may impose on division managers. The second cost

is that external benchmarks may represent side bets for both HQ and division managers. In this

case, HQ and division managers may hold opposite positions on the benchmark, exacerbating the

26 Indeed, when there is su¢ cient uncertainty, �d+ �HQ, the optimal contract is 
d = 0 and �d =
1

2�
q̂A
A

q̂
HQ
A

+ r�2

Zq̂
HQ
A

q̂A
A

.
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disagreement discount, making it more for HQ to meet division managers�participation constraint.

Our paper suggests that inclusion of external benchmarks in compensation contracts may help

hedge division manager uncertainty, with a bene�cial e¤ect on the incentives to exert e¤ort. Such

bene�ts, however, must be balanced against an increase in the cost of incentive provision due to

greater risk exposure and disagreement discount.

6 Uncertainty and Beliefs in Organizations

We develop a novel theory of belief formation in organizations based on uncertainty aversion. We

argue the presence of uncertainty, and aversion to it, can generate belief heterogeneity even in cases

where agents share the same set of �core beliefs.�Belief heterogeneity emerges endogenously as the

consequence of agents�di¤erential exposure to the sources of uncertainty.

Individual exposure to uncertainty can be determined �rst by their position in the organization.

Top executives are exposed to all the uncertainty factors that a¤ect a �rm, either directly, or

through the relevant economic environment surrounding their �rm. In contrast, division managers

are disproportionally exposed to uncertainty factors a¤ecting their own division. Exposure to

division uncertainty may derive, for example, from the impact of �rm performance on division

managers�human capital, a¤ecting career opportunities within the �rm or their outside options.

We refer to this exposure to uncertainty as hierarchical exposure, because it depends on an agent�s

position in the organizational hierarchy.

The second form of exposure depends on the contractual arrangements in the organization.

Division managers make choices in the context of a web of contracts and rules (organizational

protocols) that govern �rms. We refer to this exposure to uncertainty as contractual exposure,

because it depends on all contractual arrangements surrounding agents.

The structure of beliefs that emerges in equilibrium is endogenous and depends on both its

hierarchical con�guration and the contractual relationships that bind agents together. An implica-

tion of our paper is that internal beliefs can be managed by both organization design and contract

design. In this paper, we focus on the latter. We argue that, by proper design of incentive contracts,

HQ can a¤ect beliefs within the organization and induce a more favorable belief system, promoting

e¢ ciency.

We show that disagreement emerges as an equilibrium outcome in the belief structure in an
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organization. For example, managers in the upper levels of the hierarchy can (endogenously) be

more con�dent about their �rm�s future performance than lower-level employees. This implies that

rank-and-�le managers perceive members of the top management team of a �rm (such as CEOs

and CFOs) as overcon�dent and unrealistically optimistic.

The extent of internal disagreement depends on the level of uncertainty that characterize di¤er-

ent layers in the organization. When the upper levels in the hierarchy are relatively less concerned

about uncertainty than lower-levels, uncertainty concerns deeper down in the hierarchy can generate

signi�cant disagreement in the organization. HQ can respond by designing contracts with greater

cross-division exposure, through either a more signi�cant equity-based compensation (when division

cash-�ows are positively correlated) or enhanced relative-performance provisions (with negatively

correlated cash-�ows).

Our model provides a theoretical foundation of the links between compensation structure and

beliefs systems in organizations.27 The e¤ect of equity-based compensation is to realign internal

beliefs, promoting a shared view and internal consensus. In contrast, relative-performance com-

pensation has two divergent e¤ects on internal beliefs. First, it improves and realigns a division

managers� beliefs on their division with those of HQ, with bene�cial e¤ect on e¤ort provision.

The disadvantage of relative-performance compensation is that it may lead division managers to be

more con�dent on the other divisions in the �rm, relative to theirs, creating envy and discord. Such

discord may interfere with overall management and performance of the organization, for example

by a¤ecting the internal allocation of resources.

Finally, a large exposure to uncertainty by top levels in the organization increases the cost of

relative-performance compensation. In this situation, HQ may prefer to forego the risk-hedging

bene�ts of relative-performance and, rather, o¤er cheaper equity-based contracts. Such equity-

based contracts provide uncertainty-hedging and promote e¤ort, with the additional bene�t of

fostering consensus.

7 Empirical Implications

Our paper has several empirical implications that can help explaining some otherwise puzzling

features of the compensation policies adopted by corporations.

27Links between pay and sentiment is shown in several papers, such as Bergman and Jenter (2007), Heaton (2002),
and Oyer and Schaefer (2005), among others.
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1. Firms characterized by high uncertainty, such as young �rms, prefer compensation contracts

with an equity component rather than relative performance. A puzzling feature of the compensation

structure of many young �rms is the widespread use of equity-based compensation throughout the

organization. While equity-based compensation appears to be justi�ed for members of the top

management, such as the CEO, it is less clear why lower-level managers should receive equity-based

compensation. This is because equity-based compensation reduces the sensitivity of managerial pay

to their action, and thus reduces its e¤ectiveness as an incentive. This practice is even less justi�able

for low-level employees, where the connection between an employee�s actions and equity value is

even more tenuous.

Our paper provides an explanation for the common occurrence of equity-based compensation

and the infrequent use of relative-performance assessments. Speci�cally, equity-based compensation

plays two important roles. First, it better aligns the beliefs of members of the organization with

the one held by the top management. Absent the equity component in pay, individuals would hold

more conservative beliefs than the top management on the expected performance of their unit.

Inclusion of the equity-based compensation aligns their expectations with the ones held by the

top management, improving the overall disposition of the organization. The second bene�t is that,

because of the improvement of expectations, employees will exert greater e¤ort, improving �rm

value.

2. Relative performance and pay-for-luck. It is often suggested that lack of relative-performance

component in executive pay results in rewarding top managers for performance in�uenced by market

forces outside their control rather than their own e¤orts (�pay-for-luck�).28 Our paper suggests an

advantage of equity-based compensation over relative-performance. Relative-performance creates

a divergence between shareholders, who typically hold �long�positions in their portfolios, and top

executives, that would hold �short�positions in the benchmarks adopted as a basis for their relative

performance. The presence of such divergent positions has the consequence of creating potentially

harmful disagreement between shareholders and top management. Equity-based compensation,

in contrast, has the bene�t of aligning shareholders and top executives exposure to uncertainty,

preserving agreement.

3. Mature �rms adopt compensation contracts primarily based on pay-for-performance measures

28Gopalan, Milbourn and Song (2010) argue this is a response to strategic uncertainty surrounding �rms.
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with relative-performance components. As �rms mature, the level of uncertainty surrounding their

business activities decreases, reducing (or even eliminating) the need for equity-based compensation.

For these �rms, e¤ort levels in the organization is better elicited by the use of pay-for-performance

incentive contract, making equity-based compensation redundant. This means that �rms should

�rst start, when they are young, with incentive contracts heavily skewed toward equity-based

compensation, and then move toward pay-for-performance based contracts as they mature.

4. Optimal compensation in business groups. Our paper has also implications for the compen-

sation structure in business groups. Consider an executive manager in a subsidiary of a business (or

family group). Traditional theory would suggest that in these cases compensation should depend

only on the performance of their subsidiary or business unit. In contrast, compensation for such

managers is often tied to the performance of the entire business group. For example, Ma, Tang,

and Gomez (2019) study the compensation structure for the mutual funds industry and �nd that in

about half of their sample, managers�bonuses are directly linked to the overall pro�tability of the

advisor. A similar practice is common in the investment bank industry, where individual bonuses

depend also on the overall performance of the intermediary. Such features, which would be di¢ cult

to be justi�ed on the basis of risk-aversion only, are consistent with the �ndings of our paper.

5. Managerial (over)optimism. Our model predicts that managers in the upper echelon of

corporate ladders tend to be relatively more optimistic about their �rm�s future performance. This

implies that, rank-and-�le managers perceive members of the top management team of a �rm

(such as CEOs and CFOs) as overcon�dent and unrealistically optimistic. The role of managerial

overcon�dence in corporations has been extensively documented (see, for example, Heaton, 2002,

and Malmendier and Tate, 2005, among others). Goel and Thakor (2008) suggest that managerial

optimism can be the outcome of the managerial selection process, whereby lucky and overcon�dent

managers are more likely to rise to the top positions of companies. Our paper suggests that top

managers�optimism is the consequence of uncertainty hedging, and not necessarily the sign of a

negative behavioral bias.

6. Entrepreneur CEOs and family wealth. Entrepreneurship is commonly associated with fam-

ily wealth (Hurst and Lusardi, 2004), and access to family wealth is a primary determinant of

entrepreneurship (Levine and Rubinstein, 2017). There are several reasons why family wealth may

be associated with greater incentives to become entrepreneurs and, thus, CEOs. These include
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relaxation of �nancial constraints and greater diversi�cation opportunities (lower cost of capital).

Note that traditional risk-diversi�cation rationales would imply the wealthy families invest in in-

dustries with low (or negative) correlation with the bulk of family money. Our paper adds a novel

rationale for the association between family wealth and entrepreneurship. Individuals in wealthy

families, by virtue of their broad portfolio, bene�t more from uncertainty hedging, giving them

a comparative advantage in investing in business surrounded by greater uncertainty. As a con-

sequence, owners/CEOs belonging to wealthy families would (endogenously) be characterized by

more optimistic views of their companies. These are new and testable implications.

8 Conclusions and Future Research

We examine the impact of uncertainty aversion on the design of optimal incentive contracts in

an organization. We study the problem faced by a multidivisional �rm, for simplicity with two

divisions, where agents may be uncertainty averse. Divisional managers exert unobservable e¤ort

that a¤ects the productivity of their division, creating moral hazard. The contracting problem

is complicated by the fact that division managers are uncertainty averse, making them unduly

conservative in the eyes of their HQ. Such disagreement is endogenous, and the outcome of risk-

exposure created in incentive contracts to promote e¤ort.

We showed that the structure of optimal incentive depends on the level of uncertainty that

a¤ects �rms. For �rms with low uncertainty, incentive contracts still exhibit pay-for-performance

compensation when division cash-�ows are negatively correlated, and relative-performance com-

pensation when division cash-�ows are positively correlated, but less than the no-uncertainty case.

For �rms characterized by high levels of uncertainty, optimal incentive contracts are more likely to

have cross-pay compensation or straight-equity.

The analysis in our paper can be extended in several ways. First, it would be interesting to

examine multi-tasking situations, as in Holmström and Milgrom (1991). Our paper suggests an

important aspect of uncertainty hedging and its impact on task assignment and optimal compen-

sation. An additional avenue of research is to determine the impact of uncertainty on organization

design: it is plausible to expect that organizations in highly uncertain environments have a relatively

�at structure, to promote uncertainty hedging. Our paper is also essentially a partial equilibrium

model. An interesting question is to examine the impact of labor market forces in a process where
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heterogenous agents are matched with heterogenous �rms. We leave these important questions for

future research.
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Figure 1: Core of Beliefs

The �gure displays the core-belief set, Equation (A35), and the 5 cases of Lemma A1 for d = A

under parameter values qA = qB = 100 and �A = ln (5). In Case (i), HA > e
�A , and the division

manager holds the reference beliefs toward her own division, q̂A = qA, and extreme pessimism

toward the other division, q̂B << qB. In Case (ii), HA 2 (e��A ; e�A), leads to moderate pessimism
toward both divisions, q̂d < qd, d 2 fA;Bg: In Case (iii), HA 2 (�e��A ; e�A), leads to extreme
pessimism toward her own division, q̂A << qA, and to reference beliefs toward the other division,

q̂B = qB. In Case (iv), HA 2 (�e�A ;�e��A), leads to moderate pessimism toward her division,

q̂A < qA, and to optimism toward the other division, q̂B > qB. In Case (v), HA < �e�A , leads again
to hold the reference beliefs toward her own division, q̂A = qA, and to be very con�dent toward the

other division, q̂B >> qB. The dotted line represents the core of beliefs from Equation (3.12) of

Chen and Epstein (2002), with (q̂A � qA)2 + (q̂B � qB)2 � kA: this set corresponds to the relative
entropy criterion for symmetric e¤ort and zero correlation.

