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Abstract

This paper proposes a new theory to explain why corporate fraud waves always 
resurface despite tough anti-fraud regulations. Our model offers two insights. 
First, the interdependent nature of fraud and regulation presents a cat-and-mouse 
equilibrium within-firm because detection strength optimally matches fraud severity. 
Second, it yields a whack-a-mole equilibrium across-firm because regulatory 
resources are optimally concentrated on the most fraudulent firms. Therefore, 
regulations cannot eradicate fraud but synchronize firms’ idiosyncratic fraud 
decisions, contributing to waves. These results carry strong policy implications 
by highlighting fraud as a permanent risk in the financial markets and the limited 
efficacy of anti-fraud regulations.
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Abstract

This paper proposes a new theory to explain why corporate fraud waves always resurface

despite tough anti-fraud regulations. Our model offers two insights. First, the interde-

pendent nature of fraud and regulation presents a cat-and-mouse equilibrium within-firm

because detection strength optimally matches fraud severity. Second, it yields a whack-a-

mole equilibrium across-firm because regulatory resources are optimally concentrated on

the most fraudulent firms. Therefore, regulations cannot eradicate fraud but synchronize

firms’ idiosyncratic fraud decisions, contributing to waves. These results carry strong

policy implications by highlighting fraud as a permanent risk in the financial markets

and the limited efficacy of anti-fraud regulations.
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From the original Ponzi scheme of 1920 to the collapse of Enron in 2001, Lehman Brothers

in 2008, and Wirecard in 2020, the history of the financial markets is marred by a continuous

stream of corporate scandals. Billions of dollars were lost as a result of these financial

disasters, which destroyed companies, shook investors’ confidence, and ruined people’s lives.

In response, reforms in the regulatory framework of financial reporting often followed, with the

aim of cracking down on fraud. For example, former president George W. Bush characterized

the Sarbanes-Oxley Act of 2002 as “the most far-reaching reforms of American business

practice” that include “tough new provisions to deter and punish corporate and accounting

fraud and corruption...” The Dodd-Frank Act of 2010 further expanded the efforts to fight

fraud. The Act, via its Whistleblower Program, empowered the Securities and Exchange

Commission (SEC) to reward whistleblowers in unprecedented ways.

Yet, did anti-fraud regulations, even the toughest ones, achieve their stated goals of

cracking down on corporate fraud? Empirical studies of fraud history paint a dim picture

(Hail, Tahoun, and Wang (2018); Toms (2019)). In particular, Hail et al. (2018) study global

corporate fraud over the past two centuries and make two interesting observations. First,

while regulation appears effective in tamping down corporate fraud temporarily, fraud always

manages to resurface, often coming in waves. Second, fraud and regulation exhibit interactive

dynamics, not only with the former leading the latter but also with the latter leading the

former. These observations, particularly the second one, are difficult to explain with either

a simple behavioral view that “humans are born greedy” or a rational view that focuses on

firms’ growth option being the driver of fraud. This paper thus proposes a new theory. Our

main contribution is to build a unified, rational model of corporate fraud and regulation

to illustrate the interdependent nature of the two and reconcile the actuality of regulation

working to curb fraud as intended with the inevitability of fraud remaining a persistent

feature of the financial markets despite the enactment of anti-fraud regulations.

We begin by building a multi-period model featuring a representative firm and a regulator.

At the end of each period, the firm manager issues a potentially biased financial report to the

market after privately observing the firm’s economic earnings (or fundamental cash flows).

Based on the report, the market forms rational expectations of the firm’s current and future
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cash flows and estimates firm value. The regulator utilizes a detection technology to inspect

the firm’s report. With a certain probability, the technology uncovers fraud in the report

and reveals it to the market.

