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Abstract

I examine the effects of the US Greenhouse Gas (GHG) Reporting Program, which

requires thousands of industrial facilities to measure and report their GHG emissions.

I show that facilities reduce their GHG emissions by 7.9% following the disclosure

of emissions data. The evidence indicates that benchmarking—whereby facilities use

the disclosures of their peers to assess their own relative GHG performance—spurs

emissions reductions. Firms’ concerns about future legislation appear to motivate this

behavior and measurement alone (without disclosure) seems not to reduce emissions.

My study highlights how mandatory GHG disclosure can create real effects for peers.
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1 Introduction

This paper studies the US Greenhouse Gas Reporting Program (US Program) to under-

stand how mandatory, granular disclosure affects the greenhouse gas (GHG) emissions of

reporting entities. It highlights the role of benchmarking in producing real effects, whereby

facilities reduce emissions after observing the GHG disclosures of their peers. Among envi-

ronmental, social, and governance (ESG) topics, climate change has received substantial at-

tention, given its potentially catastrophic risks [Eccles and Klimenko, 2019; Hoegh-Guldberg

et al., 2018]. GHG disclosure mandates are thus increasingly being adopted in different re-

gions of the world. Notably, the US Securities and Exchanges Commission (SEC) proposed

an extensive climate-related disclosure rule in 2022. The impact of disclosure in areas such

as toxic pollution [Chen, Hung, and Wang, 2018; Hamilton, 2005] suggests potential benefits

in the GHG setting.

Administrated by the US Environmental Protection Agency (EPA), the US Program was

implemented in 2010, broadly for use in guiding potential future GHG policies. It requires

thousands of US facilities to report their yearly emissions by GHG and production activity.

Disclosure frequently extends to the process or unit level (boiler, furnace, etc.). In 2010,

the US Program covered over 6,200 facilities that together emitted 3.2 billion tons of carbon

dioxide equivalent (T CO2e), roughly half of total US emissions. Importantly, although

facilities began measuring GHG emissions in 2010, the data were not publicly disclosed until

2012. The US Program therefore provides two years of pre-treatment data for this study

about the effects of public disclosure. Further, because most facilities did not previously

disclose GHG emissions, the US Program allows study of the impact of information provision

rather than of the aggregation or dissemination of existing information.

Pro-social disclosure rules often aim to create an action-cycle, whereby disclosed informa-

tion becomes embedded in the decisions of users, and user responses, in turn, feed back into

disclosers’ decisions [Hombach and Sellhorn, 2019; Weil, Fung, Graham, and Fagotto, 2006].

Although the US Program provides a significant amount of new information, there are rea-
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sons to question whether it produces a firm-level action-cycle around GHG emissions. The

US Program’s government website might lack salience to stakeholders, its facility-level data

are difficult to aggregate and exclude emissions generated abroad, and the diffuse nature of

global warming increases the coordination costs of stakeholder action around the disclosed

data. Yet, US Program data are also granular and informative about operations. Facilities

might therefore use their peers’ disclosures to identify red flags and drive down their own

emissions. Given these arguments, it bears empirical examination whether the US Program

reduces emissions.

I divide my analysis into three parts. First, I conduct difference-in-differences tests to

examine whether the US Program leads to GHG emissions reductions. Second, I present evi-

dence supporting benchmarking, whereby facilities use their peers’ disclosures when reducing

emissions. Third, I present supplementary evidence to more completely understand the US

Program’s effects, including the role of external stakeholder pressure and whether facilities

reduce emissions during the measurement phase of the US Program (prior to disclosure).

My difference-in-differences tests show that GHG emissions decline by 7.9% following US

Program disclosure. Canadian facilities provide a plausible counterfactual—they share many

commonalities with US facilities and have been disclosing their GHG emissions since 2004.

The estimation accounts for industry-specific trends and time-invariant facility characteris-

tics. Additional tests show that emissions reductions are not achieved by simply curbing

or offshoring economic activity. Rather, firms are seen to increase capital expenditures,

suggesting they make investments to reduce GHG emissions.

To assess benchmarking, I present four sets of supportive evidence. First, I show that

measures of within-industry emissions dispersion fall by 20-31%. This is consistent with

greater overlap in facilities’ information following disclosure. Second, I show that a facility’s

carbon intensity, relative to that of its peers (and revealed through disclosure), predicts its

subsequent emissions reduction. This is consistent with managers using disclosed data to

assess whether their facilities are more or less carbon intensive than peers. This relation
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only emerges when carbon intensity is constructed using data publicly observable at that

time (and not timelier data not yet publicly available at that time), which helps to rule out

nondisclosure-based explanations.

Third, I classify some facilities as benchmarkers based on how much their owner-firms

search for their peers’ financial information, à la Bernard, Blackburne, and Thornock [2020].

Benchmarkers have significantly larger GHG emissions reductions relative to nonbenchmark-

ers. Fourth, I employ a novel measure of industrial process-similarity using the techniques of

Fetter, Steck, Timmins, and Wrenn [2022]. GHG emissions reductions are largest when peer

facilities have lower initial similarity—this is consistent with the notion that pre-existing di-

versity in processes provides more scope for benchmarking to reduce emissions. I also show

that facilities in a peer group become more similar in terms of processes after US Program

disclosure. Further, they end up sharing more (less) processes with their carbon light (carbon

intense) peers.

Turning to supplementary evidence about the US Program’s effects, I first explore the role

of external pressure in motivating emissions reductions and benchmarking. I find a larger US

Program treatment effect when facilities have climate-progressive senators, supporting the

idea that facilities are attentive to the prospect of climate change-related legislation. Because

constituents can seek to influence climate policy [Gelles, 2022], I also consider the role of

political connections forged through campaign contributions. The US Program treatment

effect is larger for facilities connected to their House representatives, consistent with these

facilities being more concerned about legislation or trying to shed their representatives in a

favorable environmental light. In comparison, I find no strong evidence of emissions pressure

from capital markets, customers, or the general public around US Program disclosure.

My other supplementary evidence concerns the impact of emissions measurement and

anticipation of external pressure prior to US Program disclosure. Using Bayesian methods, I

estimate US facilities’ unobservable pre-US Program CO2 emissions (i.e., for years 2008 and

2009). Although I find a decline in CO2 emissions after US Program disclosure, there is no
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significant emissions response when facilities first start measuring and reporting their emis-

sions non-publicly to the EPA (prior to disclosure). These results underscore the importance

of public disclosure in producing emissions reductions.

Although GHG disclosure mandates have becoming increasingly common (see Australia,

the European Union, and the United Kingdom for policy examples), little is known about

their effects. My paper demonstrates that they can produce an important social benefit

by reducing GHG emissions. Though such reductions are not always the intent—the SEC

states that its proposed rule primarily informs investors—this paper nonetheless highlights

several points that may be informative for policy-makers interested in emissions reductions:

i) benchmarking can play an important role in reducing emissions, and considering the US

Program, this seems more likely when disclosed data are granular; ii) the prospect of climate-

legislation is a factor that facility managers likely consider when implementing emissions

reductions (Glazer and McMillan, 1992; Maxwell, Lyon, and Hackett, 2000; Suijs and Wiel-

houwer, 2019); and iii) measurement and reporting to the regulator alone might not affect

emissions. Recent work also highlights the potential of GHG disclosure mandates to reduce

emissions [Bauckloh, Klein, Pioch, and Schiemann, 2022; Downar, Ernstberger, Reichelstein,

Schwenen, and Zaklan, 2021; Jouvenot and Krueger, 2021; Matisoff, 2013; Yang, Muller, and

Liang, 2022]. Because these papers study emissions data that are already available in an-

other venue prior to the disclosure rules they study, they measure an effect incremental to

the one I measure.1

My paper also contributes to the literature on the real effects of ESG disclosure. First, it

measures the initial impact of information provision on the disclosed outcome, rather than

the impact of aggregating or disseminating information available elsewhere (e.g., Bennear

and Olmstead, 2008; Christensen, Floyd, Liu, and Maffett, 2017). Second, it documents the

effectiveness of disclosure with respect to an externality with large collective action costs

1Several papers also study the real effects of voluntary GHG emissions disclosures (e.g., Qian and Schal-
tegger, 2017; Bolton and Kacperczyk, 2021). This paper differs by estimating a treatment effect unconditional
on latent factors that might also drive emissions reductions (e.g., a desire to create institutional legitimacy;
Luo, 2019).
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and relatively low salience and immediacy, rather than a setting where emissions are toxic

and local (i.e., where effects are salient and stakeholders have low coordination costs) (e.g.,

Chen et al., 2018; Delmas, Montes-Sanchom, and Shimshack, 2010; Graham and Miller,

2001; Hamilton, 2005). Lastly, it shows that ESG disclosure can facilitate benchmarking.

Roychowdhury, Shroff, and Verdi [2019] note the difficulty of identifying peer effects, given

Manski, 1993’s reflection problem. Although there is some evidence that firms take cues from

rivals’ financial and operational disclosures (Durnev and Mangen, 2009; Fetter et al., 2022;

Grennan and Swanson, 2020; Li, 2016), firms’ ESG practices could vary markedly in moti-

vation (stakeholder orientation, alignment with financial objectives, virtue signaling, etc.),

leaving the utility of peers’ ESG disclosures less clear. Cao, Liang, and Zhan [2019] show

that firms improve their ESG performance after their peers pass ESG-focused resolutions.

They highlight a competitive concern about peers’ ESG performance but do not address the

role of disclosure regulation in promoting benchmarking.

2 Setting: The US GHG Reporting Program

The Consolidated Appropriations Act of 2008 provided funds for the US EPA to develop a

mandatory GHG reporting rule, covering most sectors of the US economy. The US Program’s

main goal is to collect data for use in potential GHG rule-making, including emissions pricing,

which had considerable support at that time [Richardson, 2012]. Based on its experiences

with programs such as the Toxic Release Inventory (TRI), the EPA also recognized that

the US Program could raise awareness of emissions among stakeholders and emitters, which

could facilitate emissions reductions [US EPA, 2009]. The EPA proposed a mandatory GHG

reporting rule on April 10, 2009, and, after soliciting comments, finalized a rule on October

30, 2009. Over this period and the following year, the prospects for US GHG emissions

pricing dimmed significantly.2 The US Program, however, remained intact.

2The posited reasons for this include high unemployment after the Great Recession, lobbying by high
emitters, the Senate’s refusal to vote on the Waxman-Markey Bill, the growing politicization of climate policy,
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The US Program took effect on January 1, 2010, with the first reports due for submission

to the EPA on September 30, 2011. The 2010 data were publicly disclosed by the EPA on

January 11, 2012. Figure 1 provides a timeline of the key dates as they relate to the empirical

tests. The US Program requires facilities to report their GHG emissions by specific gas,

coming from any of 41 source categories. Disclosure thresholds vary by source category, but

25,000T CO2e is the most common threshold. Depending on the source category, facilities

must disclose additional information at the sub-facility level (i.e., unit or process level). Thus

the US Program provides very granular data.3

US Program reports are self-certified by facilities (i.e., third-party verification is not

required). Nonetheless, the US Program does promote data quality. Its electronic reporting

platform provides real-time feedback about potential errors to reporting facilities. The EPA

then subjects reports to a series of electronic checks, after which it can question facilities

to understand any irregularities. Furthermore, the US Program is given force by the US

Clean Air Act, which lets the EPA levy penalties of up to $37,500 per day of a violation,

which includes failure to report emissions, failure to retain adequate records, and report

falsification. That said, the EPA has yet to take any enforcement action regarding the US

Program.