40

Electronic copy available at: https://ssrn.com/abstract=3285458



A Internet Appendix A: Aggregation and Linearity

In this appendix we study a continuous-time dynamic stochastic model, and we show that the aggregation and linearity

results of Holmström and Milgrom (1987) hold in our environment with uncertainty. The basic model is modi�ed as

follows. Time is continuous, t 2 [0; 1], and at each instant each division manager chooses e¤ort, ad;t 2 R+, a¤ecting
the probability distribution of divisional cash-�ows. We assume that cash-�ows of both divisions, Yt � (YA;t; YB;t),

follow the (joint) process

dYt = �tdt+ �dWt; (A1)

where Wt = (WA;t;WB;t) 2 R2 is a standard bivariate Brownian motion de�ned on the �ltered probability space�

;F ; (Ft)t�0 ; P

a
�
, with YA;0 = YB;0 = 0. Note (Y;W;P a) is a weak solution to the stochastic di¤erential equations

in (A1); all processes are progressively measurable with respect to the �ltration (Ft)t�0.
Following Holmström and Milgrom (1987), we assume that division manager e¤orts a¤ect only the drift of its

own division with no externalities (or synergies) across divisions. The marginal product of a division manager�s

e¤ort is greater in more productive divisions, and we set �t � (�A;t; �B;t)0 with �d;t = ad;tqd, where qd represents the

productivity of division d 2 fA;Bg under the probability, P a. We will refer to division managers�(joint) action pro�le

as at = (aA;t; aB;t)
0. Division cash-�ows are homoskedastic, with constant variance �2, and may be (positively or

negatively) correlated, with correlation coe¢ cient �. Further, we assume e¤ort does not a¤ect the variance-covariance

matrix, �.1 Thus, � is the symmetric square root of the variance-covariance matrix, giving
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Exerting e¤ort is costly: each division manager su¤ers an instantaneous monetary cost cd (ad;t) dt, where cd : R+ !
R+ is a continuously di¤erentiable, increasing and convex function. While in the body of the paper, we set cd (ad;t) =
1

2Zd
a2d;t, where Zd characterizes e¤ort e¢ ciency of division managers, our result in this appendix applies generally

for any increasing and convex cost function. Following Holmström and Milgrom (1987), division managers and HQ

exhibit preferences with constant absolute risk aversion (CARA), and are paid and consume only at the end of the

period, t = 1.2

E¤ort exerted by each division manager is not observable by either HQ or the other division manager, creating

moral hazard. HQ promote e¤ort by o¤ering division managers incentive contracts, fwdgd2fA;Bg, as follows. We
assume that output from each division, Yd;t, is publicly observable, and we let ht = fYsjs � tg represent the entire
history of cash-�ows from both divisions at each point in time t. HQ can condition compensation to each division

manager on the entire history, that is wd (h1). We impose the usual square-integrable condition that EPa [wd (h1)]
2 <

1. Given an incentive contract wd(h1) and e¤ort level process ad � fad;tgt2[0;1], division manager d 2 fA;Bg earns
an end-of-period payo¤

Ud (h1) � u

�
wd (h1)�

Z 1

0

cd (ad;t) dt

�
; (A3)

where u (w) = �e�rw, and r is the coe¢ cient of absolute risk aversion for both divisional managers. Similarly, HQ
earn end-of-period payo¤ equal to

�(h1) � � (YA;1 + YB;1 � wA (h1)� wB (h1)) ; (A4)

where � (X) = �e�RX , and R is the coe¢ cient of absolute risk aversion for HQ. Because processes are in L2, they

both have �nite expectation.

The di¤erential game unfolds as follows. At the beginning of the period, t = 0, HQ choose incentive contracts

wd (h1) for each division manager d 2 fA;Bg. HQ can commit to contracts fwd (h1)gd2fA;Bg, which are observable to
both managers. After incentive contracts are o¤ered and accepted, division managers continuously and simultaneously

1Hemmer (2017) and Ball et al. (2020) study contracts when e¤ort a¤ects �.
2Restricting pay and consumption only to the end avoids the complication of intertemporal consumption smoothing

via private savings. This is studied in He et al. (2017), who study a dynamic agency problem in a setting without
Knightian uncertainty.
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choose their level of e¤ort, ad;t, after observing history ht. At the end, t = 1, division managers are compensated

according to the realized history, h1, and consumption takes place.

We model uncertainty aversion by adopting the minimum expected utility (MEU) approach of Chen and Epstein

(2002), a dynamic extension of Gilboa and Schmeidler (1989). We assume that both HQ and division managers

are treat the probability measure P a as uncertain. Following Chen and Epstein (2002), P a represents a �reference

probability,�which is assumed to be common for both division managers and HQ.3 In addition, we consider beliefs

distortions that are mutually absolutely continuous measures with respect to P a, allowing us to use Girsanov�s

Theorem.4 De�ne a density generator to be a R2-valued Ft-predictable process �t satisfying the Novikov condition

EPa
�
exp

�
1

2

Z 1

0

�s � �sds
��

<1; (A5)

so that the process

z�t � exp
�
�1
2

Z t

0

�s � �sds�
Z t

0

�sdWs

�
(A6)

is a (P a;Ft) martingale. By Girsanov�s Theorem, the process �t generates an equivalent probability measure ~P a;�

on (
;F) such that
d ~P a;�

dP a
jFt = z�t ; (A7)

where z�t is the Radon-Nikodym derivative of ~P a;� with respect to P a when restricted to Ft. Note that, from

Girsanov�s Theorem, the process

W �
t =Wt +

Z t

0

�sds; (A8)

is a standard Brownian motion under the new measure ~P a;�.

Under the measure ~P a;�, divisional cash-�ows Y � follow the process

dY �
t = Qatdt+ �

�
dW �

t � �tdt
�
= ��(at)dt+ �dW

�
t ; (A9)

where

Q �
"
qA 0

0 qB

#
and ��(at) � Qat � ��t: (A10)

Thus, the density generator process �t describes decision makers�(�distorted�) beliefs on the instantaneous produc-

tivity of both divisions.5

Following Chen and Epstein (2002), we assume that uncertainty is IID, and we allow for the possibility that HQ

and division managers may be exposed to di¤erent degrees of uncertainty. Thus, we let ��;t 2 K� (at), � 2 fHQ;A;Bg,
for all t 2 [0; 1], where K� 2 R2 is set-continuous (both upper- and lower-hemicontinous) with K�(at) a convex set

for all at. We allow for the possibility that uncertainty depends of the level of e¤ort, at. Let

P�� (at) =
n
~P a;�j�t 2 K� (at) ;8t

o
(A11)

be the set of admissible priors for division managers and HQ. Note that ~P 2 P�
� (at) if and only if there is a ��;t

such that ~P = ~P a;� and ��;t 2 K� (at) for all t. IID uncertainty can be interpreted as nature drawing independent

increments dW a;�
t of the process W a;�

t from di¤erent urns at each point in time. Similar to Chen and Epstein (2002),

these assumptions imply that a division�s past cash-�ow realizations are not informative on future cash-�ows, thus

excluding learning. Importantly, they ensure that divisional managers and HQ face stationary uncertainty. Note that

the core beliefs set is rectangular over time, as required for time consistency by Chen and Epstein (2002). However,

the set K may not be a rectangle. Indeed, similar to Chen and Epstein (2002), Equation 3.12, we will consider strictly

convex (�round�) sets K� (a), � 2 fHQ;A;Bg with smooth boundaries.
At the beginning of the game, t = 0, HQ o¤er division managers a pair of contracts, w (h1) � fwd (h1)gd2fA;Bg,

3Hansen et al. (2006) refer to the measure P a as the �approximating model.�
4Miao and Rivera (2016) and Szydlowski and Yoon (2022) use a similar approach.
5Note that in the general model, we allow for the possibility that a division manager considers more uncertain the

productivity of the other division with respect their own.
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and a set of (history-dependent) instructions a � fadgd2fA;Bg to maximize expected payo¤, that is to solve

max
fw;ag

min
~P2P�

HQ(fad;ad0g)
E
~P� (YA;1 + YB;1 � wA (h1)� wB (h1)) (A12)

subject to the constraints that (i) each division managers choose an e¤ort process, ad, given the other division

manager�s action pro�le, to solve

max
~ad

min
~P2P�

d (f~ad;ad0g)
E
~P
t u

�
wd (h1)�

Z 1

0

cd (~ad;t) dt

�
; (A13)

and (ii) the pairs fad; wd (h1)gd2fA;Bg satisfy their participation constraints

min
~P2P�

d (fad;ad0g)
E
~P
0 u

�
wd (h1)�

Z 1

0

cd (ad;t) dt

�
� u0 = 0 (A14)

for d; d0 2 fA;Bg; and d 6= d0, where u0 is a division manager�s reservation utility, normalized to zero. Note that in

problem (A12) - (A14) a division manager�s uncertainty exposure is endogenous and is determined by the incentive

contract, wd (h1), o¤ered by HQ. Contractual exposure concurs to determine a division manager�s beliefs, ~Pd. Given

their higher-level position in the �rm hierarchy, HQ exposure to uncertainty is determined by their residual claim in

�rm cash-�ow, given incentive contracts o¤ered to both division managers in the �rm.6 HQ hierarchical exposure

concurs to determine HQ beliefs, ~PHQ. The triplet f ~PHQ; ~PA; ~PBg determines the belief structure prevalent in the
�rm.

De�nition A1 An equilibrium is a set of contracts , w(h1) � fwd (h1)gd2fA;Bg, and action processes faA; aBg, such
that:

(i) Given incentive contracts w(h1), for every history ht each division manager selects e¤ort, ad, optimally, solving

(A13), given the other division manager�s action process, ad0 for d
0 6= d;

(ii) HQ o¤er contracts w(h1) that maximizes (A12) subject to (A13) - (A14).

The aggregation and linearity property of Holmström and Milgrom (1987) holds in the case of stationary (IID)

uncertainty with two division managers.

Theorem A1 The optimal contract between HQ and division managers is linear in cash-�ows, wd (h1) = sd +

�dYd;1 + 
dYd0;1, with constant sd, �d, 
d, for d; d
0 2 fA;Bg; and d 6= d0; it induces constant e¤ort, ad;t = ad, and

beliefs, ~P a;�, with constant distortions, �d;t = �d and �HQ;t = �HQ, for all t.

Proof of Theorem A1. Each division manager selects at to maximize

Ud;t � min
~P2P�

d (f~ad;ad0g)
E
~P
t u

�
wd (h1)�

Z 1

0

cd (~ad;t) dt

�
: (A15)

Given optimal e¤ort a� and worst-case scenario process, ��d, by the martingale representation theorem, Ud;t is an Itô

Process adapted to Y a�;�� with zero drift (Theorem 4.33, Jacod and Shiryaev, 1987): dUd;t = �0d;t
h
dY a�;�

t � �� (a�) dt
i
.

De�ne wd;t so that u(wd;t �
R 1
0
cd
�
a�d;t
�
dt) = Ud;t: wd;t can be interpreted as the balance that the DM has with the

HQ. We can express

wd;t =

Z 1

0

cd
�
a�d;t
�
dt� 1

r
ln (�Ud;t) : (A16)

Note that this is the equilibrium a�, not necessarily the chosen a. Let � =
R 1
0
cd
�
a�d;t
�
dt� 1

r
ln (�U). Because @�

@t
= 0,

@�
@U

= 1
(�rU) , and

@2�
@U2

= 1
rU2

, and de�ning Bdt � 1
(�rU)�dt,

dwd;t = B0
d;t

�
dY a�;�

t � �� (a�t ) dt
�
+
r

2
B0
d;t�Bd;tdt (A17)

6We assume HQ are full residual claimants in �rm cash-�ow. More generally, HQ act in the context of incentive
contracts from a compensation committee, exposing them to contractual exposure as well.

3

Electronic copy available at: https://ssrn.com/abstract=3285458



Because the optimal contract is progressively measurable with respect to FY
t , we can express

wd;t = wd;0 +

Z 1

0

cd
�
a�d;t
�
dt+

Z t

0

B
0
d;t

�
dY �

t � �� (a�t ) dt
�
+

Z t

0

r

2
B0
d;t�Bd;tdt (A18)

At the optimal e¤ort level, a�t , this becomes

wd;t = wd;0 +

Z 1

0

cd
�
a�d;t
�
dt+

Z t

0

B0
d;tdW

a�;�
t +

Z t

0

r

2
B0
d;t�Bd;tdt (A19)

O¤-equilibrium, if the DM deviates from a� to a, he shifts the probability distribution from P a� to P a. From the

Girsanov�s Theorem, set ha = ��1��, where �� is a vector with ��d = �d (ad) � �d (a
�
d) and ��d0 = 0. Let

zat � exp
n
� 1
2

R t
0
has � hasds+

R t
0
hasdWs

o
. By Girsanov�s Theorem, ha generates an equivalent probability measure

P a on (
;F) such that dPa

dPa
� jFt = ha. Further, W a

t =W a�
t �

R t
0
hasds is a Brownian Motion. This changes the payo¤

to

wd;t = wd;0 +

Z 1

0

cd
�
a�d;t
�
dt+

Z t

0

B
0
d;t

�
�� (at)� �� (a�t ) dt

�
+

Z t

0

r

2
B0
d;t�Bd;tdt+

Z t

0

B0
d;tdW

a
t (A20)

Because the agent is uncertainty averse, they will also take the worst-case scenario over � 2 K�. Thus, the division

manager�s problem becomes

Ud;t = max
a

min
~P2P�

HQ(fad;ad0g)
Ea�;�
t u

�
wd (h1)�

Z 1

0

cd (~ad;t) dt

�
: (A21)

Ud;t = max
a

min
�t2K�(at)

Ea�
t

�
u

�
wd (h1)�

Z 1

0

cd (~ad;t) dt

�
dP a

dP a�
d ~P a;�

dP a

�
: (A22)

Applying Girsanov�s Theorem and rearranging, we can express

Ud;t = max
a

min
�t2K�(at)

Ea;�
t

h
u
�
~W
�
 t

i
; (A23)

where, de�ning Hd (a; �;B) � B0
d;t�

� (at)� cd (ad;t),

~W = wd;0 +

Z
[Hd (a; �;B)�Hd (a

�; �; B)] dt; (A24)

and  t = exp
�R t

0

�
�rB0

d;t

�
dW �

t �
R t
0
(�rBd;t)0 � (�rBd;t) dt

�
is a martingale. Therefore, the choice of a and � a¤ect

Ud;t only through ~W , and only through H. Therefore, the DM solves

max
at

min
�t2Kd(at)

Hd (a; �;B) (A25)

for all points in time. Because a�d solves the maximization problem, Ud;t is a supermartingale for any choice of ad
and a martingale only if ad = a�d almost surely. Therefore, a

�
d is the optimal e¤ort choice. Note this holds for both

division managers at every time.