The manager and the regulator each solve a maximization problem. The manager chooses

the fraud amount in each period to boost firm valuation, by weighing his marginal benefit

(hereafter MB) and marginal cost (hereafter MC) of committing fraud. The MC is linked

to detection likelihood. The MB depends on the extent to which the market values new

information and increases with the amount of fraud built to date. An increase in the level of

cumulative fraud raises information uncertainty about the firm, leading investors to place less

weight on past reports and more weight on future reports, which in turn boosts the manager’s

incentive to inflate the forthcoming report. The regulator decides on the amount of resources

spent on a detection technology. In doing so, she seeks to maximize the informativeness of

the firm’s reports, by weighing her MB and MC of detecting fraud. The MC is also linked to

detection likelihood, as a higher likelihood calls for a greater amount of regulatory resources.

The MB depends on the extent to which detection brings down uncertainty, which then allows

investors to base the expected firm value on true economic cash flows rather than inflated

figures; catching the firm with a higher level of cumulative fraud clears more information

uncertainty in both the current and future periods.

Analyses of this single-firm model begin to tell why regulation can be effective at curbing

fraud but fraud never ceases to exist. This is because, although the manager and the regulator

each solve a maximization problem independently, their calculus are intertwined in that their

MBs and MCs both critically depend on—in fact, co-move with—“the cumulative fraud-

induced information uncertainty,” or “Φt,” the key state variable featured in our model.1

Starting with the regulator, her goal is to minimize information uncertainty for investors.

With this task at hand, she faces a trade-off: a higher Φt motivates her because fraud

detection is more valuable in restoring information precision (MB) but increasing detection

1Our model focuses on Φt, the level of cumulative fraud-induced information uncertainty rather than the
level of cumulative fraud per se. This simplifying approach not only allows for tractability but also reflects an
insight from prior theories that the market is able to unravel the expected mean of the bias in the report but
not necessarily the fraud-induced information uncertainty (see Stein (1989); Fischer and Verrecchia (2000);
Dye and Sridhar (2004)). Neverthless, since fraud and fraud-induced information uncertainty are positively
correlated in our model, our inferences are likely qualitatively similar with either concept.
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strength inevitably consumes more regulatory resources (MC). Indeed, as motivating evidence

for this trade-off, we show that an empirical proxy for Φt—the implied volatility of standard

options—drops sharply upon revelation of fraud, suggesting that cumulative fraud raises

information uncertainty and detection lowers it. Turning to the manager, his goal is to

boost firm valuation for private benefits. He similarly faces a trade-off: a higher Φt not

only incentivizes him because investors are eager for new information and will value even

the biased report (MB) but also disciplines him because the regulator also chooses a higher

detection likelihood (MC). While the cost side of this trade-off is clear, the benefit side

requires some justification. As evidence consistent with information uncertainty boosting

the value of earnings reports and the potential return from reporting fraudulently, we show

that financial analysts’ revision of future earnings estimates is more responsive to unexpected

earnings of the current reports when implied volatility (the empirical proxy for Φt) is higher.

We detail motivating and supporting evidence in Section I.

In equilibrium, the regulator chooses the optimal level of detection likelihood (by spending

a corresponding amount of resources on detection), anticipating the cumulative fraud com-

mitted by the manager, and vice versa. If the regulator anticipates a low level of information

uncertainty, then she would spend little on detection. As such, the manager continues to

commit fraud because his MB likely outweighs MC. As fraud gradually builds up, it induces

more information uncertainty that further incentivizes the manager to report fraudulently

as discussed earlier. Meanwhile, the regulator would increase spending on detection as more

fraud attracts closer scrutiny. The two effects go hand-in-hand, simultaneously increasing the

manager’s MB and MC. When fraud reaches a critical level, the regulator would concentrate

resources on the firm and the MC of continuing to commit fraud eventually outweighs the

MB. Upon detection, fraud is cleared in the firm, and the cycle repeats. These analyses

point to a non-monotonic relation between Φt and the optimal amount of fraud chosen by

the manager in a period. This relation gains support from data: in Section I, we document

an inverse U-shaped association between a firm’s fraud amount in a quarter and the level

of implied volatility of the quarter. These analyses also explain the time-series persistence

of fraud because the interdependent nature of fraud and regulation essentially results in a
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cat-and-mouse equilibrium within-firm because the strength of detection optimally matches

the severity of fraud.