US Program data are publicly accessible in multiple formats. One is an interactive map

geared toward novice users. Facility-level data are also available in spreadsheet format. Ad-

vanced users can access the totality of US Program data by querying the EPA’s Envirofacts

and the Obama administration’s pivot towards healthcare, financial regulation, and energy independence.
3Examples of GHGs are carbon dioxide (CO2) and methane—CO2 is the chief GHG emitted by facilities.

Examples of source categories are stationary combustion and cement manufacturing. 25,000T CO2e is
equivalent to the emissions from the energy used by 2,200 homes in a year or 131 railroad cars of coal.

To assess whether a facility falls below an inclusion threshold, the EPA requires a submission of pen-and-
paper calculations based on the amount of resources consumed and default conversion factors. For facilities
included in the US Program, the EPA prescribes several measurement methods. For example, there are four
measurement tiers for measuring CO2 emissions from fossil fuel combustion. Larger emitting units must use
higher tiers. Tier 1 is based on the mass of fuel used and default laboratory factors. Tier 4, in contrast,
requires continuous emissions monitoring to directly measure CO2 emissions at a fixed cost of $25,000-$75,000
[Singh, Bacher, Song, Sotos, and Yin, 2015]. When reporting on stationary combustion, facilities must report
the following, among other things, for each combustion unit: its type (e.g., boiler, furnace), its maximum
thermal input power, the types of fuel it uses, its emissions, and any relevant emissions calculations. This
serves well to illustrate the granularity of US Program data.
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database. From direct communications with the EPA, the GHG portion of Envirofacts re-

ceived over 100,000 page-views from January 2013 to June 2020, indicating the data are

frequently accessed. The EPA also provides the names of reporting facilities’ highest-level

US owners, though the naming conventions are often inconsistent across years.

3 Related Literature and Hypothesis Development

ESG disclosure mandates span many areas, including workplace safety, public health,

and mineral extraction rights [Christensen et al., 2017; Jin and Leslie, 2003; Johnson, 2020;

Dranove, Kessler, McClellan, and Satterthwaite, 2003; Rauter, 2020]. Often, their goal

is to create an action-cycle, whereby disclosure affects the decisions of information users

(e.g., restaurant customers), and disclosing firms anticipate these decisions and change their

behavior accordingly.

As discussed in Section 2, the EPA recognizes the potential for an action-cycle to emerge

around the US Program. Potential users include regulators, the public, investors, and, as

will be discussed, peer facilities. In the environmental domain, mandatory disclosure has led

listed Chinese firms to reduce toxic SO2 and wastewater emissions [Chen et al., 2018] and

utilities to improve their environmental performance [Bennear and Olmstead, 2008; Delmas

et al., 2010]. The EPA’s TRI is perhaps the most studied pollution disclosure rule and is

credited for a dramatic decline in toxic emissions [Weil et al., 2006; Graham and Miller,

2001]. The TRI and US Program have similarities—both are administrated by the EPA,

do not target a specific stakeholder group, provide information at the facility level or finer,

and span a wide range of industries. As such, the TRI serves as a useful reference point

for conjectures about the US Program’s effects. The apparent success of the TRI and other

disclosures in improving environmental outcomes suggests that disclosure can play a role in

curbing GHG emissions too. This leads to the first hypothesis, expressed in alternate form

as follows:

7
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H1: Facilities reduce their GHG emissions following US Program disclosure.

A number of factors, however, militate against H1. The US Program’s presence on

a government website might lack the salience of financial statements or customer reports

[Bennear and Olmstead, 2008; Christensen et al., 2017]. Further, aggregation of facility-level

data is cumbersome and incompletely depicts a firm’s global emissions. Thus the potential

for external pressure at the firm level loses some force.4

Additionally, GHGs are quite different pollutants to those covered by the TRI and similar

EPA programs. The latter are toxic, making their effects (e.g., illness, acid rain) salient and

likely to trigger outrage. They also act locally, reducing the coordination costs of stakeholder

action (e.g., shaming, litigation) [Coase, 1960]. In contrast, GHG emissions are largely

nontoxic, and reducing them entails global coordination costs: each emitter contributes

only marginally to the global temperature, and affected stakeholders are widely dispersed.

Reducing emissions might also entail significant direct costs. Weighed against the cited

disclosure research, these factors highlight the importance of empirically testing the relation

between GHG disclosure and emissions.

Attention must also be paid to how emissions reductions could occur. Firms can mimic

the ESG behavior of their competitors, and target-setting plays an important role in GHG

emissions reduction strategies [Cao et al., 2019; Ioannou, Li, and Serafeim, 2016]. Connecting

these ideas with the US Program’s significant granularity, one hypothesis is that facilities

(perhaps with the help of engineering consultants) might be better able to assess their own

relative GHG performance once they have access to the US Program data of their peers. I

call this benchmarking. My second hypothesis, expressed in alternate form, is as follows:

H2: Facilities use their peers’ GHG emissions disclosures for benchmarking (i.e., to

4Online Appendix A1.1 describes the 766 letters about general stationary fuel combustion (the largest
GHG emissions source) that the EPA received after proposing the US Program. The vast majority are from
manufacturers arguing that reporting requirements are excessive and that reporting granularity should be
no finer than the facility level, owing to financial and proprietary cost concerns. Environmental advocates
submitted seven letters pushing for more comprehensive emissions reporting. A handful of state govern-
ment agencies submitted letters requiring clarification of the rules, and a few GHG consulting firms made
recommendations for measurement methods. No letters were from the investing community.
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better assess their own GHG performance).

Benchmarking could be driven by pressure from environmentally conscious stakehold-

ers, who have shown a concern for relative ESG performance [Clarkson, Li, Pinnuck, and

Richardson, 2015; Hartzmark and Sussman, 2019]. Fung and O’Rourke [2000] describe how

journalists and environmentalists fixated on the worst TRI performers. Facilities could

benchmark their GHG emissions because they expect that outsiders will likewise benchmark

these emissions.

Firms take cues from their peers’ disclosures in financial contexts [Foster, 1989; Shroff,

Verdi, and Yu, 2014]. They also occasionally forgo NPV-positive energy-efficiency improve-

ments, possibly due to incomplete information [McKinsey Global Energy and Materials,

2009; Gerarden, Newell, and Stavins, 2017]. Therefore profit and efficiency motives could

also drive benchmarking. Grennan and Swanson [2020] and Fetter et al. [2022] highlight such

behavior in fracking and hospital settings. External pressure and profit/efficiency motives

could coexist and interact, making it difficult to disentangle them. For example, exter-

nal pressure could lead firms to discover profitable improvements. H2 therefore considers

benchmarking generally.

4 GHG Emissions Reductions Following Disclosure

4.1 Control Sample

A credible estimation of the US Program’s real effects must account for other factors

that could lead facilities’ GHG emissions to decline (e.g., changes in customer demand, input

prices, and available production methods). To this end, I use Canadian facilities as a control

group. Canadian facilities emitting over 100,000T (50,000T) CO2e have been reporting their

GHG emissions to Environment Canada since 2004 (2009). The scope of both reporting

programs allows me to examine the US Program’s effect across a wide range of industries.5

5Other potential control groups include US facilities in state-level Programs, US power plants, and facili-
ties owned by firms reporting to the Carbon Disclosure Project. Online Appendix A2 discusses these groups
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Several features of the United States and Canada support their comparability in terms

of facility-level GHG output. First, both are developed countries, and the United States is

by far Canada’s largest trading partner; Online Appendix A2 Figure A1 shows that yearly

percentage changes in both countries’ GDPs move together closely. Thus many general

supply and demand shocks that affect GHG emissions should affect both countries similarly.

Second, the countries are culturally similar. Online Appendix A2 Figure A2 shows the co-

movement of climate change interest in both countries (measured using Google Trends).

This suggests that both countries’ facilities face similar patterns in public pressure about

GHG emissions. Third, both countries’ energy markets are highly integrated through an

extensive oil and gas pipeline network. Shocks to fossil fuel demand and supply should

therefore propagate across both countries. Finally, the countries’ environmental regulators

co-operate in terms of non-climate change issues, which affects facilities’ production costs

and technologies used and, in turn, their GHG emissions [Weiss, 1998].

If the comparability arguments above hold, the time-series of US and Canadian facilities

emissions should bear out parallel trends prior to US Program disclosure. Figure 2a supports

the validity of the parallel trends assumption. The figure plots mean logged GHG emissions

by country and year for this study’s sample. The two countries’ facilities’ emissions share

similar changes from 2010 to 2011, after which US facilities’ emissions steadily decline. To

assess parallel trends going further back, I estimate CO2 emissions for a subsample of US

facilities for the years 2008 to 2013. Section 6.3 discusses the estimation process. Figure 2b

shows that the trends in both countries’ facility CO2 emissions are roughly parallel prior to

disclosure and diverge noticeably following disclosure.

The availability of Canadian Program data does not necessarily negate the usefulness

of US Program data for benchmarking. First, the US Program requires granular unit- and

process-level disclosures, while the Canadian Program does not. Second, US facilities can

combine US Program data with their knowledge about local peers (details about their output

and highlights institutional features that hinder their use as control groups.
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of goods, regulatory pressures, etc.) to set more relevant benchmarks.6 US facility managers

arguably have less expertise about more distant Canadian facilities [Engelberg, Ozoguz, and

Wang, 2018].

4.2 Data and Descriptive Statistics

The US and Canadian Program’s facility-level GHG emissions spreadsheets provide the

main data used in this study.7 Power plants (NAICS code 2211) are excluded because

they are subject to detailed reporting requirements prior to the US Program. They also

face substantial regulatory incentives and scrutiny related to GHG emissions (see Online

Appendix A2). Municipal waste facilities (NAICS code 5622) are excluded because they emit

methane, with the emission rate driven by waste composition and by ambient conditions,

including pressure, rainfall, and temperature [Héroux, Guy, and Millette, 2010; Santhosh,

Lakshmikanthan, and Sivakumar Babu, 2017]. These factors potentially manifest differently

across the United States and Canada. I exclude California facilities because California

strictly regulates environmental issues, raising concerns about comparability with the rest

of the sample (see Online Appendix A2). Lastly, noncorporate entities are excluded because

benchmarking appeals to a notion of competition with peers. For noncorporate entities, it is

unclear what the ultimate operating objective is (e.g., customer service, cost-minimization,

profit-maximization, employment, or social welfare).

Table 1 shows data coverage across a range of industries and states/provinces. The

6For example, the manager of a US cement making facility might gauge how much cement a local peer
produces as they compete in the same market. When US Program data become public, the manager can
then assess whether his or her own facility uses more or less fuel, per unit of cement produced, than the peer.

7In 2011, GHGs from 10 additional source categories (e.g., electronics manufacturing, fluorinated GHG
production) became applicable for US Program reporting. Emissions from these source categories are ex-
cluded to maintain comparability across years and because several of these categories were not included in
the Canadian Program.