Similarly, HQ solves

�d;t = max
fw;ag

min
~P2P�

HQ(fad;ad0g)
E� (X) (A26)

where X = YA + YB � wA � wB . Let �t = 1�BA;t �BB;t. Similar to above, we can express

�d;t = max
fw;ag

min
�t2KHQ(at)

Ea;�
t

h
�
�
~X
�
 HQt

i
(A27)

where ~X =
R
HHQdt� wA;0 � wB;0,

HHQ

�
a�; B; ��HQ; �

�
d

�
= �0��

�
HQ (a�t ) +HA (a

�
A; �

�
A; B) +HB (a

�
B ; �

�
B ; B) (A28)

� r
2
B0
A;t�BA;t �

r

2
B0
B;t�BB;t �

R

2
�0t��

and  HQt = exp
�R t

0
(�R�0t) dW �

t �
R t
0
(�R�t)

0 � (�R�t) dt
�
is a martingale. Note that for all points in time and

history, HHQ depends only on the instantaneous contract, B, instantaneous e¤ort, a�d;t, and belief distortions at time
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t, ��;t. Therefore, at each point in time, HQ solves

max
fw;ag

min
�2KHQ(at)

HHQ (a;B; �HQ; �d) (A29)

subject to a� and ��d solving (A25). Because this problem is identical throughout the tree, the solution must remain

the same. Therefore, HQ optimally grants the same exposure B to DMs at all points in the tree, so the contract is

linear.

Theorem A1 implies that we can restrict our analysis to a¢ ne incentive contracts with constant coe¢ cients,

as assumed in the body of the paper. Intuitively, the process w (ht) is progressively measurable with respect to

the �ltration (Ft)t�0 generated by the bivariate Brownian motion Wt. Thus, similar to Holmström and Milgrom

(1987), the martingale representation theorem ensures that it can be represented as an Itô process, which guarantees

instantaneous linearity of incentive contracts. Translation invariance of CARA utility (precluding wealth e¤ects) and

IID uncertainty ensure that HQ and division managers face the same instantaneous optimization problem at every

point in the tree, ensuring overall linearity. In the optimal contract, HQ grant division managers a constant share �d
of their own division, a constant exposure 
d to the other division, inducing constant e¤ort, ad = ad;t, and constant

belief distortions, (�d; �HQ), for all t, for all t 2 [0; 1].
Theorem A1 implies that the solution to the dynamic model is equivalent to the solution of a corresponding

static problem where HQ o¤er only a¢ ne contracts that depend on division cash-�ows. The static problem that

corresponds to the dynamic model can then be written in certainty equivalent form, as follows. Letting bA � (�A; 
A)
0,

bB � (
B ; �B)
0, � � (�A; �B) = (1� bA � bB)

0, where 1 = (1; 1)0, HQ choose a pair of incentive contracts and action

pro�les, fwd; adgd2fA;Bg, that maximize their (instantaneous) certainty equivalent objective function, solving

max
fw;ag

min
�HQ2KHQ(a)

�� � �0��HQ(a)� R

2
�0��� sA � sB ; (A30)

subject to the constraint that division managers maximize the certainty equivalent of their objective function

max
~ad

min
�2Kd(a)

u�d � sd + b0d�
�d(~ad; ad0)�

r

2
b
0
d�bd � cd (ad) ; (A31)

and to the participation constraints

min
�d2Kd(a)

sd + b0d�
�d(a)� r

2
b
0
d�bd � cd (ad) � 0 (A32)

for d 2 fA;Bg. Note that, absent uncertainty, KHQ (a) = Kd (a) = f0g and problem (A30) - (A32) collapses to

the corresponding static problem of Holmström and Milgrom (1987). Further, because Theorem A1 shows that the

optimal contract implements constant e¤ort, at, and constant distortions �t, it is su¢ cient to consider � 2 Kd (a).

Finally, we must show that it is consistent with IID Ambiguity of Chen and Epstein (2002) to have uncertainty on

�rm productivity, q. Note that IID Ambiguity considers uncertainty on �, not on q, so we must show that ambiguity

on productivity q, is equivalent to considering IID ambiguity on �. De�ne � = (�A; �B) � ��, and let

K� (a) =

�
�j
�
� ln

�
1� � j�Aj

aAqA

�
� ln

�
1� � j�B j

aBqB

��
� ��

�
; (A33)

Note these expressions are not history dependent and provide a special case of IID uncertainty. The parameter ��
re�ects the degree of con�dence in the reference probability P a held by agent �, for � 2 fHQ;A;Bg, where �� = 0

indicates full con�dence, and increasing uncertainty is characterized by greater ��.

In the optimization problem (A30) - (A32), division managers beliefs are determined by minimizing their objective

function u�d where, from (A10), the density generator process � characterizes belief distortions a¤ecting the drift,

�� (a) = Qa � ��, of the cash-�ow process Y . For expositional simplicity, we will consider an a¢ ne transformation
of the distorted beliefs �, and de�ne

Q̂�a � Qa� �� with Q̂� �
"
q̂�A 0

0 q̂�B

#
; (A34)

where q̂�d0 represents the (distorted) belief of � 2 fA;B;HQg on the productivity of division d0 = fA;Bg. From
(A34), the core belief set (A33), expressed in terms of belief distortions �, induces a corresponding core belief set
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K q̂
� �

8><>:q̂�j ln
0B@ 1

1�
��� q̂�A�qAqA

���
1CA+ ln

0B@ 1

1�
��� q̂�B�qBqB

���
1CA � ��

9>=>; : (A35)

expressed in terms of belief distortions on division productivity, q̂�. Note that the setK q̂
� does not depend on a because

K� (a) scales in e¤ort a and, thus, from (A34) uncertainty directly a¤ects e¤ort productivity, q. The transformation

(A34) leads to corresponding objective functions for division managers and HQ

ûd � sd + b0dQ̂
da� r

2
b
0
d�bd � cd (ad) ; (A36)

�̂ � (1� bA � bB)
0 Q̂HQa� sA � sB : (A37)

The following Lemma establishes the equivalency of considering core beliefs sets K� and K
q̂
� .

Lemma A1 The following two problems are equivalent:

min
�2Kd

u�d = min
q̂d2Kq̂

d

ûd; (A38)

where q̂d � (q̂dA; q̂dB), with � 2 fA;Bg. Similarly, for HQ min�2KHQ(a) �
� is equivalent to min

q̂HQ2Kq̂
HQ

�̂:

Proof of Lemma A1. For �� 2 K� (a), de�ne q̂� so that q̂�d � qd� 1
ad
(��)d, an a¢ ne transformation of ��, so that

��� = Qa� ��� = Q̂�a. (A35) follows by substituting q̂� into (A33): �� 2 K� (a) i¤ q̂� 2 K q̂
� .

B Internet Appendix B: Proofs
Proof of Theorem 1. Linearity follows from Theorem A1, by setting KA = KB = KHQ = f0g; thus compensation
contract to division manager d is wd = sd + �dYd;1 + 
dYd0;1. Substituting for �

� and � in (A13), division manager

d selects ad to solve

max
ad

ud = sd + �dqdad + 
dqd0ad0 �
r�2

2

�
�2d + 2��d
d + 
2d

�
� cd (ad) : (B1)

Because ud is strictly concave, the incentive constraint is fully characterized by the �rst-order condition and the

unique maximizer is ad = �dZdqd. Because of translation invariance of ud, (A14) always binds at an optimum, giving

sd =
r�2

2

�
�2d + 2��d
d + 
2d

�
+ cd (ad)� �dqdad � 
dqd0ad0 : (B2)

Substituting for sd into HQ objective, (A12), we obtain

�̂ =
X

d2fA;Bg

�
qdad �

r�2

2

�
�2d + 2��d
d + 
2d

�
� cd (ad)

�
; (B3)

Substituting for ad = �dZdqd in �̂ and di¤erentiating we obtain that

�d =
1

1 + r�2 (1� �2) = (Zdq2d)
; and 
d = ���d: (B4)

Second order conditions are satis�ed by concavity of (A12).

Proof of Lemma 1. Division managers determine
�
q̂dd ; q̂

d
d0
�
in (14). We will focus on two cases: we start with the

case where 
d � 0, and then we consider the case 
d < 0. Consider ~qdd = qd + �, for � > 0. Switching to ~qd�d = qd � �
lowers ûd by 2�dad� while leaving the constraint unchanged. Therefore, it must be that q̂

d
d � qd. Similarly, switching

from ~qdd0 = qd0 + �, for � > 0 to ~qd�d0 = qd0 � � lowers ûd by 2
dad0�, leaving the constraint unchanged. Therefore, it

must also be that q̂dd0 � qd0 . Thus, we can express the Lagrangian as

L � �ûd � � [gc � �d]� �d
�
q̂dd � qd

�
� �d0

�
q̂dd0 � qd0

�
(B5)

where gc � ln qd
q̂d
d

+ ln
qd0
q̂d
d0
. Because problem (14) admits corner solutions, we characterize its solution by use of the
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full Kuhn-Tucker conditions:

@L
@q̂dd

= �@ûd
@q̂dd

� �
@gc
@q̂dd

� �d = ��dad +
�

q̂dd
� �d = 0; (B6)

@L
@q̂dd0

= � @ûd
@q̂dd0

� �
@gc
@q̂dd0

� �d0 = �
dad0 +
�

q̂dd0
� �d0 = 0;

� (gc � �d) + �d
�
q̂dd � qd

�
+ �d0

�
q̂dd0 � qd0

�
= 0;

� � 0; �d0 � 0; �d � 0; �d � gc � 0; qd � q̂dd � 0; qd0 � q̂dd0 � 0:

Note �rst that, from the de�nition of gc; to satisfy the constraint �d � gc � 0 it must be q̂dd > 0 and q̂d0 > 0, which

implies that @L
@q̂d

d

= @L
@q̂d

d0
= 0. Note also that �dad > 0 implies that � > 0; and thus that gc � �d = 0. In addition,

it cannot be that both �d > 0 and �d0 > 0 because, if so, then q̂dd = qd and q̂dd0 = qd0 , which would imply that

gc = 0 < �d, which contradicts � > 0. This leaves us with three types of solutions: �d = �d0 = 0, �d > 0 = �d0 , and

�d = 0 < �d0 .

If �d = �d0 = 0, then @L
@q̂d

d

= @L
@q̂d

d0
= 0 together imply that � = �dadq̂

d
d and � = 
dad0 q̂

d
d0 , giving �dadq̂

d
d = 
dad0 q̂

d
d0 .

Because gc = �d implies that q̂
d
d q̂

d
d0 = e��dqdqd0 , after substitution this implies that

�dad

dad0

�
q̂dd
�2
= e��dqdqd0 , or

equivalently, q̂dd =
�
e��dHd

� 1
2 qd, where Hd =


dad0qd0
�dadqd

. Similarly, q̂dd0 =
h
e��d 1

Hd

i 1
2
qd0 . In order for this to be

feasible, however, it must be that q̂dd � qd, or equivalently, Hd � e�d , and q̂dd0 � qd0 , or equivalently, Hd � e��d ,

giving case (ii). If �d > 0 = �d0 , then q̂
d
d = qd and, from gc = �d, also q̂

d
d0 = e��dqd0 . Note that @L

@q̂d
d0
= 0 implies that

� = 
dad0e
��dqd0 and, from @L

@q̂d
d

= 0, we have that

�d = ��dad +

dad0e

��dqd0

qd
= �dad

�
Hde

��d � 1
�
> 0; (B7)

which requires Hd > e�d , giving case (i). Finally, if �d = 0 < �d0 , then q̂
d
d0 = qd0 and, from gc = �d, also q̂

d
d = e��dqd.