Analyses of an expanded, three-firm model make a separate case for effective regulation

but everlasting fraud. Let H-, M-, and L-firm represent the firm with a high, medium, and low

level of cumulative fraud-induced information uncertainty, respectively. As in the single-firm

model, detection strength matches fraud severity in equilibrium, so the regulator rationally

allocates most resources towards H-firm. Ironically, with regulatory resources concentrated

on H-firm, a whack-a-mole equilibrium emerges in which M- and L-firms may factor in the

regulator’s decision and become more aggressive because their fraudulent behavior is better

masked until H-firm is caught (upon which M-firm becomes next target in line). These

analyses explain the cross-sectional persistence of fraud across-firm.

The question then arises is whether regulations can still achieve their stated goals of

cracking down on fraud. Analyses of the multi-firm model show that the efficacy of anti-

fraud regulations is quite nuanced. On the one hand, such regulations are able to effectively

tamp down fraud by lowering H-firm’s net benefits from continuing fraud. Before detection,

concentration of regulatory resources on H-firm greatly increases its MC of committing fraud.

Upon detection, the MB becomes minuscule because a sharply declined uncertainty renders

the firm’s future reports less useful and fraudulent reporting less valuable. On the other hand,

the rational allocation of regulatory resources towards the more fraudulent firms may imply

less scrutiny of less fraudulent firms, allowing the latter’s fraudulent behavior to go undetected

and their level of fraud to catch up—a side effect revealed by our three-firm model. As a

result, despite the “cracking-down” on H-firm, anti-fraud regulations do not eradicate fraud.

Rather, they synchronize firms’ fraud decisions, which may otherwise be idiosyncratic, and

induce corporate fraud waves—the convergence of firms’ fraud amount—at certain times.

To lend support to this unique insight from our model, we show that firms with a higher

(lower) level of implied volatility in the prior period experience a greater (smaller) increase in

implied volatility in the current period, suggesting that firms with more (less) fraud-induced

information uncertainty are more cautious (aggressive) about committing fraud.

This paper fits in the broad literature of crime and regulation in finance and economics in
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three ways. First, it offers consistent evidence for the “whack-a-mole” game, a term adopted

by prior studies to describe the situation in which a regulation intended to address prob-

lems in one market may inadvertently lead to new problems cropping up in other markets

(Blinder (2008); Blinder (2015); Cai, He, Jiang, and Xiong (2021)). In our model, this sit-

uation arises because uncovering corporate fraud inevitably consumes regulatory resources.

As a result, maximizing detection intensity at all times is neither fiscally feasible nor so-

cially optimal, so strategic reporting behavior in certain parts of the economy is inescapable.

Additionally, fraud waves, as predicted by our model, are interactive outcomes between the

defensive calculated behaviors of incumbent managers and the offensive tactical innovations

of entrepreneurial monitors; similar outcomes are observed in other markets such as takeover

waves (Pound (1992); Harford (2005)).

Second, this paper adds to prior theories that explain why maximal penalties are not

desirable in preventing crime. For example, Mookherjee and Png (1992) point out that the

enforcement authority should optimally vary its monitoring effort according to a signal of

the action selected by the potential offender. Bond and Hagerty (2010) prove that marginal

penalties are more attractive in the Pareto inferior crime wave equilibrium. Our results

also speak to this point but work through a unique mechanism. As a white-collar crime,

fraud is a calculated decision that is fundamentally different from violent crimes. For fraud,

a perpetrator’s economic benefits and costs are endogenous. In contrast, the benefits of

committing a violent crime are often exogenous by nature (e.g., it is hard to endogenize a

murderer’s marginal utility). Our analyses yield an important insight about corporate fraud—

its MB and MC go hand-in-hand—which makes it distinct from other types of crimes (e.g., a

murderer’s marginal utility would not increase with enforcement). For this reason, a policy

that lets punishment fit the crime should work uniquely well in addressing fraud, because

once an anti-fraud regulation is sufficiently tough and cracks down on the most fraudulent

firms, these firms’ MBs of committing fraud also drop sharply upon detection (and so the

regulator can safely and should optimally decrease the level of enforcement).