To code facility ownership type, data are obtained from the US and Canadian Programs about the high-
est parent owner from the respective country. I consider owners with ≥ 50% facility ownership and use
Bloomberg research reports to manually identify the global parent company. A global parent is coded as
public if it has a GVKEY in the Compustat database or has a quoted stock price. It is coded as noncorporate
if the parent’s name includes words such as ‘county’, ‘state’, ‘city’, or ‘university’. The remaining global
parents are coded as private. This process took between 50 to 100 hours, highlighting the difficulty (and
likely imperfections) in cleanly aggregating US Program emissions to the firm level.
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five most common industries and states/provinces account for 58% and 36% of the sample.

Though many industries have zero Canadian observations, 88% share an industry-year with

one or more observations from the other country. Table 2a shows that US facilities compose

90% of the sample and emit roughly half the amount of GHGs per facility (e11.0−11.8 − 1 =

−0.55), reflecting the larger size of the US industrial sector and the US Program’s lower

GHG reporting threshold. US facilities faced a similar average gas price and fewer GHG

efficiency regulations during the sample period.

4.3 Research Design

To test H1, which predicts a reduction in GHG emissions following US Program disclo-

sure, I estimate the following difference-in-differences equation using OLS:

GHGit = β11{t≥2012}t + β2USi + β31{t≥2012}t ∗ USi + γXit + ηi + ηkt + εit. (1)

I also conduct cross-sectional tests by estimating the following equation:

GHGit =β11{t≥2012}t + β2USi + β31{t≥2012}t ∗ USi+

β41{t≥2012}t ∗ USi ∗ 1{CROSS-SECTION}it + γXit + ηi + ηkt + εit. (2)

i, k, and t index facilities, four-digit NAICS industries, and years 2010 to 2013. GHG is

logged tons of CO2e emitted. US indicates US-located facilities, 1{t≥2012} indicates years 2012

and onward (2011 and onward for Massachusetts’ facilities, whose emissions were disclosed

a year earlier through a state-level program), and 1{CROSS-SECTION} indicates US facilities of

particular cross-sectional interest. GHG emissions are logged to account for scale differences

across facilities; as such, β3 approximates the percentage change in emissions following the

US Program’s first data disclosure. X denotes the control variables described below. The

use of facility and industry-year fixed effects means the estimation accounts for persistent
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facility characteristics and industry-level shocks. The industry definition is granular (e.g.,

3311: Iron and steel mills and ferro-alloy manufacturing). Standard errors are clustered by

industry-year to account for shocks cross-sectionally correlated within industries.

Logged GDP (value-added) is included at the two-digit NAICS-country-year level to

account for industry-region-specific shocks to demand and supply. The year-lagged-logged

regional natural gas price is included to account for variation in incentives to use natural

gas, which is more CO2-efficient than oil. Given that US natural gas production increased

after 2005 on account of hydraulic fracturing, a concern is that greater availability of natural

gas might lead US facilities to reduce their GHG emissions. I use prices from Dawn Ontario

and AECO Storage in Canada’s east and west, and Dominion South, Henry Hub, SoCal

Border, and Kern River in the United States’ northeast, south, west, and center. These data

come from SNL Financial and Alberta Energy Regulator. Lastly, the number of efficiency

incentives and regulations that are both applicable to a facility and implemented at the

federal or state levels are included. The regulations typically relate to building energy

use, and the incentives typically exist as rebates for energy efficiency improvements. These

data come from North Carolina State University’s DSIRE and Natural Resources Canada’s

Directory of Energy Efficiency and Alternative Energy Programs.

4.4 Emissions Reduction Findings

4.4.1 GHG Emissions Levels

Table 3 shows the results of estimating Equation 1, which tests for a GHG emissions

reduction for US facilities following US Program disclosure. Moving from Column 1 to

2 shows that facility and year fixed effects explain a large portion of the GHG emissions

variation. Column 3 shows that using industry-year fixed effects reduces the estimate on

β3 appreciably, highlighting the importance of controlling for industry-level shocks. Column

4 shows that including control variables slightly increases the estimated treatment effect.

Column 4 provides the baseline result: consistent with H1, US facilities reduce emissions by
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7.9% (e−0.082 − 1; p = 0.014), relative to Canadian facilities, following the first disclosure of

US Program data in 2012.8 This is a 4.1% standard deviation change in US facilities’ logged

GHG emissions or a 21% standard deviation change when GHG emissions are residualized

against the fixed effects (see DeHaan, 2021).

To explore the GHG emissions reduction dynamically, I estimate a version of Equation 1

in which the US dummy interacted with a sequence of dummies that indicate each sample

year except for 2011 (the reference year). Figure 3a plots this sequence of interactions. It

supports H1 by showing that the relative emissions differential stays close to zero until the

US Program’s first disclosure, after which US facilities display a relative decline in emissions.

Figure 3a also supports the parallel trends assumption.

Online Appendix A4 Table A2 shows the GHG emissions reduction result is not driven by

oil and gas facilities or the few states that have GHG emissions pricing. It is also robust to

including noncorporate facilities and municipal waste facilities, extending the sample window

forward to 2016, and using an entropy-balanced panel of facilities. Another concern might

be that emissions reductions are unlikely to materialize in a year. Longer lead-times do exist

for emissions reduction changes, such as retrofits of complex equipment for a new fuel type—

this is consistent with the continued decrease in emissions in Figure 3a in 2013. However,

less complex retrofits or replacements, maintenance, calibration and optimization, and other

behavioral changes can be implemented within a year.9

8For comparison, related papers—Downar et al. [2021], Jouvenot and Krueger [2021], and Yang et al.
[2022]—estimate 14%, 12%, and 7% emissions reductions. These studies capture the effects of dissemination
and aggregation of existing information, while my paper estimates a treatment effect for facilities that largely
had no emissions information available elsewhere.

Online Appendix A3 describes long-run emissions patterns following disclosure. Facilities that eventually
exit the US Program see a large emissions reduction of 33.2%. Later entrants to the US Program see a
significant emissions increase of 10.3%, consistent with these facilities often being growing ones.

9For example, Colket et al. [2012] report that a combustion control system and a sensor package retrofit
for a 25 MMBtu boiler at Watervliet Arsenal in New York State resulted in a 4% reduction in CO2 emissions.
Full deployment, including commissioning, was completed in three days.

14

Electronic copy available at: https://ssrn.com/abstract=3448904

https://bit.ly/3zs0kyn
https://bit.ly/3zs0kyn


4.4.2 Offshoring, Reduced Economic Activity, and Investments

Facilities could reduce reported GHG emissions by moving emissions generation abroad,

beyond the US Program’s reach. This explanation would not predict emissions reductions

in industries with less geographically mobile production (i.e., where the produced goods

have a high weight-to-value ratio or are fragile, or the raw materials are immobile). To

address this possibility, I estimate a version of Equation 2 that measures an incremental

emissions reduction for facilities in industries with less mobile production (e.g., cement and

concrete).10 Table 4 Column 1 shows that emissions reductions are concentrated in facilities

with relatively immobile production, which is inconsistent with the idea that reductions are

driven by offshoring.

Facilities could also achieve lower GHG emissions by curbing economic activity. To

address this possibility, I first produce a facility-level measure of carbon intensity (CO2

emissions per unit of goods produced). CO2 is largely produced by burning fuels. Online

Appendix A5 details this measure. Summarized briefly, I use the emissions of pollutants that

do not largely arise from burning fuels as a proxy for the quantity of goods produced. These

data come from the EPA’s National Emissions Inventory and Emissions Inventory System

(US NEI/EIS), which provides information about US facilities’ hazardous air emissions (not

GHGs), and Environment Canada’s National Pollutant Release Inventory. Importantly, the

US data are available at the facility-process-pollutant level. As an example, when paper and

pulp facilities convert wood chips to pulp, a chemical treatment produces volatile organic

compounds (VOCs). The idea is that producing the same amount of paper will produce the

same amount of VOCs, even if the fuel combustion step that heats the wood chips becomes

more efficient. Thus CO2 emissions can be scaled by VOC emissions to produce a carbon

intensity proxy for paper and pulp facilities.

10These industries are cement and concrete product manufacturing; converted paper product manufactur-
ing; glass and glass product manufacturing; metal ore mining; natural gas distribution; nonmetallic mineral
mining and quarrying; oil and gas extraction; pipeline transportation of natural gas; pulp, paper, and pa-
perboard mills; support activities for mining; and water, sewage, and other systems.
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Carbon intensity should not respond to US Program disclosure if facilities curb eco-

nomic activity to reduce GHG emissions. To test this implication, I estimate a version of

Equation 1 that uses logged carbon intensity as the dependent variable. For this and all

other dependent variables based on ratios, I winsorize at the first and 99th percentiles. I

require a balanced panel because the US reporting threshold for noncombustion pollutants

varies across years.11 My preferred specification excludes GDP and REGULATIONS as

control variables. GDP captures industry supply and demand shocks, which should not

affect carbon intensity. REGULATIONS varies at the state level, as does the regulation of

noncombustion pollutants [Chemical Watch, 2019]. If energy efficiency regulation/incentives

and (non-GHG) pollution regulation are jointly determined by states, REGULATIONS has

a potentially complicated relation with carbon intensity. Column 2 shows that US facilities’

carbon intensity falls by roughly 7% in response to US Program disclosure; this is similar

to the emissions level change of -7.9%, suggesting that US facilities do not reduce GHG

emissions by simply curbing economic activity. Column 3 shows that the carbon intensity

reduction remains similar in magnitude but loses statistical significance when including all

control variables (p = 0.14).

To explore the idea that facilities instead make tangible investments to reduce GHG

emissions, I examine firm-level capital expenditures (CAPEX). To aggregate my data to

the firm-level, I take weighted averages of the facility-level independent variables described

in Section 4.3, with weights based on each facility’s 2011 GHG emissions. Because some

firms have facilities in both Canada and United States, the US variable becomes continuous,

ranging from zero to one. I then estimate the following OLS equation:

CAPEXjt = β11{t≥2012}t + β2USj + β31{t≥2012}t ∗ USj + γXjt + ηj + ηkt + εjt. (3)

112008, 2011, and 2014 are comprehensive years characterized by lower emissions reporting thresholds, and
thus they cover more facilities. These years’ data form part of the EPA’s National Emissions Inventories.
Emissions data for the noncomprehensive years—2009, 2010, 2012, and 2013—are found in the US Emission
Inventory System database and were provided directly by the EPA.
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j indexes a firm, and CAPEX is capital expenditures divided by lagged assets. X con-

tains the firm-level aggregates of the facility-level controls and a firm’s market capitalization,

leverage, and market-to-book ratio (to capture potential firm-level economies of scale in man-

aging emissions, financing constraints, and growth opportunities; Kogan and Papanikolaou,

2014; Myers, 1977).