Note that now @L
@q̂d

d

= 0 implies that � = �dade
��dqd, and, from @L

@q̂d
d0
= 0, we have that

�d0 = �
dad0 +
�dade

��dqd
qd0

= 
dad0
�
H�1
d e��d � 1

�
� 0; (B8)

which requires 0 � Hd < e��d , giving part of case (iii).

The case with 
d < 0 proceeds in a similar way, giving cases (iv), (v) and the remainder of case (iii), and is

omitted. Note that in the case of interior beliefs, case (iv), for Hd 2 (�e�d ;�e��d) we have

q̂dd =
�
e��d jHdj

� 1
2 qd; and q̂

d
d0 =

�
2�

�
e��d jHdj�1

� 1
2

�
qd0 : (B9)

Finally, in case (v) we have q̂dd0 = qd0 and q̂
d
d0 = (2� e��d)qd0 for Hd � �e�d .

Proof of Lemma 2. The lemma is shown in two steps. First, we obtain division managers�best response functions,

ad = Zd�dq̂
d
d , as function of their beliefs, as in Lemma 1. Second, because q̂

d
d is positive, continuous, and increasing

in ad0 , we characterize the Nash equilibrium in terms of log (ad) and we apply the contraction mapping theorem,

proving uniqueness.

Division manager d 2 fA;Bg chooses e¤ort level ad to solve (16) by setting

d

dad
ûd(a; q̂

d
d(a;w)) =

@ûd
@ad

+
@ûd
@q̂dd

@q̂dd
@ad

+
@ûd
@q̂dd0

@q̂dd0

@ad
=
@ûd
@ad

= 0; (B10)

where the second equality holds by the envelope theorem, as follows. For cases (ii) and (iv) of Lemma 1, we have

that @ûd
@q̂d

d

= � @g
@q̂d

and @ûd
@q̂d

d0
= � @g

@q̂d0
, giving

@ûd
@q̂dd

@q̂dd
@ad

+
@ûd
@q̂dd0

@q̂dd0

@ad
= �

�
@g

@q̂d

@q̂dd
@ad

+
@g

@q̂d0

@q̂dd0

@ad

�
= �

dg

dad
= 0 (B11)

because g = e��d . In cases (i)-(iii)-(v), q̂dd and q̂
d
d0 do not depend on ad, and

@q̂dd
@ad

=
@q̂d

d0
@ad

= 0, giving dûd
dad

= @ûd
@ad

=

�dq̂
d
d � ad

Zd
= 0.
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Thus, the best response functions are ad = Zd�dq̂
d
d , where beliefs q̂

d
d are from Lemma 1. If 
d = 0, we have that

Hd = 0, giving ad = Zd�de
��dqd. If 
d 6= 0, the best response depends on the e¤ort by the other division manager, ad0 .

If the other division manager, d0 6= d, exerts low e¤ort ad0 < aLd0 �
Zd�

2
de

�2�dq2d
j
djqd0

, we have that jHdj < e��d and division

manager d holds pessimistic belief as in case (iii) of Lemma 1, q̂dd = e��dqd, giving ad = a1�d � Zd�de
��dqd. If division

manager d0 exerts moderate level of e¤ort, aLd0 � ad0 < aHd0 �
Zd�

2
de

�dq2d
j
djqd0

, division manager d hold beliefs as in case

(ii) of Lemma 1, if 
d > 0, and as in case (iv), if 
d < 0; thus jHdj 2
�
e��d ; e�d

�
and ad =

�
Z2d j
dj ad0�de��dqd0qd

� 1
3 .

Finally, if division manager d0 exerts a high level of e¤ort, ad0 > aHd0 , division manager d hold beliefs as in case (i) of

Lemma 1, if 
d > 0, and as in case (v), if 
d < 0; thus jHdj > e�d and ad = Zd�dqd. The best response function for

DM d is therefore given by

a�d (ad0) =

8><>:
a1�d � Zd�de

��dqd

~a�d (ad0) �
�
Z2d j
dj ad0�de��dqd0qd

� 1
3

a2�d � Zd�dqd

ad0 < aLd0

aLd0 � ad0 � aHd0

ad0 > aHd0

: (B12)

A Nash equilibrium is a pair faA; aBg such that ad = a�d (ad0), d 2 fA;Bg, d 6= d0. Note that a�d (ad0) is a positive,

continuous, and increasing function of ad0 . Expressing the best response in logs, we obtain

ln a�d (ln ad0) =

8><>:
lnZd�de

��dqd

ln
�
Z2d j
dj�de��dqd0qd

� 1
3 + 1

3
ln (ad0)

lnZd�dqd

ln ad0 < ln a
L
d0

ln aLd0 � ln ad0 � ln aHd0
ln ad0 > ln a

H
d0

: (B13)

Further, note d ln a�d
d ln ad0

= 0 for ad0 < aLd0 and ad0 > aHd0 , while
d ln a�d
d ln ad0

= 1
3
for aLd0 < ad0 < aHd0 . De�ne F : R2 ! R2

so that F � (ln a�A (ln aB) ; ln a
�
B (ln aA))

0, and let d (x; y) be the Euclidean distance. For x; y 2 R2, de�ne ~xd �
max

�
ln aLd ;min

�
xd; ln a

H
d

		
and ~yd � max

�
ln aLd ;min

�
yd; ln a

H
d

		
, we have

d (F (x) ; F (y)) =

q
(ln a�A (xB)� ln a�A (yB))

2 + (ln a�B (xA)� ln a�B (yA))
2 (B14)

=

q
(ln a�A (~xB)� ln a�A (~yB))

2 + (ln a�B (~xA)� ln a�B (~yA))
2

=

s�
1

3
(~xB � ~yB)

�2
+

�
1

3
(~xA � ~yA)

�2
=
1

3
d (~x; ~y) � 1

3
d (x; y) ;

which implies that 0 � d (F (x) ; F (y)) � 1
3
d (x; y) for all x; y 2 R2. Thus, F is a contraction mapping and the Nash

Equilibrium exists and is unique.

Because the best-response function is constant if d0 exerts low e¤ort, ad0 < aLd0 , and if d
0 exerts high e¤ort,

ad0 > aHd0 , the Nash Equilibrium is fully determined. All that remains to be determined is the Nash Equilibrium

e¤ort for d when aLd0 � ad0 � aHd0 . There are three possible cases:

(1) If ad0 = a1�d0 > aLd0 , so that jHd0 j � e��d0 , then

ad = ~a
�
d

�
a1�d0
�
=
h
Z2dZd0e

�(�d+�d0 ) j
dj�d0�dq
2
d0qd

i 1
3
; (B15)

(2) If ad0 = a2�d0 < aHd0 , so that jHd0 j � e�d0 , then

ad = ~a
�
d

�
a2�d0
�
=
�
Z2dZd0e

��d j
dj�d0�dq
2
d0qd

� 1
3 ; (B16)

(3) if a1�d0 < ad0 < a2�d0 , so that jHd0 j 2
�
e��d0 ; e�d0

�
, then setting ad = ~a�d (ad0) and ad0 = ~a�d0 (ad), after solving

we obtain

ad = �ad �
�
e��dZ2d�d j
dj

� 3
8
�
e��d0Z2d0�d0 j
d0 j

� 1
8 [qdqd0 ]

1
2 : (B17)

Comparative statics follow by di¤erentiation.

Proof of Theorem 2. Because (19) binds and r = 0, HQ payo¤ �̂ is now equal to

�̂ =
X

d;d02fA;Bg;
d0 6=d

�
qdad � �dad

�
qd � q̂dd

�
� 
dad0

�
qd0 � q̂dd0

�
� a2d
2Zd

�
; (B18)
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where ad are the Nash-equilibrium e¤ort levels of Lemma 2. The proof is in two steps. First, we show that �̂ is

symmetric in 
d around zero; in the second step, we �nd the optimal contract under the restriction that 
d � 0.
Note that, from Lemma 1, q̂dd depends on 
d only through its absolute value, j
dj. Thus, from Lemma 2,

equilibrium action ad = �dZdq̂
d
d also depends on j
dj only. This implies the �rst term of the disagreement discount,

�dad
�
qd � q̂dd

�
, depends only on j
dj. We next show that, if 
d < 0, the second term of the disagreement discount,


dad0
�
qd0 � q̂dd0

�
, is unchanged by o¤ering cross pay, j
dj, rather than relative performance evaluation, 
d < 0. From

Lemma 1, let q̂d+d0 be the belief held by the DM when receiving j
dj instead of 
d < 0. We will show 
dad0
�
qd0 � q̂dd0

�
=

j
dj ad0
�
qd0 � q̂d+d0

�
. Consider in turn cases (iii), (iv) and (v) in Lemma 1.

First, in case (v) we have that Hd < �e�d and q̂dd0 =
�
2� e��d

�
qd0 . This implies that replacing 
d with j
dj

gives that jHdj > e�d and beliefs will be as in case (i). Thus, setting q̂d+d0 = e��dqd0 we obtain

j
dj ad0
�
qd0 � q̂d+d0

�
= j
dj ad0

�
1� e��d

�
qd0 = 
dad0

�
e��d � 1

�
qd0 = 
dad0

�
qd0 � q̂dd0

�
: (B19)

In case (iii), we have that jHdj < e��d . This implies that q̂d+d0 = q̂dd0 = qd0 , so

j
dj ad0
�
qd0 � q̂d+d0

�
= 
dad0

�
qd0 � q̂dd0

�
= 0: (B20)

In case (iv), Hd 2
�
�e�d ;�e��d

�
and q̂dd0 =

�
2�

h
e��d �dadqd

j
djad0qd0

i 1
2

�
qd0 , giving


dad0
�
qd0 � q̂dd0

�
= 
dad

 �
e��d�dadqd
j
dj ad0qd0

� 1
2

� 1
!
qd0 = j
dj ad0

 
1�

�
e��d�dadqd
j
dj ad0qd0

� 1
2

!
qd0 : (B21)

This implies that replacing 
d with j
dj, beliefs will be as in case (ii). Thus, setting q̂d+d0 =
h
e��d �dadqd

j
djad0qd0

i 1
2
qd0 we

obtain

j
dj ad0
�
qd0 � q̂d+d0

�
= 
dad0

�
qd0 � q̂dd0

�
: (B22)

Therefore, �̂(
d) = �̂(j
dj) and �̂ is symmetric in 
d around zero.
Because HQ is indi¤erent between j
dj and 
d, it is su¢ cient to consider 
d � 0. If 
d > e�d �dadqd

ad0qd0
, division

manager beliefs are in case (i) of Lemma 1, with q̂dd = qd and q̂dd0 = e��dqd0 , giving ad = �dZdqd. Thus,
@�̂
@
d

=

�ad0qd0
�
1� e��d

�
< 0, and setting 
d > e�d �dadqd

ad0qd0
is not optimal. Similarly, if 
d < e��d �dadqd

ad0qd0
, division manager

beliefs are in case (iii) of Lemma 1, with q̂dd = e��dqd and q̂dd0 = qd0 , giving ad = �dZde
��dqd. In addition, q̂dd0 = qd0

and q̂dd = e��dqd together imply that @�̂
@
d

= 0 and it is weakly optimal to set 
d � e��d �dadqd
ad0qd0

. This implies that

HQ set e��d �dadqd
ad0qd0

� 
d � e�d �dadqd
ad0qd0

and induce beliefs that are in case (ii) of 1, with Hd 2
�
e��d ; e�d

�
.