Lastly, our model complements prior theories of fraud but also differs from them in

two notable aspects. First, to our best knowledge, our model is the first to examine the
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joint mechanisms of corporate fraud and regulation in a multi-firm, dynamic setting. In

contrast, prior theories either assume an exogenous detection cost for a single-firm game

(e.g., see Fischer and Verrecchia (2000) and Dye and Sridhar (2004) for two static models

and Beyer, Guttman, and Marinovic (2019) for a dynamic model) or endogenize detection

cost in a single-firm, static setting (e.g., Povel, Singh, and Winton (2007)). By modeling

both the manager’s and regulator’s decisions, our study takes a holistic view in analyzing

the formation and evolvement of corporate fraud and evaluating the efficacy of anti-fraud

regulations. Second, several prior theories highlight growth as an important driver for fraud

(e.g., Povel et al. (2007); Strobl (2013)), which are useful in explaining why corporate fraud

may come in waves depending on business cycle but not why regulations lead or even give rise

to fraud waves. Our model takes the informative perspective and offers a new explanation for

the observed interactive dynamics between fraud and regulation, while setting aside firms’

idiosyncratic characteristics including their growth options. The information effect of firms’

disclosure decisions is crucial as a reduction in price informativeness is capable of distorting

investment and hurting the real economy (see Goldstein and Yang (2017) for a survey).

I. Motivating Evidence

Fraud has existed for as long as recorded history, with the earliest documented case dating

back to Ancient Greece, 300 B.C. (Toms (2019)). The history of financial markets is shorter

in comparison but never lacked episodes of corporate fraud. Using a comprehensive sample

worldwide from 1800 to 2015, Hail, Tahoun, and Wang (2018) conduct a descriptive study of

the intertemporal relation of corporate fraud and regulation, and reveal a pattern of inter-

active dynamics between the two. Figure 1 reproduces Figure 2 of Hail, Tahoun, and Wang

(2018, pp. 645). As the figure shows, fraud is an antecedent to regulation over long stretches

of time, which is fully expected as regulators are typically reactive rather than proactive.

Interestingly, regulation is positively related to the incidence of future scandals. This pattern

is less anticipated so the authors formulate three conjectures. First, regulators may fail to be

fully effective, because they are uninformed, self-interested, captured, or ideological. Second,
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Figure 1: Time-series plot of the yearly number of business news mentions of “scandal” and
“regulator” for 24 countries from 1800 to 2015, reproduced from Figure 2 of Hail et al. (2018)

new anti-fraud measures may not be exhaustive or contain loopholes that allow managers

to adapt and circumvent regulation. Third, regulations can have unintended consequences,

although it is not clear what these consequences may be. The patterns revealed by Hail et al.

(2018), which are hard to reconcile with existing theories, motivate our work. Specifically,

we aim to build a rational model to explain the interactive dynamics between fraud and

regulation and the unintended consequences of regulation that contribute to such dynamics.

In building the model, we take an information perspective, which is motivated by the view

held by regulators worldwide that fraud in firms’ disclosure and reporting choices can influence

market valuation and mislead investors.2 As a screening test of whether our proposed theory

indeed reflects practice, we conduct two sets of analyses to separately shed light on the role

that information may play in the regulator and the firm manager’s calculus. Detailed sample

2For example, the Financial Accounting Standards Board (FASB) states that the objective of financial
reporting is to “provide financial information about the reporting entity that is useful to existing and potential
investors, lenders, and other creditors in making decisions about providing resources to the entity.” (SFAC
No. 8, 2010, p.1).
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selection, variable definitions, and empirical results are discussed in Appendix II.