Consistent with the idea that firms invest to reduce GHG emissions, Column 4 shows

that, following US Program disclosure, US firms’ CAPEX increases by 2.5% of assets relative

to Canadian firms. Tangible investments and other workflow changes could affect operational

performance (e.g., by changing cost structure aspects). Consistent with Downar et al. [2021],

however, Column 5 shows no significant changes in gross margins for US Program firms.12

These firm-level results require caveats. First, financial statement variables capture economic

activity outside of the United States and from nonfacility aspects of a business, but US

Program data do not. Additionally, many manufacturing costs are recognized when sales

are made, yet the associated GHG emissions can occur in earlier years. Therefore, these tests

corroborate that facilities made real changes following US Program disclosure, but they do

not quantify the financial costs and benefits of these changes.

5 Benchmarking of GHG Emissions

This section presents evidence supporting H2, which states that facilities use their peers’

GHG emission disclosures to benchmark their own GHG performance.

5.1 Emissions Dispersion

Grennan and Swanson [2020] show that the dispersion of negotiated prices paid by hos-

pitals for supplies shrinks after the hospitals gain access to the purchase price history of

12Online Appendix A6 Table A4 shows that, in the long run, the CAPEX increase becomes statistically
insignificant, consistent with investments being a one-off. The change in gross margins remains statistically
insignificant.
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their peers. Similarly, Berger, Choi, and Tomar [2023] document lower profitability disper-

sion when Korean firms provide detailed cost disclosures. If benchmarking under the US

Program facilitates a convergence in practices, I expect there to be less dispersion in GHG

emissions after disclosure. I test this prediction by estimating the following OLS equation:

GHG DISPckt = β11{t≥2012}t + β2USc + β31{t≥2012}t ∗ USc + γXckt + ηck + ηt + εckt. (4)

c indexes country. GHG DISP is the within-industry-country standard deviation, or

90th-10th percentile difference, of raw GHG emissions (in 1,000T CO2e). X contains the stan-

dard deviations of GAS PRICE and REGULATIONS. I include industry-country and year

fixed effects. Columns 1 and 2 of Table 5 provide high-level evidence consistent with bench-

marking. They show that the within-industry emissions standard deviation and 90th-10th

percentile difference decline for US industries, relative to Canadian ones, after US Program

disclosure. These reductions are 20% and 31% of the mean US industry, pre-period emissions

dispersion values (p = 0.044; p = 0.038). These results are silent, however, about whether

poor GHG performers reduce their emissions more than others. Specifically, high-emitting

facilities might nevertheless emit a low amount of GHGs per unit of goods produced.

5.2 Relative Carbon Intensity as Revealed Through Disclosure

Under the benchmarking hypothesis, facility managers will use available US Program

data—and not timelier data that is yet to be disclosed—to establish whether their facilities

are more or less carbon intense than those of their peers. My next set of tests condition

on emissions data in the same way. Given the previous results (i.e., emissions reductions

coupled with lower emissions dispersion), I predict that facilities revealed, through US Pro-

gram disclosure, to be more carbon intense than peers will have larger subsequent emissions

reductions.

My starting point is the facility-level carbon intensity measure used in Section 4.4.2: CO2
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emissions scaled by emissions of a noncombustion pollutant proxy for the quantity of goods

produced. For two reasons, I normalize this measure within industry-state so that the highest

value becomes one (most carbon intense) and the lowest value becomes zero (most carbon

light). First, it might be more useful to benchmark against industry-peers that compete in

local markets. Second, many US states directly regulate VOCs (the noncombustion pollutant

most commonly used by my measure) to a greater extent than federal regulations require

[Chemical Watch, 2019]. I then test whether relative carbon intensity—based on 2010 values

that were publicly disclosed at the start of 2012—predicts emissions reductions in 2012 by

estimating the following OLS equation:

CH CO2 2012i = β1CARBON INT 2010 i + β2CARBON INT 2011 i + γXi + ηk + εi. (5)

CH GHG 2012 is the percentage change in 2012 CO2 emissions, relative to 2011,

CARBON INT 2010 is peer-normalized carbon intensity based on 2010 values, X contains

the year-lagged percentage change in natural gas price and the change in efficiency incentives

and regulations. I include industry fixed effects. The observation level is a facility, and only

US facilities are considered.

Table 5 Column 3 provides results consistent with benchmarking. Facilities that are re-

vealed by US Program disclosure to be relatively carbon intense reduce their CO2 emissions

more in 2012. This pattern, however, could be driven by natural technological convergence

or mean reversion in carbon intensity and not disclosure. Additionally, facilities might have

been aware of their GHG performance without benchmarking and merely waited until disclo-

sure in 2012 to determine the discount attached to GHG intensity by external stakeholders.

Under these alternatives, 2011 carbon intensity would be a better, more relevant predictor

of 2012 emissions reductions. From a disclosure perspective, however, the US Program data

needed to construct 2011 carbon intensity were not public in 2012.

Column 4 presents the results when both 2010 and 2011 carbon intensities are included
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as regressors. Consistent with a disclosure/benchmarking effect, it shows that 2010 carbon

intensity is significantly associated with 2012 CO2 reductions but that 2011 carbon intensity

is not: benchmarking requires observability of emissions data and not just their existence.

Columns 5 and 6 limit the sample to facilities with above-industry-median carbon intensity.

The results become more striking.

Columns 4 and 6 identify benchmarking by exploiting the staggering in time of US

Program disclosure relative to the measurement date. Further, by exploiting purely within-

US facility variation, they allay the concern that Table 3’s results are driven purely by

unobserved, time-varying differences between US and Canadian facilities.

5.3 Effect of a Benchmarking History

The next set of tests examines whether facilities with a propensity for benchmarking

reduce their GHG emissions more following US Program disclosure. Bernard et al. [2020]

produce a novel measure of across-firm information flows based on the extent to which firms

acquire their rivals’ financial information from the SEC’s EDGAR database. Using their

EDGAR-search data, I classify a facility as a benchmarker if its owner searches for an above-

industry-median number of other firms’ financial information.13 I then estimate a version of

Equation 2 that measures an incremental emissions reduction for benchmarker facilities.

The coefficient estimate on 1{BENCHMARKER} in Table 6 Column 1 shows that the incre-

mental emissions reduction for benchmarkers is insignificantly negative. This test uses few

observations, however, because of the low sample overlap between Bernard et al. [2020] and

this study. Bernard et al. [2020] also provide a dataset that is five times larger but with a

60% firm-identifier accuracy. Column 2 provides the results when using this larger sample.

The estimate of β4 is similar in magnitude and gains statistical significance—benchmarkers

reduce their emissions by 7.4% (e−0.077 − 1) percentage points more than nonbenchmarkers

do. Column 3 presents the results from estimating a version of Equation 1 that measures

13I thank Darren Bernard, Terrence Blackburne, and Jacob Thornock for sharing their data.
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a separate (non-incremental) emissions reduction for each tercile of US facilities based on

their benchmarking. The emissions reduction increases monotonically by tercile (p = 0.060

for the difference between high and low terciles).

These results further support the benchmarking channel.14 They also help to address

the possibility that facilities did not benchmark but instead began implementing emissions

reductions with long lead-times in 2010 (prior to disclosure) due to anticipated external pres-

sure. This alternative explanation does not explain why the emissions reductions are larger

for benchmarkers. A caveat for these results is that they exploit cross-sectional variation

that is not randomly assigned at the time of the US Program (i.e., whether a facility’s owner

chooses to be a benchmarker). The results should therefore be viewed in the context of the

other benchmarking results in Section 5.

5.4 Process Convergence

The last set of benchmarking tests explores whether the processes that facilities employ

converge after US Program disclosure. Returning to the process-level US NEI/EIS data

described in Section 4.4.2, I focus on processes that burn fossil fuels or waste.15 In the

spirit of Fetter et al. [2022], I then compute a Jaccard process-similarity index between each

US facility and its (hypothetical) representative state-industry peer in a given year. Online

Appendix A8 details this index’s construction, but briefly, for a facility with one peer, the

index divides the number of unique processes that both facilities employ by the number of

14In terms of information flows between connected entities, Online Appendix A7 Table A5 shows that
31% of the variation in (idiosyncratic) GHG emissions changes following US Program disclosure is common
to facilities owned by the same firm. However, it is difficult to attribute this common variation purely
to information flows across same-firm facilities [Manski, 1993]. Online Appendix A7 Table A6 shows that
emissions changes for connected firms do not significantly predict emissions changes for focal firms, defining
connection based on common investors and overlapping board members. Online Appendix A7 Table A7 shows
that emissions reductions around US Program disclosure are not significantly different when considering the
following two proxies for information frictions within the firm: i) the size of management guidance errors
and ii) whether a facility is located far from its owner-firm’s headquarters. In sum, the evidence about
information flows between connected entities is less conclusive.

15Online Appendix A5 describes how I identified these processes. An example of a fuel combustion process
is External Combustion Boilers: Commercial/Institutional: Bituminous/Subbituminous Coal: Pulverized
Coal: Wet Bottom (Subbituminous Coal).
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unique processes they together employ (i.e., the intersection of their processes used divided

by the union). When a facility has multiple peers, this computation also includes weights

that capture the prevalence of a process across peer facilities.

Table 7a Row 1 presents the average percentage change in similarity when moving from

2010 to 2013 (the start and end of the main sample). Of the distinct processes used by a

facility or its peers, the fraction used by the facility and its peers increases by roughly 10%

(not percentage points), on average, after US Program disclosure (p = 0.008). Meanwhile,

the average similarity level changes insignificantly from 0.281 and 0.276 (p = 0.27). These

percentage and level changes imply that facilities with low initial similarity to peers become

more similar to their peers (relative to facilities that are already fairly similar to their peers).16

To link these results to emissions reductions, I estimate a version of Equation 1 that measures

a separate emissions reduction for each tercile of US facilities based on their 2010 similarities

with representative peers.

Consistent with the earlier argument, Table 7b Column 1 shows that the US Program

treatment effect is largest for facilities in peer groups marked by low initial similarity and

fades as initial similarity grows (p = 0.035 for the difference between high and low terciles).

Benchmarking is more useful when there is a pre-existing diversity in the processes used

among peers. Similarly, Bernard et al. [2020] show that information flows better predict

future R&D mimicking among firms with low product similarity.

To explore the benchmarking prediction that facilities shift their processes toward (away

from) those of their carbon light (carbon intense) peers, I re-employ the relative carbon

intensity measure used in Section 5.2. When producing a facility’s 2010 representative peer,

I now require the constituent peer facilities to have a 2010 carbon intensity rank ≤ 0.33 (i.e.,

carbon light peers). I then compute Jaccard similarities between i) a facility in 2010 and its

2010 carbon light representative peer and ii) that facility in 2013 and its 2010 carbon light

16The distinction between level changes and percentage changes in Jaccard similarity is important. If
focusing on level changes, the results in this subsection become statistically insignificant. Some industries,
however, might have more potential processes to choose from, giving them a different similarity baseline. A
focus on percentage changes accounts for these baselines.
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representative peer. Table 7a Row 2 presents the average percentage change when moving

from the former similarity to the latter. After US Program disclosure, facilities become 6.3%

proportionally more similar to their carbon light peers (as these peers were in 2010; p =

0.048). I then recompute the percentage change in Jaccard similarity, except considering a

facility’s carbon intense representative peer (whose constituent facilities have a 2010 carbon

intensity rank > 0.67). Table 7a Row 3 shows that facilities become 3.4% proportionally less

similar to their carbon intense peers after US Program disclosure (p = 0.037).