Because the participation constraint binds, HQ objective function becomes

�̂ = (1� bA � bB)
0Q�ad +

�
ûA(�aA; q̂

A)� sA
�
+
�
ûB(�aB ; q̂

B)� sB
�
: (B23)

where ûd(�ad; q̂d) = minq̂d2Kq̂
d
ûd, with ûd = sd + �d�adq̂

d
d + 
d�ad0 q̂

d
d0 �

�a2d
2Zd

= 0 and where �ad is the Nash equilibrium

given by (B17) in the proof of Lemma 2. This implies that

d�̂

d�d
= �qd�ad + (1� �d � 
d0) qd

@�ad
@�d

+ (1� �d0 � 
d) qd0
@�ad0

@�d
(B24)

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:

Because @ûd
@�d

= �adq̂
d
d ,

@ûd
@�ad0

= 
dq̂
d
d0 , and

@�ad0
@�d

=
�ad0
8�d

, by applying the envelope theorem on ûd(�ad; q̂d), we obtain that

dûd(�ad; q̂
d(�ad; wd))

d�d
=
@ûd
@�d

+
@ûd
@�ad0

@�ad0

@�d
= �adq̂

d
d + 
dq̂

d
d0
�ad0

8�d
: (B25)

Similarly, because @ûd0
@�d

= 0, @ûd0
@�ad

= 
d0 q̂
d0
d , and

@�ad
@�d

= 3�ad
8�d

, by applying the envelope theorem on ûd0(�ad0 ; q̂
d0), we

obtain that
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
=
@ûd0

@�d
+
@ûd0

@�ad

@�ad
@�d

= 
d0 q̂
d0
d
3�ad
8�d

: (B26)
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Together, (B25) and (B26) give that

d�̂

d�d
= ��ad

�
qd � q̂dd

�
+ (1� �d � 
d0) qd

3�ad
8�d

+ (1� �d0 � 
d) qd0
�ad0

8�d
(B27)

+
dq̂
d
d0
�ad0

8�d
+ 
d0 q̂

d0
d
3�ad
8�d

:

Consider now 
d. We have that

d�̂

d
d
= �qd0�ad0 + (1� �d � 
d0) qd

@�ad
@
d

+ (1� �d0 � 
d) qd0
@�ad0

@
d
(B28)

+
dûd(�ad; q̂

d(�ad; wd))

d
d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d
d
:

Because @ûd
@
d

= �ad0 q̂
d
d0 ,

@ûd
@�ad0

= 
dq̂
d
d0 , and

@�ad0
@
d

=
�ad0
8
d
, by applying the envelope theorem on ûd(�ad; q̂d), we obtain that

dûd(�ad; q̂
d(ad; wd))

d
d
=
@ûd
@
d

+
@ûd
@�ad0

@�ad0

@
d
= �ad0 q̂

d
d0 + 
dq̂

d
d0
�ad0

8
d
: (B29)

Similarly, because @ûd0
@
d

= 0, @ûd0
@�ad

= 
d0 q̂
d0
d , and

@�ad
@
d

= 3�ad
8
d
, by applying the envelope theorem on ûd0(�ad0 ; q̂

d0), we

obtain that
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d
d
=
@ûd0

@
d
+
@ûd0

@�ad

@�ad
@
d

= 
d0 q̂
d0
d
3�ad
8
d

: (B30)

Together, (B29) and (B30) give that

d�̂

d
d
= ��ad0

�
qd0 � q̂dd0

�
+ (1� �d � 
d0) qd

3�ad
8
d

+ (1� �d0 � 
d) qd0
�ad0

8
d
(B31)

+
dq̂
d
d0
�ad0

8
d
+ 
d0 q̂

d0
d
3�ad
8
d

:

Thus, from (B27) and (B31) we obtain the �rst-order conditions:

d�̂

d�d
= ��ad

�
qd � q̂dd

�
+
�d

�d
= 0;

d�̂

d
d
= ��ad0

�
qd0 � q̂dd0

�
+
�d


d
= 0; (B32)

where �d � (1� �d � 
d0) qd
3�ad
8
+ (1� �d0 � 
d) qd0

�ad0
8
+ 
dq̂

d
d0
�ad0
8
+ 
d0 q̂

d0
d
3�ad
8
, giving

�d�ad
�
qd � q̂dd

�
= 
d0�ad0

�
qd0 � q̂dd0

�
: (B33)

Because, from Lemma 1, �d�adq̂
d
d = 
d�ad0 q̂

d
d0 , we have that (B33) implies that �d�adqd = 
d�ad0qd0 and thus that Hd = 1,

leading to q̂dd = q̂dd0 = e�
�d
2 qd and �ad = e�

�d
2 �dZdqd. Substituting the values of 
d and �ad into HQ objective, we

obtain

�̂ =
X

d;d02fA;Bg;
d0 6=d

"
�dZdqdq̂

d
d � 2�2dZdq̂

d
d

�
qd � q̂dd

�
�
�2dZd

�
q̂dd
�2

2

#
; (B34)

Di¤erentiating, we obtain
d�̂

d�d
= Zdqdq̂

d
d � 4�dZdq̂

d
d

�
qd � q̂dd

�
� �dZd

�
q̂dd

�2
= 0; (B35)

giving

�d =
1

1 + 3
�
1� q̂dd=qd

� : (B36)

Finally, setting Hd = 1 gives


d =
�adqd
�ad0qd0

�d = �d�d; where �d �
�adqd
�ad0qd0

: (B37)

Substituting for the values of �ad and �ad0 , given the expression for beliefs in Lemma 1, we obtain

�d =
1� 3

�
1� q̂d

0
d0=qd0

�
1� 3

�
1� q̂dd=qd

� q̂dd=qd

q̂d
0
d0 qd0

Zdq
2
d

Zd0q2d0
: (B38)

If HQ implement the symmetric contract, with 
d = � �adq
d
d

�ad0q
d
d0
�d, we obtain that q̂

d
d0 =

�
2� e�

�d
2

�
qd0 . Thus j
dj =

10
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�d�d. If divisions are symmetric, and condition (S) holds, �d = 1. Comparative statics follow by direct di¤erentiation.

Proof of Theorem 3. Because the participation constraint (19) binds, HQ payo¤, �̂, now is equal toX
d;d02fA;Bg

d0 6=d

"
(1� �d � 
d0) qdad + �dadq̂

d
d + 
dad0 q̂

d
d0 �

a2d
2Zd

�
r�2

�
�2d + 2�d
d�+ 
2d

�
2

#
(B39)

where faA; aBg are the Nash equilibrium e¤ort levels of Lemma 2.

Di¤erent from the case of Theorem 2, because of the presence of the last term, HQ objective function �̂ admits

multiple strict local maxima. The proof therefore proceeds in two steps. First, we consider candidate optimal

contracts that induce division managers to hold one of four possible con�gurations of beliefs (implied by Lemma 1).

Speci�cally, we consider contracts as follows. Case (A): a small exposure to the other division leading to jHdj < e��d ,

corresponding to case (iii) of Lemma 1; Case (B): a moderate positive exposure to the other division, leading to

Hd 2
�
e��d ; e�d

�
, corresponding to case (ii) of Lemma 1; Case (C): a moderate negative exposure to the other

division, leading to Hd 2
�
�e�d ;�e��d

�
, corresponding to case (iv) of Lemma 1; Case (D): a large (negative or

positive) exposure to the other division, leading to jHdj > e�d corresponding to cases (i) and (v) of Lemma 1.

Second, we compare payo¤s to HQ from optimal contracts in these regions and we determine the globally optimal

contract.

Case (A): If jHdj < e��d , have q̂dd = e��dqd and q̂dd0 = qd0 , which do not depend on 
d. Similarly, by Lemma 2,

ad = �dZde
��dqd, which does not depend on 
d as well. Therefore, setting

@�̂

@
d
= �r�2 (��d + 
d) = 0 (B40)

gives 
d = ���d and 
d is set to hedge risk with no e¤ect on incentives. Substituting in �̂ and di¤erentiating we
obtain

@�̂

@�d
= (1� 2�d)Zdqq̂

d
d + �dZd

�
q̂dd

�2
� r�2�d

�
1� �2

�
(B41)

Therefore

�1d �
1

1 +
�
1� q̂dd=q

�
+ r�2 (1� �2) =(Zqq̂dd)

: (B42)

After substitution, this gives HQ payo¤ under condition (S)

�̂1 �
�
e��Zq2

�2
(2� e��) e��Zq2 + r�2 (1� �2)

: (B43)

Case (B): If Hd 2
�
e��; e�

�
, we can express the payo¤ to HQ as

�̂ = (1� bA � bB)
0Qa+

�
ûA(aA; q̂

A(aA; wA))� sA
�
+
�
ûB(aB ; q̂

B(aB ; wB))� sB
�
; (B44)

where ûd(ad; q̂d(ad; wd)) = minq̂d2Kq̂
d
ûd, with

ûd(ad; q̂
d(ad; wd)) = �dadq̂

d
d + 
dad0 q̂

d
d0 �

r�2

2

�
�2d + 2��d
d + 
2d

�
� a2d
2Zd

= 0; (B45)

and where �ad is the Nash equilibrium given by (B17). Because ûd is strictly concave and the minimum operator is

concave, ûd(ad; q̂d(ad; wd)) is strictly concave. Therefore, �̂ is strictly concave as well. Thus, �rst-order conditions of

optimality are su¢ cient for a local optimum. Similar to the proof of Theorem 2, we have

d�̂

d�d
= �qd�ad + (1� �d � 
d0) qd

@�ad
@�d

+ (1� �d0 � 
d) qd0
@�ad0

@�d
(B46)

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:

In this region, from (B17), we have @�ad
@�d

= 3�ad
8�d

and @�ad0
@�d

=
�ad0
8�d

. Because @ûd
@�ad0

= 
dq̂
d
d0 and

@ûd
@�d

= adq̂
d
d �
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r�2 (�d + �
d), by applying the envelope theorem on ûd(�ad; q̂d):

dûd(�ad; q̂
d(�ad; wd))

d�d
= adq̂

d
d � r�2 (�d + �
d) + 
dq̂

d
d0
�ad0

8�d
: (B47)

Similarly, because @ûd0
@�d

= 0 and @ûd0
@�ad

= 
d0 q̂
d0
d , from (B47) and (B26) we obtain

d�̂

d�d
= �ad

�
qd � q̂dd

�
+ (1� �d � 
d0) qd

3�ad
8�d

+ (1� �d0 � 
d) qd0
�ad0

8�d
(B48)

�r�2 (�d + �
d) + 
dq̂
d
d0
�ad0

8�d
+ 
d0 q̂

d0
d
3�ad
8�d

:

Consider now 
d. We have that

d�̂

d
d
= �qd0�ad0 + (1� �d � 
d0) qd

@�ad
@
d

+ (1� �d0 � 
d) qd0
@�ad0

@
d
(B49)

+
dûd(�ad; q̂

d(�ad; wd))

d
d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d
d
:

Because @ûd
@
d

= �ad0 q̂
d
d0 ,

@ûd
@�ad0

= 
dq̂
d
d0 , and

@�ad0
@
d

=
�ad0
8
d
, by applying the envelope theorem on ûd(�ad; q̂d), we obtain that

dûd(�ad; q̂
d(ad; wd))

d
d
= ad0 q̂

d
d0 � r�2 (
d + ��d) + 
dq̂

d
d0
�ad0

8
d
: (B50)

Similarly, because @ûd0
@
d

= 0, @ûd0
@�ad

= 
d0 q̂
d0
d , and

@�ad
@
d

= 3�ad
8
d
, from (B50) and (B30) we obtain

d�̂

d
d
= ��ad0

�
qd0 � q̂dd0

�
+ (1� �d � 
d0) qd

3�ad
8
d

+ (1� �d0 � 
d) qd0
�ad0

8
d
(B51)

�r�2 (
d + ��d) + 
dq̂
d
d0
�ad0

8
d
+ 
d0 q̂

d0
d
3�ad
8
d

:

Thus, from (B48) and (B51), we obtain the �rst-order conditions

d�̂

d�d
= ��ad

�
qd � q̂dd

�
� r�2 (�d + �
d) +

�d

�d
= 0; (B52)

d�̂

d
d
= ��ad0

�
qd0 � q̂dd0

�
� r�2 (
d + ��d) +

�d


d
= 0;

where �d � (1� �d � 
d0) qd
3�ad
8
+ (1� �d0 � 
d) qd0

�ad0
8
+ 
dq̂

d
d0
�ad0
8
+ 
d0 q̂

d0
d
3�ad
8
, giving

�d�ad
�
qd � q̂dd

�
+ r�2

�
�2d + �
d�d

�
= 
d�ad0

�
qd0 � q̂dd0

�
+ r�2

�

2d + ��d
d

�
: (B53)

By Lemma 1, we have that �d�adq̂
d
d = 
d�ad0 q̂

d
d0 , which implies that

�d�adqd + r�2�2d = 
d�ad0qd0 + r�2
2d (B54)

We will guess and verify that, due to the symmetry condition (S), it is optimal to implement symmetric e¤ort,

�ad = �ad0 = �a, and that qd = q, �d = �, and Zd = Z. De�ne f (x) � x�aq + r�2x2. Note f 0 (x) = �aq + 2r�2x > 0 for

x > 0, so that f is monotonic over positive numbers and f (
d) = f (�d) if and only if 
d = �d. Thus, q̂
d
d = q̂dd0 = e�

�
2 q

and �ad = e�
�
2 Z�

3
4
d �

1
4
d0q. In order to optimally implement the same e¤ort, it must be that �d = �d0 , so �a = e�

�
2 Z�q.

Thus, we obtain the �rst-order condition

d�̂

d�d
= �Z�dq̂

d
d

�
q � q̂dd

�
+ (1� 2�d) qq̂

d
d
Z

2
� r�2�d (1 + �) +

Z�d
�
q̂dd
�2

2
= 0: (B55)

Therefore

�2d �
1

1 + 3
�
1� q̂dd=q

�
+ 2r�2 (1� j�j) =(Zqq̂dd)

: (B56)

After substitution, this gives HQ payo¤

�̂2 � Z2e��q4

Ze�
�
2 q2

�
4� 3e�

�
2

�
+ 2r�2 (1 + �)

: (B57)
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Because �d is the same for both divisions, this veri�es that a is symmetric. Because HQ objective �̂ is strictly

concave on this region, there is only one solution on this region, which implies that the symmetric solution is the

unique solution.