Starting with the regulator, if her goal is to crack down on fraud and restore the accuracy

of corporate reports (which is a stated objective of many anti-fraud regulations), then it is

reasonable to expect that fraud builds up information uncertainty while subsequent detection

decreases it. To check this prior, we obtain a sample of accounting restatements announced

between 1999 and 2019 from Audit Analytics and implied volatility data from Option Metrics.

Since option prices reflect the market’s expectation about changes in the firm’s value given all

available information, implied volatility captures the conditional variance of this information

set. We thus expect implied volatility to increase with Φt, the key state variable in our model

that represents the level of information uncertainty brought by cumulative fraud. Empirically,

we calculate the monthly (quarterly) implied volatility from 90-day standardized option prices

by averaging the daily values over a given month (quarter) and label the resulting variable

monthly (quarterly) IV , respectively. We document two new stylized facts. First, as Figure

2 shows, implied volatility drops sharply upon revelation of fraud, consistent with our prior

that detection clears fraud and lowers information uncertainty.

Figure 2: Plot of monthly IV before and after fraud-related restatement announcements

Second, Table I shows that the likelihood of having fraud revealed in a given quarter is
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positively related to the level of implied volatility during the prior quarter, suggesting that

regulatory resources are concentrated on firms with higher levels of fraud-induced information

uncertainty. Combined, these two findings point to the role that information plays in the

regulator’s calculus: as detection helps restore information precision, she benefits more by

directing efforts towards firms with higher levels of fraud-induced information uncertainty.

Turning to the manager, we first note that since detection likelihood increases with implied

volatility (the empirical proxy for fraud-induced information uncertainty, Φt), the manager’s

cost of committing fraud is also expected to increase with implied volatility. To shed light

on how information uncertainty affects the manager’s benefit from committing fraud, we link

implied volatility to analyst forecast revision, a commonly used proxy for changes in the

market’s expectation about the firm’s value. In Table II, we show that analysts’ revision

of earnings estimates for the next quarter following earnings announcement of the current

quarter is positively related to implied volatility during the prior quarter. This result suggests

that the market is likely to put a greater weight on the new information contained in the

firm’s financial report when information uncertainty is higher. This discussion thus suggests

the manager faces a trade-off: while a higher level of fraud-induced information uncertainty

deters the manager from committing fraud because the regulator chooses a higher detection

likelihood, it also incentivizes him because investors are eager for new information. Consistent

with this intuition, we find an inverse U-shaped association between a firm’s fraud amount

in a quarter (labeled FRAUD) and the level of implied volatility of the quarter, both in the

univariate plot (Figure 3) and regression analyses (Table III).

To summarize, although the empirical evidence documented in this section are far from

conclusive, they are suggestive of the role that information plays in the regulator and the firm

manager’s calculus. We are unaware of a pre-existing model that can explain these findings,

which motivates the development of our model in the next section.
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Figure 3: Plot of FRAUD against IV with prediction curve

II. Single-firm Model

A. Model Setup

We consider a baseline setting in which a representative firm generates economic earnings

st in each period t ∈ {1, 2, ...,∞}. We assume that st follows an AR(1) process such that

st = ρst−1 + εt, (1)

where the correlation coefficient ρ ∈ (0, 1) and the random variable εt ∼ N
(
0, σ2

ε

)
. In each

period, the firm manager privately learns the realization of the firm’s economic earnings st

and issues a report rt. Investors use the report to update Vt, which is assumed to be set by

a competitive market and equals the firm’s total discounted future earnings in expectation:

Vt =
∞∑
k=t

δk−tEI [sk|Ft] =
EI [st|Ft]

1− δρ
, (2)
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where EI [·|Ft] denotes the investors’ expectation, Ft ≡ {rt, rt−1, ...r1} denotes the set of the

firm’s reports up to time t, and δ ∈ (0, 1) denotes the discounting factor. To be clear, since

Vt reflects the market’s valuation of the firm’s economic earnings (or expected firm value),

it may differ from the firm’s fundamental value. The manager has incentives to manipulate

the report rt to boost Vt, because a higher firm valuation typically means higher equity

compensation and better career prospects for himself.