Table 7b presents the results from estimating a version of Equation 2 that connects

these last process-similarity results to CO2 emissions changes. Column 2 shows that, for

facilities that shift their processes toward their carbon light peers, the incremental emissions

reduction is a statistically insignificant 6.8% (e−0.070 − 1; p = 0.142). Column 3 provides a

similar inference when focusing on facilities that also become less like their carbon intense

peers (10.6% incremental reduction; p = 0.212).

My process convergence results echo those of Fetter et al. [2022], who show that manda-

tory disclosure induces fracking firms to shift their fracking chemical compositions toward

those of their more productive peers. There are some caveats. First, there is likely to

be variation within a process as defined by the US NEI/EIS. Thus, some process changes

will not appear in the data, nor will behavioral changes (e.g., maintenance and calibra-

tion). This might explain why an emissions reduction is observed for the broader sample

of facilities whose processes did not change in the US NEI/EIS data. Second, the process

convergence tests do not use a Canadian control sample (for which process-level data are not

available). Thus, they are not provided as conclusive evidence of benchmarking but rather

to give context to the other benchmarking results. Third, these results do not disentangle

whether process convergence results from facilities embarking on a technological search after

benchmarking or whether peers’ GHG disclosures themselves provide technological cues. By

whichever pathway, benchmarking prompts facilities to make real changes.
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6 Supplementary Analyses

I now provide supplementary evidence about the US Program’s effects. I first explore

sources of external pressure that might motivate emissions reductions and benchmarking.

6.1 External Pressure: Concern About Future Legislation

A major US Program aim is to aid future potential GHG-related rule-making (see Section

2). Thus, I study whether concern about future GHG legislation motivates emissions reduc-

tions. Once US facilities learn about their own GHG performance, they might self-regulate

to avoid facing stringent legislation (e.g, Maxwell et al., 2000; Suijs and Wielhouwer, 2019).

Sanchez, Matthews, and Fischbeck [2012], however, argue that the US Program would be

unlikely to yield benefits because US climate policy lacked momentum at the time.

I proxy for GHG legislation pressure by exploiting geographic variation in political sup-

port for climate-progressive legislation. For a given legislator-year, I use League of Conser-

vation Voters’ Scorecards to compute the fraction of climate-progressive bills that federal

legislator supported from 2008 to that year. For senators, I then take the within-state

average. Highlighting the partisan nature of climate politics (e.g., McCright and Dunlap,

2011), Democratic Party membership explains 86% of senators’ and House representatives’

climate-progressiveness scores.

I then estimate a version of Equation 2 that measures an incremental emissions reduction

for facilities whose legislators have above-industry-median climate-progressiveness. Table 8a

Column 1 shows a 5.1% (e−0.052 − 1) incremental emissions reduction for facilities with

climate-progressive senators, following US Program disclosure. Column 2 reveals no statisti-

cally significant impact of representatives’ progressiveness. Column 3 considers both groups

of legislators simultaneously and yields the same inferences as Columns 1 and 2. Concern

about GHG legislation outcomes at the Senate appears to motivate emissions reductions.17

17Online Appendix A7 Table A5 shows that emissions reductions associated with senatorial progressiveness
are not common to facilities in other states owned by the same firm. That is, when reacting to concern about
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Senators frequently turn over and can adjust their stances on issues. To assess the impact

of this variation on emissions, I estimate the following OLS equation:

GHGit =β11{t≥2012}t + β2USi + β31{t≥2012}t ∗ USi + β4SENATE CC SCOREit+

β51{t≥2012}t ∗ SENATE CC SCOREit + γXit + ηi + ηkt + εit. (6)

SENATE CC SCORE is the raw senatorial climate-progressiveness score described above

(its value is set to zero for Canadian facilities). The use of facility fixed effects, which absorb

average location effects, makes Equation 6 akin to a changes specification. The estimate of

β4 in Column 4 shows that changes in senatorial progressiveness are insignificantly negatively

associated with GHG emissions before US Program disclosure. The estimate on β5, however,

shows that this association becomes larger and statistically significant after disclosure. A one

standard-deviation change in SENATE CC SCORE (33.2%) implies a 3.9% GHG emissions

reduction under disclosure—facilities respond more to concern about legislation once they

can benchmark using peer disclosures.

Facilities with political connections could face different emissions reduction incentives.

Facilities might use their connections to stifle future GHG legislation [Gelles, 2022; Weiss,

Lefton, and Lyon, 2010]. Connected facilities could then exhibit a muted emissions response

to disclosure. Alternatively, in exchange for preferential treatment in other domains (e.g.,

Cooper, Gulen, and Ovtchinnikov, 2010; Tahoun, 2014), facilities might reduce GHG emis-

sions to cast their local legislators in a favorable environmental light. Connected facilities

might also be more concerned about legislation generally [Hassan, Hollander, Van Lent, and

Tahoun, 2019]. In these latter cases, politically connected facilities might reduce GHG emis-

sions more once they can benchmark using US Program data. To explore these possibilities,

GHG legislation, firms consider their individual facilities’ visibility to legislators.
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I estimate the following OLS equation:

GHGit =β11{t≥2012}t + β2USi + β31{t≥2012}t ∗ USi + β41{LEGIS CONN}it+

β51{t≥2012}t ∗ 1{LEGIS CONN}it + γXit + ηi + ηkt + εit. (7)

1{LEGIS CONN} indicates US facilities owned by firms that made campaign contributions

to the senators or representatives of those facilities—I consider these facilities politically

connected. To identify contributing firms, I use data provided Hassan et al. [2019], which is

based on data from OpenSecrets.org.18 Only public firms in my sample can be matched to

these data, and thus I exclude US facilities not owned by public firms.

Table 8b Column 1 shows that a senator connection does not significantly affect facil-

ities’ GHG emissions, either pre- or post-US Program disclosure (considering β̂4 and β̂5).

Column 2 shows that a representative connection has a significantly greater negative effect

on GHG emissions following disclosure (although β̂4+ β̂5 is insignificantly negative). Column

3 considers connections to senators and representatives simultaneously and yields the same

inferences as Columns 1 and 2. After being able to benchmark using US Program disclo-

sures, representative connected facilities worry more about GHG legislation, or they try to

cast their representative in a favorable environmental light. Although the idea of political

connections granting preferential treatment seems socially harmful, the contribution facilities

provide in this latter case (lower GHG emissions) seems socially beneficial.19

A caveat for this subsection’s results is that they are based on cross-sectional variation

18I thank Tarek Hassan, Stephan Hollander, Markus Schwedeler, Ahmed Tahoun, and Laurence Van
Lent for sharing their data. Regarding timing, if Firm A contributes to Senator B’s successful November
2010 election campaign, 1{LEGIS. CONN.} indicates Firm A’s facilities in Senator B’s state in 2011 and the
remaining years of Senator B’s term.

19That facilities appear more responsive to the Senate regarding legislation pressure (Table 8a) and more
responsive to the House regarding connections (Table 8b) is consistent with the literature. Diermeier,
Keane, and Merlo [2005] suggest that the nonpecuniary, policy-shaping rewards to being in Congress are
large, and especially so for senators. Meanwhile, Tahoun and Van Lent [2019] find that voting in the House
is associated with representatives’ personal wealth interests, but the equivalent association is weaker for
senators. Relatedly, Cooper et al. [2010] show that firms contributing to legislators have positive future
abnormal returns, and that there is an incremental House effect after controlling for the Senate effect.
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that is not randomly assigned at the time of the US Program (i.e., a facility’s location and

its owner’s choice to contribute to a legislator’s campaign). Thus they should be considered

alongside the US Program’s broad purpose to provide guidance for future rule-making.

6.2 External Pressure: Investor Scrutiny

Although Section 3 describes why the US Program might not create a GHG emissions

action-cycle at the firm level, given the recent growth in ESG-investing, the willingness

of capital market regulators to require emissions disclosures, and the tendency of capital

markets to make across-firm comparisons [De Franco, Hope, and Larocque, 2015], I explore

whether investor pressure moderates the GHG emissions response to US Program disclosure.

I begin by measuring firm-level GHG intensity for 2010 (constructible by the public in

2012) by aggregating facility emissions to the firm level and then dividing by cost of goods

sold (a proxy for economic activity). I then split US-facility-only firms into groups with

above and below industry-median 2010 GHG intensity. Figure 4 plots the average buy-and-

hold industry-adjusted returns for both groups of firms around US Program disclosure. With

the exception of a return runup for GHG intense firms from days -50 to -30 in Figure 4a,

the two return time-series track each other and do not suggest a differential stock market

reaction to disclosure. Online Appendix A9.1 Table A8 presents the related regression-based

evidence. Echoing Figure 4a, the incremental buy-and-hold returns for GHG intense firms

around disclosure are statistically insignificant.20

20In Online Appendix A9.1 Table A9, I study the holdings of ESG-focused mutual funds and shareholder
resolutions; I find no strong evidence of investor pressure. Online Appendix A9.1 Table A10 shows that
the GHG emissions reduction around US Program disclosure is larger for facilities owned by firms that
are nonpublic or that report higher environmental political risk and climate change exposure to investors.
Because these cross-sectional results can be interpreted in multiple ways, I place less weight on them.

Online Appendix A9.2 Table A11 shows no significant evidence of pressure from the public or customers.
The emissions reduction is not significantly different for facilities in i) states with higher intensities of belief in
human-caused climate change and ii) industries with relatively more business-to-customer economic activity.

Regarding profit/efficiency motives, Online Appendix A10 Table A12 shows that emissions reductions for
US facilities near the Canadian border are muted when they have a nearby Canadian peer. These US facilities
possibly benchmarked their GHG emissions against their Canadian peers prior to the US Program; given that
their emissions were not subject to external pressure via disclosure at that time, this suggests benchmarking
for profit/efficiency motives. However, the muted response is statistically insignificant—few US facilities
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6.3 GHG Emissions Responses Prior to US Program Disclosure

To understand the US Program’s effects more completely, I explore emissions responses

prior to disclosure. Facilities knew as early as April 2009 that their emissions would be

publicly disclosed, and thus they might have anticipated stakeholder pressure (e.g., Fiechter,

Hitz, and Lehmann, 2022). The US Program’s measurement requirements might also have

improved managers’ own-firm GHG information sets (e.g., Shroff, 2017). These forces could

have led facilities to curb emissions prior to disclosure. Grennan and Swanson [2020] and

Shroff [2020] also disentangle pre- and post-disclosure responses. In terms of information

creation, my setting less resembles that of Grennan and Swanson [2020], where hospitals were

arguably aware of the prices they paid to suppliers, and more resembles that of Shroff [2020],

where firms possibly learned about their auditors’ quality following PCAOB inspections.