Case (C): Consider Hd 2
�
�e�;�e��

�
with �d > 0 > 
d. Following the same process as in case (B) above, we

have

d�̂

d�d
= �qd�ad + (1� �d � 
d0) qd

@�ad
@�d

+ (1� �d0 � 
d) qd0
@�ad0

@�d
(B58)

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:

Because in this region @�ad
@�d

= 3�ad
8�d

and @�ad0
@�d

=
�ad0
8�d

, from (B47) and (B26) we obtain that

d�̂

d�d
= �ad

�
qd � q̂dd

�
+ (1� �d � 
d0) qd

3�ad
8�d

+ (1� �d0 � 
d) qd0
�ad0

8�d
(B59)

�r�2 (�d + �
d) + 
dq̂
d
d0
�ad0

8�d
+ 
d0 q̂

d0
d
3�ad
8�d

:

Consider now 
d. We have that

d�̂

d
d
= �qd0�ad0 + (1� �d � 
d0) qd

@�ad
@
d

+ (1� �d0 � 
d) qd0
@�ad0

@
d
(B60)

+
dûd(�ad; q̂

d(�ad; wd))

d
d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d
d
:

Because @�ad
@
d

= 3�ad
8
d
, @�ad0
@
d

=
�ad0
8
d

and @ûd
@�ad0

= 
dq̂
d
d0 , by applying the envelope theorem on ûd0(�ad0 ; q̂

d0), we obtain that

dûd(�ad; q̂
d(ad; wd))

d
d
= ad0 q̂

d
d0 � r�2 (
d + ��d) + q̂dd0

�ad0

8
: (B61)

Similarly, because @ûd0
@
d

= 0, @ûd0
@�ad

= 
d0 q̂
d0
d , and

@�ad
@
d

= 3�ad
8
d
, by applying the envelope theorem on ûd0(�ad0 ; q̂

d0), we

obtain that
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d
d
= 
d0 q̂

d0
d
3�ad
8
d

: (B62)

Together (B61) and (B62) give that

d�̂

d
d
= ��ad0

�
qd0 � q̂dd0

�
+ (1� �d � 
d0) qd

3�ad
8
d

+ (1� �d0 � 
d) qd0
�ad0

8
d
(B63)

�r�2 (
d + ��d) + q̂dd0
�ad0

8
+ 
d0 q̂

d0
d
3�ad
8
d

:

Thus, from (B59) and (B63), we obtain the �rst-order conditions

d�̂

d�d
= ��ad

�
qd � q̂dd

�
� r�2 (�d + �
d) +

�d

�d
= 0; (B64)

d�̂

d
d
= ��ad0

�
qd0 � q̂dd0

�
� r�2 (
d + ��d) +

�d


d
= 0;

where �d � (1� �d � 
d0) qd
3�ad
8
+ (1� �d0 � 
d) qd0

�ad0
8
+ 
dq̂

d
d0
�ad0
8
+ 
d0 q̂

d0
d
3�ad
8
, giving

�d�ad
�
qd � q̂dd

�
+ r�2

�
�2d + �
d�d

�
= 
d�ad0

�
qd0 � q̂dd0

�
+ r�2

�

2d + ��d
d

�
: (B65)

Again, in this region, q̂dd =
�
e��d jHdj

� 1
2 qd; and q̂dd0 =

�
2�

�
e��d jHdj�1

� 1
2

�
qd0 , where Hd =


dad0qd0
�dadqd

. Thus,


d�ad0
�
qd0 � q̂dd0

�
= 
d�ad0qd0

�
e�

�d
2 jHdj�

1
2 � 1

�
= �
d�ad0qd0 � e�

�d
2 (�dadqd j
dj ad0qd0)

1
2 : (B66)

Similarly,

�d�adq̂
d
d = e�

�d
2 (�d�adqd j
dj �ad0qd0)

1
2 (B67)
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Therefore, after substitution, we obtain that (B65) becomes

�d�adqd + r�2�2d = j
dj �ad0qd0 + r�2
2d: (B68)

We guess again that HQ optimally implement the same e¤ort from both divisions, �ad = �ad0 , which implies that

f (j
dj) = f (�d), where again f (x) � x�aq + r�2x2. This implies that j
dj = �d, or equivalently, that 
d = ��d, so
that Hd = �1. Thus, q̂dd = e�

�
2 q; and q̂dd0 =

�
2� e�

�
2

�
q. To be consistent with this guess, it must be that �d0 = �d,

so that �ad = �ad0 = e�
�
2 Z�dq. Substituting in �̂ and di¤erentiating we obtain

d�̂

d�d
= �Z�dq̂

d
d

�
qd � q̂dd

�
� r�2� (1 + �) +

1

2
(1� 2�d)Zqq̂

d
d +

1

2
�dZ

�
q̂dd

�2
(B69)

�3d �
1

1 + 3(1� 3q̂dd=q) + 2r�2 (1� �) =(Zqq̂dd)
: (B70)

After substitution, this gives HQ payo¤

�̂3 � Z2e��q4

Ze�
�
2 q2

�
4� 3e�

�
2

�
+ 2r�2 (1� �)

; (B71)

which veri�es the guess that HQ optimally implements symmetric e¤ort. Comparing �̂2 and �̂3, observe that they

di¤er only for the �nal term in the denominator. Thus, �̂3 R �̂2 as � R 0, and

max
�
�̂2; �̂3

	
=

Z2e��q4

Ze�
�
2 q2

�
4� 3e�

�
2

�
+ 2r�2 (1� j�j)

: (B72)

Case (D): If 
d > e��d, we have that q̂
d
d = qd and q̂dd0 = e��qd0 , so

@�̂

@
d
= �ad0qd0

�
1� e��

�
� r�2 (��d + 
d) < 0; (B73)

and setting 
d > e��d is not optimal. Similarly, if 
d < �e��d, we have that q̂dd = qd and q̂dd0 =
�
2� e��

�
q

@�̂

@
d
= ad0qd0

�
1� e��

�
+ r�2 (j
dj � ��d) > 0 (B74)

and setting 
d < �e��d is not optimal. Thus, under symmetry, jHdj � e�.

The second and �nal step is to compare max
�
�̂2; �̂3

	
and �̂1. Let

f (�) � 2
�
1� e�

�
2

�2
Zq2 + r�2 (1� j�j) [e� (1 + j�j)� 2] ; (B75)

so that max
�
�̂2; �̂3

	
> �̂1 if and only if f > 0. Note f (0) = �r�2 (1� j�j)2 < 0,

f 0 (�) = 2
�
1� e�

�
2

�
e�

�
2 Zq2 + r�2e�

�
1� �2

�
> 0 (B76)

and lim�!1 f (�) = +1, which implies there is a unique �� such that max
�
�̂2; �̂3

	
> �̂1 if and only if � > ��. Thus,

for � � �� the optimal contract is in Case (A), with �d = �1d and 
d = ���d, leading to (23), and for � > �� the

optimal contract is in Case (B) for � < 0, with �d = �2d and j
dj = �d, or in Case (C) for � > 0, with �d = �3d and

j
dj = �d, leading to (24).

Finally, note that the �rst term of f , 2
�
1� e�

�
2

�2
Zq2, is strictly positive. Because f (��) = 0, it must be that

r�2 (1� j�j)
�
e�� (1 + j�j)� 2

�
< 0. This implies that @f

@r
= �2 (1� j�j) [e� (1 + j�j)� 2] < 0 in a neighborhood of ��.

By the implicit function theorem, we obtain that d��
dr
= �

@f
@r

f 0(�) > 0, and �� is increasing in r. Finally, for � 6= 0, de�ne
�� � � ln (j�j) and note that

f
�
��
�
= 2

�
1�

p
j�j
�2
Zq2 + r�2

(1� j�j)2

j�j > 0 (B77)

which implies that �� < ��.

Proof of Corollary 1. In the proof of Theorem 3, we showed that �dadqd + r�2�2d = j
dj ad0qd0 + r�2
2d. De�ne

f (�d; j
dj) = �dadqd + r�2�2d � j
dj ad0qd0 � r�2
2d, and note that in an optimal contract, f = 0. Note also that
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f (�d; �d) = �d (adqd � ad0qd0) > 0 and that

f

�
�d;

adqd
ad0qd0

�d

�
= r�2�2d

�
1� a2dq

2
d

a2d0q
2
d0

�
< 0: (B78)

Thus, f (�d; j
dj) = 0 implies j
dj 2 (�d;
adqd
ad0qd0

�d) for
adqd
ad0qd0

> 1, and j
dj 2 (
adqd
ad0qd0

�d; �d; ) for
adqd
ad0qd0

< 1.

Proof of Theorem 4. We guess and verify that headquarters have positive exposure to both divisions, �d =

1 � �d � 
d > 0, and that beliefs are as in case (ii) of Lemma 3, HHQ
d 2

�
e��HQ ; e�HQ

�
. Because (19) binds and

r = 0, HQ payo¤ �̂ is equal toX
d;d02fA;Bg

d 6=d0

h
adqd � (1� �d � 
d0) ad

�
qd � q̂HQd

�
� �dad

�
qd � q̂dd

�
� 
dad0

�
qd0 � q̂dd0

�i
; (B79)

where q̂d = (q̂dd ; q̂
d
d0) are division manager beliefs from Lemma 1, ad are the Nash equilibrium e¤ort levels from Lemma

2, and q̂HQ = (q̂HQd ; q̂HQd0 ) are HQ beliefs from Lemma 3. The proof is in two steps and is similar to the proof of

Theorem 2. First, we show that 
d < 0 is suboptimal; then we �nd the optimal contract for 
d � 0.
Similar to Theorem 2, switching from 
d to j
dj does not a¤ect q̂dd , and thus does not a¤ect ad and �dad

�
qd � q̂dd0

�
.

Letting again q̂d+d0 be the belief held by a division manager when receiving j
dj instead of 
d < 0, we have that


dad0
�
qd0 � q̂dd0

�
= j
dj ad0

�
qd0 � q̂d+d0

�
for all 
d < 0. This implies that

(1� �d0 � j
dj) ad0
�
qd0 � q̂HQd0

�
< (1� �d0 � 
d) ad0

�
qd0 � q̂HQd0

�
(B80)

for 
d < 0 because q̂
HQ
d0 < qd0 , and thus that setting 
d < 0 is dominated by o¤ering its absolute value, j
dj .

Because HQ strictly prefers o¤ering j
dj > 0 to all 
d < 0, it is su¢ cient to consider 
d � 0. If HQ sets 
d >

e�d �dadqd
ad0qd0

, division manager beliefs are in case (i) of Lemma 1, with q̂dd = qd and q̂dd0 = e��qd0 , giving ad = �dZdqd.

Thus, @�̂
@
d

= �ad0
�
q̂HQd0 � q̂dd0

�
< 0 because q̂HQd0 2

�
e��HQqd; qd

�
and �HQ < �, so setting 
d > e�d �dadqd

ad0qd0
is not

optimal. Similarly, if 0 < 
d < e��d �dadqd
ad0qd0

, division managers beliefs are in case (iii) of Lemma 1, with q̂dd = e��dqd

and q̂dd0 = qd, giving ad = �dZde
��dqd. In addition, @�̂

@
d
= ad0

�
q̂dd0 � q̂HQd0

�
> 0 because q̂HQd0 2

�
e��HQqd; qd

�
, so

setting 
d < e��d �dadqd
ad0qd0

is not optimal. This implies that HQ set e��d �dadqd
ad0qd0

� 
d � e�d �dadqd
ad0qd0

and induce beliefs

that are in case (ii) of Lemma 1, with Hd 2
�
e��; e�

�
.