We model the manager’s earnings manipulation decision as follows. In each period t, after

observing the true economic earnings st, the manager chooses manipulation mt ≥ 0 that adds

mt errors {ξl}mt
l=1 to st. The choice of manipulation mt is observable only to the manager.

Each error generates either 0 or 1 with Pr (ξl = 0) = q ∈ (0, 1]. The report is then given by:3

rt = st +

mt∑
l=1

ξl. (3)

Using the central limit theorem, we can approximate the distribution of
∑mt

l=1 ξl as

mt∑
l=1

ξl ∼ N (mt (1− q) ,mtq (1− q)) . (4)

With the manager’s manipulation choice mt ≥ 0, the report becomes:

rt = st +mt(1− q) +
√

mtq (1− q)ηt. (5)

ηt ∼ N (0, 1) is a standard normal random variable that is independent of all other variables

in the model. Equation (5) suggests that manipulation has a dual effect on the report: mt

increases the mean of the report but decreases its precision. Note that we do not impose

the restriction that manipulation in the report must reverse at some fixed point in time, i.e.,

the mechanical reversal of discretionary accruals. However, because the regulator’s equilib-

rium detection effort increases with the cumulative fraud, a firm who has engaged in more

3A firm’s earnings aggregate different line items in the financial statements; that is, for instance, net income
equals sales revenue minus cost of sales and other expenses. By the way that we model the manipulation
decision, a manager may choose to add one unit of positive bias to each of the line items (e.g., either over-
report a revenue item or under-report an expense item) to inflate the earnings report. However, the manager’s
manipulation attempts may be blocked by the firm’s internal control system, and q denotes the probability
with which each of the manager’s fraudulent attempts fails.
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manipulation in the past will have stronger incentive to reduce manipulation in the future.

We assume that, in each period t, the firm’s fraudulent activity is uncovered with an

aggregate probability of dt = d0+ drt, dt ∈ (0, 1). d0 ∈ (0, 1) denotes the probability with

which fraud is detected in the absence of regulatory involvement, which highlights the fact

that other stakeholders (such as external auditors, whistleblowers, and short-sellers) may also

play a monitoring role. drt ∈ (0, 1) denotes the probability with which fraud is detected with

direct regulatory efforts.4 Specifically, the regulator influences drt by utilizing a detection

technology to inspect the manager’s report rt; the technology consumes regulatory resources

of κ
2 (drt)

2. If the regulator successfully detects fraud, she would require the manager to

restate the report to equal the true earnings, i.e., rt = st, and imposes a penalty Ct on the

manager that is proportional to the fraudulent amount:

Ct = c(rt − st), (6)

where the coefficient c > 0, which is assumed to be not too excessive so that the equilibrium

manipulation m∗
t > 0. We assume that the regulator sets the aggregate detection probability

dt by choosing drt to maximize the informativeness of the set of reports Ft ≡ {rt, rt−1, ...}

about the firm value Vt. This assumption reflects the regulator’s objective in ensuring the

integrity of financial reporting as discussed earlier. Since earnings follow an AR(1) process,

the period-t earnings st is a sufficient statistic to estimate all of the firm’s future earnings

and the firm value. Thus, maximizing the informativeness of Ft is equivalent to maximizing

the informativeness about st, or minimizing the conditional variance about st:

Φt ≡ var (st|Ft) . (7)

Note that it yields the largest information gain for the regulator to focus on detecting

fraud in the current period’s report rt and uncovering the true earnings st, because st is a

4We acknowledge that there may be some interaction between d0 and drt, although the direction is
theoretically ambiguous as a higher d0 may render regulatory efforts less necessary (hence a lower drt) or it
may prompt the regulator to step in (hence a higher drt). While potentially interesting, this interaction is
outside the scope of our model.
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-r r r r
Earnings st is realized

and privately observed
by manager.