To address a key empirical challenge—the absence of GHG emissions data for years prior

to US Program implementation (e.g., for 2008 and 2009)—I estimate US facilities’ CO2

emissions by leveraging the physical relations underlying fossil fuel combustion. The key

idea is that the same fuel burned under the same conditions should produce carbon dioxide

(CO2; a GHG) and carbon monoxide (CO; toxic, not a GHG, and disclosed since 2008 in the

US NEI/EIS) in constant proportions [Gurney et al., 2009]. The estimation is detailed in

Online Appendix A11.1, and is briefly as follows. I employ a Bayesian linear model to relate

US facilities’ logged CO2 emissions to their process-level CO emissions. The model inputs

are 1) facility-level CO2 emissions from the 2014 US Program, 2) process-level CO emissions

from the 2014 NEI/EIS, and 3) a set of priors about the process-level CO2-CO relations,

provided by Gurney et al. [2009]. I then combine the estimated CO2-CO relations with

US facilities’ process-level CO emissions from 2008 to 2013 to produce estimates of these

facilities’ logged CO2 emissions.21 To measure the US Program’s effect prior to disclosure, I

provide the needed variation by having nearby Canadian peers—leaving the result only suggestive.
21The estimation relies heavily on US Program data and hence could not be conducted prior to the

US Program. Online Appendix A11.1 Figure A4 shows that the Bayesian estimates explain 42% of the
variation in out-of-sample actual values. Variation in factors such as equipment specification, CO abatement
technology, and fuel carbon content reduces the goodness of fit. For reference, naive OLS estimates explain
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extend the sample window back to 2008 and estimate the following OLS equation:

CO2it =β11{t≥2010}t + β21{t≥2012}t + β3USi + β41{t≥2010}t ∗ USi + β51{t≥2012}t ∗ USi+

γXit + ηi + ηjt + εit. (8)

CO2 is logged T CO2 emissions, estimated as above for US facilities and as reported by

Canadian facilities. β4 captures facilities’ emissions responses prior to US Program disclosure.

A balanced panel is required because the Canadian Program’s reporting threshold fell from

100,000T to 50,000T CO2e in 2009 and because the CO reporting thresholds are lower in

2008, 2011, and 2013 (see Footnote 11).

Table 9 Column 1 presents the results when facility and year fixed effects are included,

and Column 2 includes control variables and industry-year fixed effects. Both columns show

no significant emissions response in 2010 and 2011, when facilities begin measuring and

reporting emissions (absent disclosure); however, both show a significant emissions reduction

after disclosure in 2012, consistent with Table 3. The Column 2 estimate of the emissions

reduction following disclosure is 11.2% (e−0.119 − 1; p = 0.019). Figure 3b, the expanded

sample window analog of Figure 3a, mirrors this pattern of US emissions relative to Canadian

emissions. Figure 3b also provides further support for the parallel trends assumption.22

To assess pre-disclosure emissions responses without using estimated data, I study firm-

level emissions data voluntarily submitted to the Carbon Disclosure Project (CDP), a non-

profit organization that surveys firms annually about their GHG performance. During my

sample period, CDP surveys are sent to S&P 500 firms and the 200 largest Canadian firms

35% of the variation in actual values (or 8% if treating negative, infeasible OLS fitted value as zeroes). The
Bayesian approach fares better because it assigns sensible distributions to the parameters (e.g., no negative
support) and incorporation of priors that shrink noisy parameter estimates toward plausible values.

22Because estimated CO2 emissions are based on carbon monoxide data that come from the EPA’s
NEI/EIS, these tests also support the credibility of US Program data. For this paper’s results to be explained
by misreporting, facilities would have to be shown to misreport not only their GHG emissions but also their
toxic pollutant emissions and the processes they employ (which are also studied in Section 5.4). Combined
with the enforceability of the US Program and US NEI/EIS under the US Clean Air Act, these tests make
the misreporting explanation unlikely, given the extent of sustained legal and reputation risk it would entail.
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by market capitalization. I collect CDP data from years 2008 to 2013 for firms within the

industries in my US Program sample. I then estimate the following OLS equation:

GHGjt =β11{t≥2010}t + β21{t≥2012}t + β3USj + β41{t≥2010}t ∗ USj + β51{t≥2012}t ∗ USj+

γXjt + ηj + ηkt + εjt. (9)

GHG is logged tons of Scope 1 (on-site, non-vehicular) GHG emissions reported to the

CDP, and X contains a firm’s market capitalization, leverage, and market-to-book ratio as

controls (as in Section 4.4.2). I use a balanced panel to mitigate concerns about selection

effects related the CDP participation decision.

Table 9 Column 3 provides the results obtained when using firm and year fixed effects,

and Column 4 adds industry-year fixed effects and control variables. Although the Column

4 estimate on β5 is statistically insignificant, the results corroborate those in Columns 1 and

2. Collectively, Table 9 highlights uncertainty around whether measurement and private

reporting of GHG emissions leads to emissions reductions.23 Yet, these same tests suggest

disclosure-driven effects. I leave it to future research to make a stronger claim about pre-

disclosure emissions responses.

7 Conclusion

I explore whether the mandatory, granular disclosures of the US Greenhouse Gas Re-

porting Program (US Program) lead to GHG emissions reductions. I find that US facilities

reduce emissions by 7.9% following US Program disclosure. In contrast to much of the related

23For instance, the estimate of 1{t≥2010} ∗ US in Table 9 Column 2—one of the more precise estimates—
gives a 95% confidence interval of (-3.1%, 11%). In Online Appendix A11.2, I assess pre-disclosure emissions
responses by exploiting only within-US facility variation. Using the same techniques as in Section 5.2, I show
that 2010 carbon intensity rank does not significantly predict CO2 emissions reductions in 2011, as might
be expected if US Program measurement and private reporting to the EPA drives emissions reductions.

Columns 3 and 4 also raise the question of whether highly aggregated CDP data substitute for granular US
Program data in terms of driving emissions reductions. Online Appendix A12 explores facilities’ emissions
reductions by CDP participation and disclosure status, and by whether facilities had peers participating in
the CDP. The results support the nonsubstitutability of US Program information with CDP information.
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research, I estimate a treatment effect for facilities that mostly had no other GHG emissions

information in the public domain. My emissions and process-based tests are consistent with

facilities using the US Program data of their peers for benchmarking. Supplementary anal-

yses suggest that concern about GHG legislation partly motivates emissions reductions and

that measurement alone (absent disclosure) does not significantly reduce emissions.

My paper contributes to the literature on the real effects of environmental, social, and

governance (ESG) disclosures. It also has policy relevance. The main implication is that

an ESG disclosure mandate can produce real effects through benchmarking. Considering

the nature of US Program disclosures, data granularity can facilitate this process while

also improving the usefulness of disclosed data for stakeholders interested in a subset of a

firm’s activities (e.g., regional legislators interested in GHGs produced locally). However,

aggregation of ESG information can also produce real effects (e.g., Christensen et al., 2017),

suggesting a trade-off around the level of granularity.

My paper leaves important avenues for future research. First, it considers the US Program

from a benefits perspective (i.e., emissions reductions). A potentially significant cost of the

program is the potential stifling of innovation through disclosure of proprietary information

(e.g., Breuer, Leuz, and Vanhaverbeke, 2022). Further work assessing this cost would allow

for a more rounded view of the US Program’s impact. Second, this paper examines the effect

of a single reporting/disclosure event. Although recent work in this area is very beneficial,

further research on other mandatory GHG disclosure settings will be valuable. Climate

change affects many stakeholders, and variation in the institutional features studied in the

future can highlight different economic channels that affect emissions patterns.
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Appendix: Variable Description

Facility-level Analyses

Variable Name Description
CARBON INT Logarithm of: CO2 emissions in metric tons divided by non-

combustion pollutant in metric tons

CH CO2 2012 The percentage change in CO2 emissions in 2012 relative to
2011

CO2 CO2 emissions in logged metric tons. In Table 9, these are
estimated for US facilities.

GHG Greenhouse gas (GHG) emissions in logged metric tons CO2

equivalent

GHG SD Standard deviation of raw GHG emissions, in thousands of
metric tons CO2 equivalent, within country-industry-year

GHG P90 P10 90th minus 10th percentile of raw GHG emissions, in thousands
of metric tons CO2 equivalent, within country-industry-year

1{t≥k} Indicates year k (k − 1 for Massachusetts obs.) and beyond

1{CROSS-SECTION} Indicates US facilities in a cross-section as described in the
relevant section and table description

CARBON INT 201X CO2 emissions over industry-specific noncombustion pollutant
emissions in 201X, normalized within industry-state

GAS PRICE Yearly, regional, lagged natural gas price (logged)

GDP Gross domestic product at the country-year-2-digit NAICS
industry level (logged value-added)

REGULATIONS Number of energy reduction incentives/regulations applicable
to a facility, implemented at the federal or state/province level

SENATE CC SCORE For a US state, the average of the following over each of its
active senators: the percentage of climate-change progressive
bills, since 2008, that senator has supported

US Indicates a US facility
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Firm-level Analyses

Variable Name Description
CAPEX Compustat item CAPX, over beginning total assets

GROSS MARGIN Gross profit over revenue

LEVERAGE Total liabilities over total assets

MV Market value of equity

MTB Market value of equity over book value of equity

Firm-level analogs of US, GDP, GAS PRICE, and REGULATIONS are formed by tak-
ing weighted-averages of these variables across facilities within firm-year. Facilities’ GHG
emissions in 2011 form the weights.

Regression Equation Indices

Index Feature
i Facility

j Firm

k Four-digit NAICS industry

c Country

t Year
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Figures and Tables

Figure 1: Timeline of Important US Greenhouse Gas Reporting Program Events
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Figure 2: Average Logged Emissions for US and Canadian Facilities

(a) GHG Emissions

(b) CO2 Emissions

Figure 2a plots average annual GHG emissions (in logged T CO2e) for US and Canadian facilities
that reported emissions to their national GHG reporting programs. Figure 2b plots average annual reported
CO2 emissions for Canadian facilities and estimated CO2 for a subsample of US facilities—the estimation is
described in Section 6.3. For visual consistency, both figures use a balanced panel and exclude Massachusetts’
facilities, which began emissions reporting and disclosure a year earlier than other US facilities as part of a
state-level Program. Additional data filters are described in Sections 4.2 and 6.3. The Appendix provides
variable definitions.
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Figure 3: Emissions Differences (US - Canada) by Year Relative to the 2011 Difference

(a) GHG Emissions

(b) CO2 Emissions

As described in Section 4.4.1, these figures plot the β3,ks obtained from estimating the following OLS
equation:

GHGit or CO2it = β1USi +
∑excluding 2011

k∈2008 or 2010 to 2013

(
β2,k1{t=k} + β3,k1{t=k} ∗ USi

)
+ γXit + ηi + ηjt + εit.