Similar to the proof of Theorem 2, we can express HQ�s objective as

�̂ = �A�aAq̂
HQ
A + �B�aB q̂

HQ
B +

�
ûA(aA; q̂

A(aA; wA))� sA
�
+
�
ûB(aB ; q̂

B(aB ; wB))� sB
�
; (B81)

where �d = 1� �d � 
d0 , ûd(�ad; q̂d) = minq̂d2Kq̂
d
ûd, with ûd = sd + �d�adq̂

d
d + 
d�ad0 q̂

d
d0 �

�a2d
2Zd

= 0; and �ad is the Nash

equilibrium of division managers given by (B17) in the proof of Lemma 2. Consider �rst

d�̂

d�d
= �q̂HQd �ad + �d�ad

@q̂HQd

@�d
+ �d0�ad0

@q̂HQd0

@�d
+ �dq̂

HQ
d

@�ad
@�d

+ �d0 q̂
HQ
d0

@�ad0

@�d
(B82)

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:

Because q̂HQ solves (26), from the envelope theorem �d�ad
@q̂

HQ
d
@�d

+ �d0�ad0
@q̂

HQ

d0
@�d

= 0, which, together with (B25) and

(B26) from the proof of Theorem 2, gives

d�̂

d�d
= ��ad

�
q̂HQd � q̂dd

�
+ �dq̂

HQ
d

3ad
8�d

+ �d0 q̂
HQ
d0

ad0

8�d
+ 
dq̂

d
d0
�ad0

8�d
+ 
d0 q̂

d0
d
3�ad
8�d

: (B83)

Consider now 
d. Applying again the envelope theorem on �̂
�
q̂HQ

�
, we obtain

d�̂

d
d
= �q̂HQd0 �ad0 + �dq̂

HQ
d

@�ad
@
d

+ �d0 q̂
HQ
d0

@�ad0

@
d
(B84)

+
dûd(�ad; q̂

d(�ad; wd))

d
d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d
d
:
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Substituting (B29) and (B30) from the proof of Theorem 2 gives

d�̂

d
d
= ��ad0

�
q̂HQd0 � q̂dd0

�
+ �dq̂

HQ
d

3�ad
8
d

+ �d0 q̂
HQ
d0

�ad0

8
d
+ 
dq̂

d
d0
�ad0

8
d
+ 
d0 q̂

d0
d
3�ad
8
d

: (B85)

Thus, from (B83) and (B85) we obtain the �rst-order conditions

d�̂

d�d
= ��ad

�
q̂HQd � q̂dd

�
+
�d

�d
= 0;

d�̂

d
d
= ��ad0

�
q̂HQd0 � q̂dd0

�
+
�d


d
= 0; (B86)

where �d � �dq̂
HQ
d

3�ad
8
+ �d0 q̂

HQ
d0

�ad0
8
+ 
dq̂

d
d0
�ad0
8
+ 
d0 q̂

d0
d
3�ad
8
, giving

�d�ad
�
q̂HQd � q̂dd

�
= 
d0�ad0

�
q̂HQd0 � q̂dd0

�
: (B87)

Because, from Lemma 1, �d�adq̂
d
d = 
d�ad0 q̂

d
d0 , we have that (B87) implies �d�adq̂

HQ
d = 
d�ad0 q̂

HQ
d0 . Because H

HQ
d 2�

e��HQ ; e�HQ
�
, from Lemma 3, �dadq̂

HQ
d = �d0ad0 q̂

HQ
d0 . Thus,

ad0 q̂
HQ

d0

adq̂
HQ
d

= �d

d
= �d

�d0
. De�ne md such that �d = md�d,

so 
d = md�d0 , which implies �d = 1 � �d � 
d0 =
1

1+md+md0
, and thus �d = 
d =

md
1+md+md0

. Substituting in


d = �d into �a from Lemma 2, we have �ad =
�
Z3dZd0

� 1
4 e�

�
2 (�3d�d0)

1
4 (qdqd0)

1
2 . Substituting into HQ objective, we

obtain

�̂ = (ZAZB)
1
2 qAqB(�A�B)

1
2

�
2e�

�HQ
2 e�

�
2 (1� �A � �B) +

3

2
e��(�A + �B)

�
: (B88)

Di¤erentiating, we obtain the �rst-order condition

d�̂

d�d
= (ZAZB)

1
2 qdqd0(�

�1
d �d0)

1
2

�
e�

�HQ
2 (1� 3�d � �d0) e

� �
2 +

3

4
e��(3�d + �d0)

�
= 0; (B89)

giving

e
1
2 (���HQ) + 3

�
3

4
� e

1
2 (���HQ)

�
�d +

�
3

4
� e

1
2 (���HQ)

�
�d0 = 0: (B90)

Because this holds for both divisions, after solving we obtain

�A = �B =
1

4� 3e 12 (�HQ��)
=

1

1 + 3(1� q̂dd=q̂
HQ
d )

= 
d; (B91)

giving (31). Note � < 1
2
because �HQ < � � 2 ln 3

2
and HHQ

d = Ĥd 2
�
e��HQ ; e�HQ

�
. This implies that �ad =

(Z3dZd0)
1
4 e

� �
2 (qdqd0 )

1
2

4�3e
1
2 (�HQ��)

, and thus that q̂dd = e�
�
2 qdĤ

1
2
d and q̂HQd = e�

�HQ
2 qdĤ

1
2
d . Similarly, (29) and (30) follow by

direct substitution.

Proof of Theorems 5-7. Because the participation constraint (19) binds, we can express HQ�s payo¤ as

�̂ = �AaAq̂
HQ
A + �BaB q̂

HQ
B +

�
ûA(aA; q̂

A(aA; wA))� sA
�
+
�
ûB(aB ; q̂

B(aB ; wB))� sB
�
; (B92)

where �d = 1� �d � 
d0 and ûd(ad; q̂
d(ad; wd)) = minq̂d2Kq̂

d
ûd, with

ûd(ad; q̂
d(ad; wd)) = sd + �dadq̂

d
d + 
dad0 q̂

d
d0 �

r�2

2

�
�2d + 2��d
d + 
2d

�
� a2d
2Zd

= 0; (B93)

where q̂d is from Lemma 1, ad is from Lemma 2, and q̂HQ is from Lemma 3. Di¤erent from Theorem 4, and similar

to Theorem 3, because of division manager risk aversion, HQ objective function � admits again multiple strict local

maxima. The proof proceeds again in two steps. First, we consider candidate optimal contracts that induce division

managers to hold one of four possible con�gurations of beliefs (implied by Lemma 1) in the same four cases examined

in the proof of Theorem 3, Cases (A) to (D). Second, we compare payo¤s to HQ from optimal contracts in these

regions and we determine the globally optimal contract. We will show Case (D) is never optimal. Note that optimal

contracts falling in Case (A) correspond to Theorem 5, Case (B) corresponds to Theorem 6, Case (C) corresponds to

Theorem 7 part (i). Finally, the comparison of payo¤s from Case (B) and Case (C) gives Theorem 7 part (ii).

Case (A): If jHdj < e��d , have q̂dd = e��dqd and q̂dd0 = qd0 , which do not depend on 
d. Similarly, by Lemma 2,
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ad = �dZde
��dqd, which implies that both ad and ad0 do not depend on 
d. Therefore,

d�̂

d
d
= �q̂HQd0 ad0 + �dad

@q̂HQd

@
d
+ �d0ad0

@q̂HQd0

@
d
+ �dq̂

HQ
d

@ad
@
d

+ �d0 q̂
HQ
d0

@ad0

@
d
(B94)

+
dûd(ad; q̂

d(ad; wd))

d
d
+
dûd0(ad0 ; q̂

d0(ad0 ; wd0))

d
d
;

where, by the envelope theorem on �̂, we have �dad
@q̂

HQ
d
@
d

+ �d0ad0
@q̂

HQ

d0
@
d

= 0. In addition, on this region, @ad
@
d

=

@ad0
@
d

= 0, which implies that dûd(ad;q̂
d(ad;wd))
d
d

= @û
@
d

= ad0 q̂
d
d0 � r�2 (��d + 
d) and

dûd0 (ad0 ;q̂
d0 (ad0 ;wd0 ))
d
d

=
@ûd0
@
d

= 0.

Thus,
@�̂

@
d
= ad0

�
qd0 � q̂HQd0

�
� r�2 (��d + 
d) : (B95)

Because HQ has long exposure to the symmetric divisions, q̂HQd = q̂HQd0 = e�
�HQ
2 q. Thus, @�̂

@
d
= 0 if and only if


 = �M�, where M � � � �� and �� � Zq̂dd
r�2

�
qd0 � q̂HQd0

�
= e��Zq2

r�2

�
1� e�

�HQ
2

�
. Following a similar approach, we

obtain
d�̂

d�d
= q̂dd q̂

HQ
d Z (1� 2�d)�M�d

�
qd0 � q̂HQd0

�
q̂ddZ + �dZ

�
q̂dd

�2
� r�2�d (1� �M) : (B96)

Note 1 � �M = 1 � �2 + ��� and 1 � 2�M +M2 = 1 � �2 + ��2, so 1 � �M = 1 � 2�M +M2 + �� (�� ��). Also,
r�2�d�� (�� ��) = Z

�
qd0 � q̂HQd0

�
q̂dd (�� ��). Thus, we obtain the �rst-order condition

d�̂

d�d
= q̂dd q̂

HQ
d Z (1� 2�d) + �dZ

�
q̂dd

�2
(B97)

�2M�d

�
qd0 � q̂HQd0

�
q̂ddZ � r�2�d

�
1� 2�M +M2� = 0;

which implies

�4d �
1

1 + 2(�� ��)
�

q̂d
d0

q̂
HQ

d0
� 1
�
+

�
1� q̂d

d

q̂
HQ
d

�
+

r�2(1��2+��2)
Zq̂

HQ
d

q̂d
d

; (B98)

giving (32). After substitution, this gives HQ payo¤

�̂4 � e�(�HQ+2�)Z2q4�
2M + 2 (1�M) e�

�HQ
2 � e��

�
e��Zq2 + r�2 (1� 2�M +M2)

: (B99)

Case (B): If Hd 2
�
e��; e�

�
, as in the proof of Theorem 4, applying the envelope theorem on �̂

�
q̂HQ

�
, we have

d�̂

d�d
= �q̂HQd �ad + (1� �d � 
d0) q̂

HQ
d

@�ad
@�d

+ (1� �d0 � 
d) q̂
HQ
d0

@�ad0

@�d
(B100)

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:

Because in this region @�ad
@�d

= 3�ad
8�d

and @�ad0
@�d

=
�ad0
8�d

, from (B47) and (B26), we have

d�̂

d�d
= �ad

�
q̂HQd � q̂dd

�
+ (1� �d � 
d0) q̂

HQ
d

3�ad
8�d

+ (1� �d0 � 
d) q̂
HQ
d0

�ad0

8�d

�r�2 (�d + �
d) + 
dq̂
d
d0
�ad0

8�d
+ 
d0 q̂

d0
d
3�ad
8�d

: (B101)

Consider now 
d. Applying again the envelope theorem on �̂
�
q̂HQ

�
, we have

d�̂

d
d
= �qd0�ad0 + (1� �d � 
d0) q̂

HQ
d

@�ad
@
d

+ (1� �d0 � 
d) q̂
HQ
d0

@�ad0

@
d
(B102)

+
dûd(�ad; q̂

d(�ad; wd))

d
d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d
d
:
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Because in this region @�ad
@
d

= 3�ad
8
d

and @�ad0
@
d

=
�ad0
8
d
, from (B50) and (B30), we have that

d�̂

d
d
= ��ad0

�
qd0 � q̂dd0

�
+ (1� �d � 
d0) q̂

HQ
d

3�ad
8
d

+ (1� �d0 � 
d) q̂
HQ
d0

�ad0

8
d

�r�2 (
d + ��d) + 
dq̂
d
d0
�ad0

8
d
+ 
d0 q̂

d0
d
3�ad
8
d

: (B103)

Thus, from (B101) and (B103) we obtain the �rst-order conditions

d�̂

d�d
= �ad

�
q̂HQd � q̂dd

�
� r�2 (�d + �
d) +

�d

�d
= 0 (B104)

d�̂

d
d
= �ad0

�
q̂HQd0 � q̂dd0

�
� r�2 (��d + 
d) +

�d


d
= 0;

where �d = �dq̂
HQ
d

3ad
8
+ �d0 q̂

HQ
d0

ad0
8
+ 
dq̂

d
d0
ad0
8
+ 
d0 q̂

d0
d
3ad
8
, giving

�dad
�
q̂HQd � q̂dd

�
+ r�2

�
�2d + �
d�d

�
= 
dad0

�
q̂HQd0 � q̂dd0

�
+ r�2

�
�
d�d + 
2d

�
(B105)

From Lemma 1, we have �dadq̂
d
d = 
dad0 q̂

d
d0 . Also, because �d > 0 and HQ has beliefs as in case (ii) of Lemma 3,

with �dadq̂
HQ
d = �d0ad0 q̂

HQ
d0 , we have

�dadq̂
HQ
d + r�2�2d = 
d

�d
�d0

adq̂
HQ
d + r�2
2d: (B106)

We now show that �A = �B . Suppose to the contrary that �A > �B . Because (B106) holds for both divisions,

�A > 
A but �B < 
B . This would imply, however, that �A = 1 � �A � 
B < 1 � �B � 
A = �B , which is a

contradiction. Similarly, �A < �B would also imply a contradiction. Thus, �A = �B . Further, this implies�
adq̂

HQ
d + r�2 (�d + 
d)

�
(�d � 
d) = 0: (B107)