Manager chooses

manipulation mt and
issues report rt.

Regulator sets detection

probability dt.

With probability dt,

regulator detects fraud,
and penalizes manager.

Figure 4: Timeline of the period-t game

sufficient statistic for estimating all of the firm’s future earnings (as shown in equation (2)).

Conditional on the revelation of st, detecting fraud in the firm’s past reports, {rt−1, rt−2, ...},

incurs additional costs but does not generate any incremental information benefits.5

Figure 4 summarizes the timing of events in each period t.

B. Analysis

In this section, we analyze the manager’s optimal manipulation choice m∗
t and the reg-

ulator’s equilibrium detection choice d∗t .
6 For brevity, we present only the equations that

illustrate the key intuitions from the model, leaving the detailed derivations to Appendix I.

B.1. The manager’s problem

We assume that the manager derives utility from his compensation (or career prospects)

that is proportional to firm valuation. To ease notation, we scale up the manager’s utility so

that it simply equals the valuation set by investors. In each period t, the manager maximizes

the total present value of his future expected payoffs by choosing manipulation mt:

Ut = max
mt

EM

[ ∞∑
k=0

δkut+k

∣∣∣∣st,Ft−1

]
. (8)

where EM [·|st,Ft−1] denotes the manager’s expected utility in period t based on his infor-

mation set, which includes st, his privately observed true earnings of the firm for the period,

5If the regulator can uncover and impose a penalty on past fraud, the manager will have weaker incentives
to commit fraud. However, in terms of the qualitative predictions of the model, this modification will yield
similar effects to imposing a greater penalty on the current-period fraud, i.e., a higher c.

6Technically speaking, although the regulator sets the detection probability dt after the manager chooses
mt, the two essentially play a simultaneous-move game because the regulator does not observe mt and thus
cannot make dt a function of mt.
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and Ft−1, the firm’s publicly released earnings reports in the past up until period t− 1. The

manager’s period-t payoff is:

ut = d∗t

(
st

1− δρ
− Ct

)
+ (1− d∗t )

EI [st|Ft]

1− δρ
, (9)

where d∗t is the regulator’s period-t detection probability anticipated by the manager.

The two terms of equation (9) represent the manager’s utility under two different sce-

narios, respectively. In the first scenario that occurs with a probability of d∗t , the manager’s

fraudulent behavior is detected. As a result, the firm’s true earnings st is revealed to in-

vestors, who would then update its valuation of the firm to st
1−δρ based on st. The manager

suffers a penalty of Ct proportional to mt as shown in equation (6). In the second scenario

that occurs with the complement probability of 1 − d∗t , the manager’s fraudulent behavior

goes undetected. Thus, the firm’s true earnings st remains unknown to investors, who would

then have to set its valuation of the firm to EI [st|Ft]
1−δρ based on the firm’s public reports Ft.

The manager incurs no penalty.

Equation (9) also makes it clear that the manager’s manipulation choice mt only affects

firm valuation when it is undetected. To solve the optimal m∗
t , we first analyze how firm

valuation varies with mt in each period:

EI [st|Ft] = (1− wt) · ρEI [st−1|Ft−1] + wt · [rt −m∗
t (1− q)] . (10)

As shown, firm valuation is set as the weighted average of the investors’ prior of st (the first

term) and the incremental information that investors gain from seeing the report rt (the

second term). The prior builds on the AR(1) process of st and equals ρEI [st−1|Ft−1]. To

extract information from the new report, investors rationally subtract the expected manipu-

lation m∗
t (1− q), leading to a refined signal rt −m∗

t (1− q). The weight

wt =
ρ2Φt−1 + σ2

ε

ρ2Φt−1 + σ2
ε +m∗

t q (1− q)
, (11)

captures the value relevance of the earnings report, with Φt−1 being the inverse precision of
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the prior, as defined in equation (7). When Φt−1 is larger, the prior is less precise and so the

investors have to place a greater weight on the current report to infer firm fundamentals.7