The β3,ks track how US and Canadian facilities’ emissions differ relative to their 2011 difference. US CO2

emissions are estimated as described in Section 6.3. The sample comprises US and Canadian facilities that
reported GHG emissions to their national GHG reporting programs. Additional data filters are described in
Sections 4.2 and 6.3. The Appendix provides variable definitions.
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Figure 4: External Pressures—Buy-and-Hold Industry-Adjusted Returns Around GHG Disclosure

(a) t ∈ [-90, 90] (b) t ∈ [-30, 30]

(c) t ∈ [-5, 5]

These figures are described in Section 6.2. They depict the buy-and-hold excess returns for two sets of firms over different windows relative
to the date of the US GHG Reporting Program’s first data release. The sample comprises the owner-firms of US facilities that reported GHG
emissions.“GHG Intense” (“GHG Light”) firms have above (below) industry-median GHG emissions divided by COGS (as computed for 2010). Data
filters are described in Sections 4.2 and 4.4.2.
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Table 1a: Facility-Year Frequency by four-Digit NAICS Industry and Country

Canada US GHG
Industry N N Mean (103T CO2e)
Aerospace Product and Parts Manuf. 0 90 40
Agriculture, Construction, and Mining Machinery Manuf. 0 28 45
Alumina and Aluminum Production 43 193 384
Animal Food Manuf. 0 14 54
Animal Slaughtering and Processing 0 299 36
Architectural, Engineering, and Related Services 0 6 36
Basic Chemical Manuf. 114 1,667 272
Beverage Manuf. 4 88 67
Cement and Concrete Product Manuf. 60 326 611
Clay Product and Refractory Manuf. 3 43 73
Coal Mining 59 93 82
Coating, Engraving, Heat Treating, and Allied Activities 0 16 73
Colleges, Universities, and Professional Schools 0 27 94
Computer and Peripheral Equipment Manuf. 0 8 6
Converted Paper Product Manuf. 0 19 65
Dairy Product Manuf. 0 52 31
Electrical Equipment Manuf. 0 12 2
Engine, Turbine, and Transmission Equipment Manuf. 0 21 33
Fabric Mills 0 8 97
Facilities Support Services 0 8 1,050
Forging and Stamping 0 36 45
Foundries 12 153 62
Fruit and Vegetable Preserving and Specialty Food Manuf. 9 134 45
General Medical and Surgical Hospitals 0 32 35
Glass and Glass Product Manuf. 8 345 79
Grain and Oilseed Milling 16 338 234
Household Appliance Manuf. 0 8 25
Iron and Steel Mills and Ferroalloy Manuf. 44 494 679
Lessors of Real Estate 0 8 69
Lime and Gypsum Product Manuf. 48 346 292
Metal Ore Mining 50 64 341
Metalworking Machinery Manuf. 0 8 53
Motor Vehicle and Parts and Supplies Wholesalers 0 8 448
Motor Vehicle Manuf. 18 138 62
Motor Vehicle Parts Manuf. 0 58 33
Natural Gas Distribution 24 73 214
Nonferrous Metal (except Aluminum) Production 32 136 110
Nonmetallic Mineral Mining and Quarrying 40 170 182
Office Furniture (including Fixtures) Manuf. 20 4 8
Oil and Gas Extraction 469 2,095 156
Other Chemical Product and Preparation Manuf. 6 60 119
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Other Electrical Equipment and Component Manuf. 0 12 77
Other Fabricated Metal Product Manuf. 0 15 23
Other Food Manuf. 0 86 58
Other Miscellaneous Manuf. 24 16 31
Other Nonmetallic Mineral Product Manuf. 7 145 81
Other Pipeline Transportation 0 6 22
Paint, Coating, and Adhesive Manuf. 0 12 1
Pesticide/Fertilizer/Other Agricultural Chemical Manuf. 35 197 640
Petroleum and Coal Products Manuf. 74 606 1,089
Petroleum and Petroleum Products Merchant Wholesalers 0 9 29
Pharmaceutical and Medicine Manuf. 0 113 62
Pipeline Transportation of Crude Oil 0 20 71
Pipeline Transportation of Natural Gas 49 1,835 55
Plastics Product Manuf. 11 52 75
Printing and Related Support Activities 0 12 22
Pulp, Paper, and Paperboard Mills 195 880 190
Railroad Rolling Stock Manuf. 0 8 46
Resin, Synthetic Rubber, and Synthetic Fiber Manuf. 12 342 301
Rubber Product Manuf. 3 78 40
Sawmills and Wood Preservation 0 21 10
Scheduled Air Transportation 0 8 47
Scientific Research and Development Services 0 30 64
Seafood Product Preparation and Packaging 0 8 36
Semiconductor and Other Electronic Component Manuf. 0 146 31
Soap, Cleaning Compound, and Toilet Preparation Manuf. 0 25 75
Steel Product Manuf. from Purchased Steel 8 50 79
Sugar and Confectionery Product Manuf. 8 108 188
Support Activities for Mining 0 297 47
Textile and Fabric Finishing and Fabric Coating Mills 0 24 39
Textile Furnishings Mills 0 31 45
Tobacco Manuf. 0 12 84
Traveler Accommodation 0 12 67
Utility System Construction 0 4 70
Veneer, Plywood, and Engineered Wood Product Manuf. 16 60 32
Water, Sewage and Other Systems 19 167 151
All 1,540 13,173 234
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Table 1b: Facility-Year Frequency by US State

US
State N
Alabama 430
Alaska 122
Arizona 112
Arkansas 370
Colorado 294
Connecticut 69
Delaware 32
Florida 184
Georgia 291
Hawaii 16
Idaho 106
Illinois 511
Indiana 421
Iowa 364
Kansas 278
Kentucky 285
Louisiana 1,129

US
State N
Maine 57
Maryland 53
Massachusetts 90
Michigan 429
Minnesota 299
Mississippi 233
Missouri 184
Montana 73
Nebraska 154
Nevada 62
New Hampshire 16
New Jersey 130
New Mexico 198
New York 249
North Carolina 224
North Dakota 111
Ohio 560

US
State N
Oklahoma 386
Oregon 143
Pennsylvania 586
Rhode Island 12
South Carolina 220
South Dakota 85
Tennessee 260
Texas 1,921
Utah 175
Vermont 16
Virginia 173
Washington 198
West Virginia 211
Wisconsin 280
Wyoming 371
All 13,173

Table 1c: Facility-Year Frequency by Canadian Province

Canada
Province N
Alberta 524
British Columbia 253
Manitoba 34
New Brunswick 36
Newfoundland and Labrador 28
Northwest Territories 16
Nova Scotia 27
Ontario 325
Prince Edward Island 4
Quebec 196
Saskatchewan 97
All 1,540

These tables count the observations used in the primary regression analysis (Table 3 Column 4) by
four-digit NAICS industry-country and by Canadian province/US state. The sample spans 2010 to 2013
and comprises US and Canadian facilities that reported GHG emissions to their national GHG reporting
programs. Data filters are described in Section 4.2.
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Table 2: Descriptive Statistics

(a) Facility-level

Canada
N Mean SD q1 q25 q50 q75 q99

GHG 1,540 11.8 1.52 6.67 11.1 11.7 12.8 15.3
GDP 1,540 11.9 0.316 10.6 11.7 12.1 12.1 12.1
GAS PRICE 1,540 1.29 0.204 0.891 1.12 1.31 1.45 1.56
REGULATIONS 1,540 6.39 2.37 2 6 7 8 10

US
N Mean SD q1 q25 q50 q75 q99

GHG 13,173 11.0 1.52 6.03 10.3 10.9 11.8 14.9
GDP 13,173 13.90 0.793 12.5 13.0 14.5 14.5 14.5
GAS PRICE 13,173 1.30 0.189 0.891 1.02 1.38 1.45 1.52
REGULATIONS 13,173 2.40 1.53 1 1 2 3 8

(b) Firm-level

N Mean SD q1 q25 q50 q75 q99
CAPEX 1,189 0.081 0.080 0.003 0.032 0.055 0.101 0.448
GROSS MARGIN 1,189 0.330 0.201 0.025 0.181 0.277 0.441 0.838
US 1,189 0.887 0.290 0.000 1.00 1.00 1.00 1.00
GDP 1,189 13.8 0.948 11.7 12.9 14.5 14.5 14.5
GAS PRICE 1,189 1.30 0.189 0.891 1.08 1.38 1.43 1.52
REGULATIONS 1,189 2.56 1.82 1 1 2 3 8
LEVERAGE 1,189 0.597 0.217 0.146 0.477 0.587 0.698 1.272
MV 1,189 22.6 43.8 0.060 1.60 5.48 23.4 211
MTB 1,189 3.25 24.2 − 5.06 1.23 1.83 2.72 16.5

Table 2a describes the observations used in primary regression analysis (Table 3 Column 4). Its sample
spans 2010 to 2013 and comprises US and Canadian facilities that reported GHG emissions to their national
GHG reporting programs. Table 2b describes the highest-level parent-firm of these facilities. Data filters are
described in Sections 4.2 and 4.4.2. The Appendix provides variable definitions.
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Table 3: Facility GHG Emissions Reductions Following US Program Disclosure

(1) (2) (3) (4)
VARIABLES GHG GHG GHG GHG

1{t≥2012} ∗ US -0.302 -0.121*** -0.065** -0.082**
(0.255) (0.039) (0.027) (0.033)

1{t≥2012} 0.067 0.136** 0.035 0.051
(0.175) (0.060) (0.066) (0.066)

US -0.605***
(0.172)

GDP 0.220
(0.420)

GAS PRICE -0.021
(0.342)

REGULATIONS -0.007
(0.008)

Observations 15,041 14,791 14,713 14,713
Adjusted R2 0.028 0.897 0.902 0.902
Facility & Year fixed effects Y
Facility & Ind-Year fixed effects Y Y
Standard errors clustered by industry-year in parentheses; *** p<0.01, ** p<0.05, * p<0.1

This table is discussed in Section 4.4.1 and shows how US facilities’ logged GHG emissions change
following the US GHG Reporting Program’s first disclosure of emissions data in January 2012. Canadian
facilities provide the control. The sample spans 2010 to 2013 and comprises US and Canadian facilities that
reported emissions to their national GHG reporting programs. Data filters are described in Section 4.2. The
Appendix provides variable definitions.
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Table 4: Offshoring, Reduced Economic Activity, and Investments

Facility-Year Level Firm-Year Level

(1) (2) (3) (4) (5)

VARIABLES GHG CARBON INT CARBON INT CAPEX GROSS MARGIN

1{t≥2012} ∗ US ∗ 1{LOW MOBILITY} -0.147**
(0.073)

1{t≥2012} ∗ US -0.018 -0.072** -0.075 0.025** 0.018
(0.024) (0.034) (0.050) (0.012) (0.013)

GAS PRICE -0.004 0.354 0.356 0.036 -0.227*
(0.343) (0.320) (0.329) (0.120) (0.129)

REGULATIONS -0.011 -0.002 -0.002 -0.006*
(0.008) (0.011) (0.002) (0.003)

GDP 0.807 -0.045 -0.023** 0.060
(0.593) (0.534) (0.010) (0.037)

MV 0.065 0.186
(0.101) (0.220)

LEV ERAGE -0.033 -0.088***
(0.031) (0.030)

MTB -0.000 0.000
(0.000) (0.000)

Observations 14,713 6,149 6,149 1,187 1,189
Adjusted R2 0.902 0.968 0.968 0.726 0.921
Facility & Ind-Year fixed effects Y Y Y
Firm & Ind-Year fixed effects Y Y

Standard errors clustered by industry-year in parentheses; *** p<0.01, ** p<0.05, * p<0.1