Since the �rst term is strictly positive, �d = 
d. Further, because the divisions are symmetric, the �rst-order

conditions are symmetric, which implies the existence of a symmetric solution, �A = �B . Because the problem

is strictly concave on this region, this must be the unique solution. Thus, aA = aB = e�
�
2 Z�q. Also, q̂HQd =

q̂HQd0 = e�
�HQ
2 q and q̂dd = q̂dd0 = e�

�
2 q, so �d = (1� 2�) e�

�HQ
2 q e

� �
2 Z�q
2

+ �e�
�
2 q e

� �
2 Z�q
2

, which gives the �rst-order

condition
d�̂

d�d
=
1

2
Zq̂dd q̂

HQ
d � 2�Zq̂dd q̂HQd +

3

2
Z�
�
q̂dd

�2
� r�2� (1 + �) = 0: (B108)

and thus

�5d �
1

1 + 3
�
1� q̂dd=q̂

HQ
d

�
+ 2r�2(1+�)

Zq̂
HQ
d

q̂d
d

= �̂; (B109)

giving (33). After substitution, this gives HQ payo¤

�̂5 � Z2q4e�(�HQ+�)

Zq2
�
4e�

(�HQ+�)

2 � 3e��
�
+ 2r�2 (1 + �)

: (B110)

Theorem 4 showed that 
d > 0 is optimal when r = 0. Similarly, 
d > 0 when � = 0. Further, for � < 0, granting


d < 0 results in a larger risk premium,
r�2

2

�
�2d + 2��d + 
2d

�
, than setting 
d > 0. Thus, Case (B) dominates Case

(C) for all � � 0. To conclude the proof of Theorem 5, note that �̂5 � �̂4 if and only if gL � 0, where

gL �
�
2M + 2 (1�M) e�

�HQ
2 + 2e�� � 4e�

(�HQ+�)

2

�
e��Zq2 (B111)

+r�2
�
1� 2�M +M2 � 2e�� (1 + �)

�
:

and note that gLj�=�HQ=0 = �r�2 (1 + �)2 < 0, which implies that �̂4 > �̂5 for � = �HQ = 0. Note also that
@gL
@M

= 2
�
1� e�

�HQ
2

�
e��Zq2 + 2r�2 (M � �) = 0, because M � �� �� and �� � e��Zq2

r�2

�
1� e�

�HQ
2

�
, and thus that

@gL
@�

= �gL + 2
�
e�

(�HQ+�)

2 � e��
�
e��Zq2 + r�2

�
1� 2�M +M2

�
> 0 for all gL < 0. This implies that, for a given

�HQ, there is a unique �̂ so that gL
�
�̂; �HQ

�
= 0, and for all � > �̂, it is gL > 0 and thus �̂5 > �̂4.
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Consider now �HQ. Note �rst that
@gL
@�HQ

=
�
2e�

�
2 � (1�M)

�
e�

�HQ
2 e��Zq2 > 0 for � < �0 � �2 ln 1

2
(1�M).

Substituting �0 in gL, we obtain

gLj�=�0 �
(1 +M)2 (1�M)2

8
Zq2 + r�2

�
1� 2�M +M2 � (1�M)2

4
(1 + �)

�
> 0; (B112)

where the inequality is obtained by noting that h (�) � 1 � 2�M +M2 � (1�M)2

4
(1 + �) is linear in � for any given

M , thus achieving its minimum at an endpoint. Because h (1) = 1
2
(1�M)2 > 0 and h (�1) = (1 +M)2 > 0, we

have that h (�) > 0 for all � 2 [�1; 1], and thus that gLj�=�0 > 0. This implies that in the neighborhood of gL = 0,

� < �0, and thus that @gL
@�HQ

> 0. Thus, there is a unique �̂HQ (allowing for the possibility that �̂HQ = 0) such that

�̂2 > �̂1 for � > �̂HQ, proving Theorem 5.

Case (C): Consider Hd 2
�
�e�;�e��

�
with �d > 0 > 
d. This case gives part (i) of Theorem 7.

d�̂

d�d
= �q̂HQd �ad + (1� �d � 
d0) q̂

HQ
d

@�ad
@�d

+ (1� �d0 � 
d) q̂
HQ
d0

@�ad0

@�d
(B113)

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:

Because @�ad
@�d

= 3�ad
8�d

and @�ad0
@�d

=
�ad0
8�d

, from (B47) and (B26) we have that

d�̂

d�d
= �ad

�
q̂HQd � q̂dd

�
+ (1� �d � 
d0) q̂

HQ
d

3�ad
8�d

+ (1� �d0 � 
d) q̂
HQ
d0

�ad0

8�d

�r�2 (�d + �
d) + 
dq̂
d
d0
�ad0

8�d
+ 
d0 q̂

d0
d
3�ad
8�d

: (B114)

Consider now 
d. We have that

d�̂

d
d
= �q̂HQd0 �ad0 + (1� �d � 
d0) q̂

HQ
d

@�ad
@
d

+ (1� �d0 � 
d) q̂
HQ
d0

@�ad0

@
d
(B115)

+
dûd(�ad; q̂

d(�ad; wd))

d
d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d
d
:

Because @�ad
@
d

= 3�ad
8
d
, @�ad0
@
d

=
�ad0
8
d
, from (B61) and (B30) we obtain

d�̂

d
d
= ��ad0

�
q̂HQd0 � q̂dd0

�
+ (1� �d � 
d0) q̂

HQ
d

3�ad
8
d

(B116)

+(1� �d0 � 
d) q̂
HQ
d0

�ad0

8
d
� r�2 (
d + ��d) + q̂dd0

�ad0

8
+ 
d0 q̂

d0
d
3�ad
8
d

:

From (B114) and (B116) we obtain the �rst-order conditions

d�̂

d�d
= ��ad

�
q̂HQd � q̂dd

�
� r�2 (�d + �
d) +

�d

�d
= 0; (B117)

d�̂

d
d
= ��ad0

�
q̂HQd0 � q̂dd0

�
� r�2 (
d + ��d) +

�d


d
= 0;

where �d � (1� �d � 
d0) q̂
HQ
d

3�ad
8
+ (1� �d0 � 
d) q̂

HQ
d0

�ad0
8
+ 
dq̂

d
d0
�ad0
8
+ 
d0 q̂

d0
d
3�ad
8
, giving

�d�ad
�
q̂HQd � q̂dd

�
+ r�2

�
�2d + �
d�d

�
= 
d�ad0

�
q̂HQd0 � q̂dd0

�
+ r�2

�

2d + ��d
d

�
: (B118)

Because the �rst-order conditions are symmetric, there exists a symmetric solution: �A = �B = � and 
A = 
B = 
.

Thus, ad = a = e�
�
2 Z�

1
2 j
j

1
2 q. This also implies that �A = �B , so q̂

HQ
d = e�

�HQ
2 q. Also, Hd =



�
, so q̂dd = e�

�
2
j
j

1
2

�
1
2
q

and q̂dd0 = (2� e�
�
2
�
1
2

j
j
1
2
)q. Thus, �aq̂dd = e�

�
2 �

1
2 j
j

1
2 aq and


a
�
q̂HQd0 � q̂dd0

�
= 
ae�

�HQ
2 q � 2
aq � e�

�
2 �

1
2 j
j

1
2 aq; (B119)

which implies that

�ae�
�HQ
2 q + r�2�2 = j
j

�
2� e�

�HQ
2

�
aq + r�2
2 (B120)
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Because 

�
2
�
�e�;�e��

�
, there exists �̂ 2

�
e��; e�

�
such that 
 = ��̂�. Substituting in a = e�

�
2 Z��̂

1
2 q, (B120) is

equivalent to f
�
�̂
�
= 0, where

f
�
�̂
�
�
h�
2e

�HQ
2 � 1

�
�̂ � 1

i
e�

�HQ
2 e�

�
2 �̂

1
2Zq2 + r�2

�
�̂
2 � 1

�
= 0: (B121)

Note f
�
e��

�
< 0 < f (1) = 2

h
e
�HQ
2 � 1

i
e�

�HQ+�

2 Zq2 and f 0 > 0, so �̂ 2
�
e��; 1

�
for �HQ > 0, but �̂ = 1 if

�HQ = 0. Comparative statics on �̂ follow because max
n
@f
@r
; @f
@�2

; @f
@�

o
< 0 < min

n
@f
@Z
; @f
@q
; @f
@�HQ

o
. Further, @�̂

@�
= 0

if and only if

� =
1

1 +

�
q̂d
d0

q̂
HQ

d0
� 1
�
�̂ + 2(1� q̂d

d

q̂
HQ
d

) +
2r�2(1���̂)
Zq̂

HQ
d

q̂d
d

; 
 = ��̂� < 0; (B122)

giving (34). After substitution in �̂, we have

�̂6 � e�(�HQ+�)�̂Z2q4

2e�
�HQ
2

h
1 +

�
2e

�HQ
2 � 1

�
�̂
i
e�

�
2 �̂

1
2Zq2 � 3e�� �̂q2Z + r�2

�
1� 2��̂ + �̂

2
� : (B123)

Note �̂6 � �̂4 if and only if gS � 0, where

gS �
�
2M + 2 (1�M) e�

�HQ
2 + 2e��

�
Zq2 + e�r�2

�
1� 2�M +M2� (B124)

�2e�
�HQ
2

h
1 +

�
2e

�HQ
2 � 1

�
�̂
i
e�

�
2 �̂

� 1
2Zq2 � r�2

�
1� 2��̂ + �̂

2
�

�̂
;
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2

h
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�
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�
�̂
i
�̂
� 1
2 � 2e��gZq2: (B125)

Note that
h
1 +

�
2e

�HQ
2 � 1

�
�̂
i
�̂
� 1
2 is increasing and larger than 2 for �̂ 2

�
e��; 1

�
, so @gS

@�
> 0. Also, @g

@�HQ
=

� (1�M) e�
�HQ
2 Zq2 +

�
1� �̂

�
e�

�HQ
2 e�

�
2 �̂

� 1
2Zq2. Because M < e�� < �̂, we have that @g

@�HQ
< 0. De�ning �̂,

�̂HQ1 so that gS
�
�̂; �̂HQ1

�
= 0, part (i) of Theorem 7 is proven.

Case (D): If 
d > e�d�d,
@ad
@
d

= 0, so @ad0
@
d

= 0, and thus @�̂
@
d

= �ad0
�
q̂HQd0 � q̂dd0

�
�r�2 (�� + 
) < 0, so 
 � e��.

Similarly, if 
d < �e�d�d,
@ad
@
d

=
@ad0
@
d

= 0, so d�̂
d
d

= �ad0
�
q̂HQd0 � q̂dd0

�
� r�2 (��d + 
d) : Because �d0 > 0 > 
d,

q̂HQd0 < qd0 < q̂dd0 . Also, � 2 (�1; 1). Thus, d�̂
d
d

> 0 for 
d < �e�d�d, so it must be that 
d � �e�d�d. Therefore,
Case (D) is suboptimal.

All that remains to be shown is part (ii) of Theorem 7, by showing that �̂5 � �̂6 when �HQ is large enough. Note

�̂5 � �̂6 if and only if gE � 0, where

gE � 2e�
�HQ
2
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�
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�
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2
�
=�̂

�4e�
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2 Zq2 � 2r�2 (1 + �) : (B126)

Note @gE
@�̂

=
f(�̂)
�̂
2 = 0. Note that

@gE
@�HQ

=

�
�
�
1� �̂

�
�̂
� 1
2 + 2

�
e�

(�HQ+�)

2 Zq2 � 0 (B127)

if and only if �̂ � 3� 2
p
2: Recall �̂ is strictly decreasing in �HQ. This implies that gE an inverse U-shaped function

of �HQ and that there is a unique �
0
HQ, de�ned by �̂(�

0
HQ) = 3 � 2

p
2, such that @gE

@�HQ
> 0 for �HQ < �0HQ and

@gE
@�HQ

< 0 for �HQ > �
0
HQ. Next, we will show that gE > 0 for all �HQ � �

0
HQ and, thus, for all �̂ � 3� 2

p
2. Note

that, from (B121), we can express (B126) as

gE = 4e
�
�HQ
2 e�

�
2

�
�̂
� 1
2 � 1

�
Zq2 +

f
�
�̂
�

�̂
+ 2r�2

�
1

�̂
� 2�� 1

�
: (B128)
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The �rst term is positive because �̂ < 1, the second term is zero, and the third term is positive for all 1
�̂
> 3, which

is satis�ed for �̂ � 3� 2
p
2 < 1

3
. This implies that gE(�HQ) > 0 for all �HQ � �

0
HQ. Thus, if gE (0) � 0, gE > 0 for

all �HQ > 0, and thus de�ne �̂HQ2 � 0; otherwise, if gE (0) < 0, there is a unique �̂HQ2 such that gE(�̂
HQ
2 ) = 0, with

�̂HQ2 < �
0
HQ, completing the proof of Theorem 7.

Proof of Corollary 2. Follows directly from equation (B107).
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