This table is discussed in Section 4.4.2. Column 1 shows how US facilities’ logged GHG emissions change following the US GHG Reporting
Program’s first disclosure of emissions data in January 2012, with an emphasis on industries in which production is difficult to relocate. Columns
2 and 3 examine changes in US facilities’ carbon intensity. Columns 4 and 5 examine changes in US firms’ capital expenditures and gross margins.
Canadian facilities/firms provide the control. The sample spans 2010 to 2013 and comprises US and Canadian facilities (or their owners) that reported
emissions to their national GHG reporting programs. Data filters are described in Sections 4.3 and 4.4.2. The Appendix provides variable definitions.
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Table 5: Benchmarking—GHG Emissions Convergence and the Effect of Relative Carbon Intensity on Emissions Reductions

Industry-Year Level Facility Level

(1) (2) (3) (4) (5) (6)

VARIABLES GHG SD GHG P90 P10 CH CO2 2012 CH CO2 2012 CH CO2 2012 CH CO2 2012

1{t≥2012} ∗ US -45.962** -63.004**
(21.937) (28.775)

CARBON INT 2010 -0.030** -0.070* -0.091*** -0.121***
(0.012) (0.040) (0.018) (0.041)

CARBON INT 2011 0.053 0.041
(0.045) (0.042)

GAS PRICE -494.360 -671.100 1.652*** 1.647*** 1.647*** 1.643***
(338.720) (444.313) (0.125) (0.123) (0.159) (0.158)

REGULATIONS 8.219 6.217 -0.058 -0.057 -0.062 -0.061
(19.589) (25.696) (0.042) (0.041) (0.053) (0.053)

Observations 392 392 1,111 1,111 545 545
Adjusted R2 0.961 0.960 0.263 0.264 0.200 0.201
Ind-Country & Year fixed effects Y Y
Industry fixed effects Y Y Y Y
Carbon intense facilities Y Y

Standard errors in parentheses (clustered by industry in Columns 3 to 6); *** p<0.01, ** p<0.05, * p<0.1

This table is discussed in Sections 5.1 and 5.2. Columns 1 and 2 examine how the within-industry dispersion of US facility GHG emissions changes
following the US GHG Reporting Program’s first disclosure of emissions data in 2012. They examine the standard deviation and 90th−10th percentile
difference. The sample spans 2010 to 2013 and comprises US and Canadian facilities that reported emissions to their national GHG Reporting
Programs. Canadian facilities’ emissions provide the control. Columns 3 to 6 show how the percentage change in US facilities’ carbon dioxide (CO2)
emissions from 2011 to 2012 responds to their 2010 within-industry-state rankings of carbon intensity (CO2 emissions scaled by a proxy for goods
produced). This ranking becomes publicly known in 2012. The sample comprises US facilities only. Data filters are described in Sections 4.2, 5.1,
and 5.2. The Appendix provides variable definitions.
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Table 6: Benchmarking—Effect of Being a Benchmarker on Facility GHG Emissions
Reductions

(1) (2) (3)
VARIABLES GHG GHG GHG

1{t≥2012} ∗ US ∗ 1{BENCHMARKER} -0.077 -0.077*
(0.062) (0.040)

1{t≥2012} ∗ US -0.034 -0.072*
(0.032) (0.041)

1{t≥2012} ∗ US ∗ 1{67th-100th pctile BENCHMARKER} -0.171***
(0.064)

1{t≥2012} ∗ US ∗ 1{33rd-67th pctile BENCHMARKER} -0.093*
(0.055)

1{t≥2012} ∗ US ∗ 1{0th-33rd pctile BENCHMARKER} -0.074*
(0.040)

GDP -0.063 -0.036 -0.042
(0.270) (0.563) (0.568)

GAS PRICE -0.595 -0.951*** -0.914***
(0.385) (0.300) (0.279)

REGULATIONS 0.001 -0.007 -0.007
(0.007) (0.009) (0.009)

Observations 2,988 5,289 5,289
Adjusted R2 0.954 0.930 0.930
Ind-Year & Facility fixed effects Y Y Y
Standard errors clustered by industry-year in parentheses; *** p<0.01, ** p<0.05, * p<0.1

This table is discussed in Section 5.3. It explores whether the extent to which a facility’s owner accesses
the information of its peers affects the reduction in that facility’s logged GHG emissions following the US
GHG Reporting Program’s first disclosure of emissions data in 2012. A facility is classified as a “bench-
marker” if its owner accesses an above-median amount of its peer firms’ financial information from the US
SEC’s EDGAR website (see Bernard et al., 2020). The sample spans 2010 to 2013 and comprises US and
Canadian facilities that reported emissions to their national GHG Reporting Programs. Canadian facilities’
emissions provide the control. Data filters are described in Sections 4.2 and 5.3. The Appendix provides
variable definitions.
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Table 7a: Benchmarking—Facility Process Convergence Statistics

Facilities and their... % Chg. Similarity p.val
...contempraneous peers 10.5 0.008
...prior carbon-light peers 6.3 0.048
...prior carbon-intense peers -3.4 0.037

Table 7b: Benchmarking—Process Changes and Facility GHG Emissions Reductions

(1) (2) (3)
VARIABLES CO2 CO2 CO2

1{t≥2012} ∗ US ∗ 1{LOW SIM.} -0.192**
(0.079)

1{t≥2012} ∗ US ∗ 1{MED. SIM.} -0.119**
(0.053)

1{t≥2012} ∗ US ∗ 1{HIGH SIM.} -0.018
(0.043)

1{t≥2012} ∗ US -0.102** -0.101**
(0.044) (0.044)

1{t≥2012} ∗ US ∗ 1{IMPROVE} -0.070 -0.112
(0.047) (0.090)

Observations 7,096 3,528 3,497
Adjusted R2 0.936 0.950 0.947
Ind-Year & Facility fixed effects Y Y Y
Standard errors clustered by industry-year in parentheses; *** p<0.01, ** p<0.05, * p<0.1

This table is discussed in Section 5.4. Table 7a examines whether facilities become more (less) similar
to their carbon light (carbon intense) peers following the US GHG Reporting Program’s first disclosure of
emissions data in 2012. Column 1 of Table 7b examines how the emissions reductions of a facility varies
with the degree of process-similarity across the facilities in its industry-state. Column 2 examines how the
emissions reduction of a facility is affected when its processes become more similar to its more carbon light
peers; Column 3 does the same, but further conditions on the facility becoming less similar to its carbon
intense peers. The sample spans 2010 to 2013 and comprises US and Canadian facilities that reported
emissions to their national GHG reporting programs. Data filters are described in Sections 4.2 and 5.4. The
Appendix provides variable definitions.
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Table 8a: External Pressure—Climate Change Progressiveness of Legislators and Facility
GHG Emissions Reductions

(1) (2) (3) (4)
VARIABLES GHG GHG GHG GHG

1{t≥2012} ∗ US -0.057* -0.081** -0.059* -0.050*
(0.029) (0.035) (0.031) (0.030)

1{t≥2012} ∗ US ∗ 1{CC HOUSE} -0.004 0.006
(0.019) (0.022)

1{t≥2012} ∗ US ∗ 1{CC SENATE} -0.052* -0.053*
(0.028) (0.031)

1{t≥2012} ∗ SEN CC SCR -0.084**
(0.035)

SEN CC SCR -0.033
(0.077)

GDP 0.215 0.220 0.214 0.147
(0.423) (0.419) (0.423) (0.397)

GAS PRICE -0.054 -0.023 -0.050 -0.034
(0.338) (0.344) (0.336) (0.337)

REGULATIONS -0.007 -0.007 -0.007 -0.007
(0.007) (0.008) (0.007) (0.007)

Observations 14,713 14,713 14,713 14,713
Adjusted R2 0.902 0.902 0.902 0.902
Ind-Year & Facility fixed effects Y Y Y Y
Standard errors clustered by industry-year in parentheses; *** p<0.01, ** p<0.05, * p<0.1

This table is discussed in Section 6.1. It examines how the climate change progressiveness of a facility’s
state senators and US House representative affect that facility’s reduction in logged GHG emissions following
the US GHG Reporting Program’s first disclosure of emissions data in 2012. Legislators’ climate change
progressiveness is measured using those legislators’ voting records on climate change progressive bills. The
sample spans 2010 to 2013 and comprises US and Canadian facilities that reported emissions to their na-
tional GHG reporting programs. Data filters are described in Section 4.2. The Appendix provides variable
definitions.
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Table 8b: External Pressure—Political Connections and Facility GHG Emissions
Reductions

(1) (2) (3)
VARIABLES GHG GHG GHG

1{t≥2012} ∗ US -0.067* -0.068* -0.064*
(0.037) (0.035) (0.036)

1{t≥2012} ∗ 1{SENATE CONN.} -0.060 -0.030
(0.039) (0.034)

1{SENATE CONN.} 0.029 0.017
(0.036) (0.036)

1{t≥2012} ∗ 1{HOUSE CONN.} -0.084** -0.063**
(0.040) (0.031)

1{HOUSE CONN.} 0.048 0.037
(0.033) (0.029)

Observations 11,286 11,286 11,286
Adjusted R2 0.906 0.906 0.906
Ind-Year & Facility fixed effects Y Y Y
Standard errors clustered by industry-year in parentheses; *** p<0.01, ** p<0.05, * p<0.1

This table is discussed in Section 6.1. It examines how the presence of US GHG Reporting Program
disclosure affects the relation between a facility’s GHG emissions and its political connections. Political
connections are measured using the existence of known election campaign contributions from facilities’ owners
to incumbent legislators. The sample spans 2010 to 2013 and comprises US and Canadian facilities that
reported emissions to their national GHG reporting programs. Data filters are described in Section 4.2. The
Appendix provides variable definitions.
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Table 9: Emissions Responses Prior to US Program Disclosure

(1) (2) (3) (4)
VARIABLES CO2 CO2 CO2 CO2

1{t≥2012} ∗ US −0.133∗∗∗ −0.119∗∗∗ −0.175∗∗ −0.072
(0.038) (0.045) (0.078) (0.118)

1{t≥2010} ∗ US 0.017 0.037 −0.055 0.042
(0.034) (0.042) (0.115) (0.122)

GDP −0.152
(0.429)

GAS PRICE 0.059
(0.204)

REGULATIONS −0.002
(0.009)

MV −0.225
(1.082)

LEVERAGE 0.668∗∗

(0.313)

MTB −0.001
(0.001)

Observations 6,078 6,078 550 550
Adjusted R2 0.864 0.864 0.986 0.984
Year and Facility fixed effects Y
Ind-Yr and Facility fixed effects Y
Year and Firm fixed effects Y
Ind-Yr and Firm fixed effects Y
Standard errors clustered by industry-year in parentheses; *** p<0.01, ** p<0.05, * p<0.1

This table is discussed in Section 6.3. It examines how US facilities’ GHG emissions change following
the implementation of the US GHG Reporting Program. Columns 1 and 2 examine logged CO2 emissions
(estimated for US facilities as described in Section 6.3). Columns 3 and 4 examine logged Scope 1 GHG
emissions voluntarily disclosed by large firms under the Carbon Disclosure Project. The samples span 2008
to 2013, with Canadian observations forming the control. Data filters are described in Sections 4.2 and 6.3.
The Appendix provides variable definitions.
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