Equation (10) suggests that undetected manipulation mt has a contemporaneous effect as

well as an intertemporal effect on the investors’ conjectured firm value. To see the contem-

poraneous effect, note that mt inflates the current earnings report rt, which in turn boosts

firm valuation in the current period EI [st|Ft]; this effect works through the second term of

the equation. To see the intertemporal effect, note that EI [st|Ft] serves as the prior for the

investors to conjecture future earnings st+1, so as mt inflates EI [st|Ft], it also boosts firm

valuation in the next period EI [st+1|Ft+1]; this effect works through the first term of the

equation. In fact, such bias propagates to all future st+k for k > 0 through the recursive

form of equation (10).8

Assuming that the firm remains undetected, we can summarize the contemporaneous

effect (k = 0) and the intertemporal effect (k > 0) of mt below as

∂EM
[
EI [st+k|Ft+k] |st,Ft

]
∂mt

=

 wt (1− q) if k = 0

ρk
∏k

l=1(1− wt+l)wt (1− q) if k > 0
. (12)

Now we solve the manager’s optimal choice of manipulation, m∗
t . Taking derivative of Ut

in equation (8) with respect to mt and then substituting in equation (12) derived above, we

7It is noteworthy that m∗
t in equation (10) is the investors’ conjectured manipulation by the manager, and

the manager factors in the investor’s conjecture in his maximization problem. In equilibrium, this conjecture
equals the manager’s optimal manipulation choice m∗

t .
8This can be easily seen by shifting equation (10) forward by k periods from t to t+ k.
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obtain the first-order condition (F.O.C.) as9

c (1− q) d∗t︸ ︷︷ ︸
MC of mt

= (1− d∗t )
wt(1− q)

1− δρ︸ ︷︷ ︸
MB of mt from the contemporaneous effect

+
∞∑
k=1

δk

[
k∏

ℓ=0

(
1− d∗t+ℓ

)] ρk
[∏k

ℓ=1(1− wt+ℓ)
]
wt(1− q)

1− δρ︸ ︷︷ ︸
MB of mt from the intertemporal effect

(13)

The MC of manipulation, expressed on the left hand side (LHS) of the F.O.C., increases

with the regulator’s optimal choice of detection probability d∗t , which is correctly conjectured

by the manager. The MB of manipulation, expressed on the right hand side (RHS) of the

F.O.C., arises from both the contemporaneous effect and the intertemporal effect discussed

above, taking into account the expected likelihood of being detected in the current or a future

period. Specifically, the MB from the contemporaneous effect is only affected by the likelihood

of not being detected in the current period (1 − d∗t ), while the MB from the intertemporal

effect is affected by the likelihood of not being detected up to a future period of interest[∏k
ℓ=0

(
1− d∗t+ℓ

)]
.

Substituting equation (11) for wt+ℓ in equation (13) and solving for m∗
t+ℓ, we find that

the manager’s current manipulation choice m∗
t depends on his future manipulation choices{

m∗
t+1,m

∗
t+2, ...

}
. By induction, we can write m∗

t in a recursive form, as shown in Lemma 1

below. Appendix I.A provides more details on the derivation.

Lemma 1 In each period t, given the regulator’s equilibrium detection choice d∗t conjectured

by the manager, the manager chooses the optimal manipulation

m∗
t =

ρ2Φt−1 + σ2
ε

q (1− q)

[
1− d∗t
cd∗t

(
1

1− δρ
+ δρcq (1− q)

d∗t+1m
∗
t+1

ρ2Φt + σ2
ε

)
− 1

]
, (14)

where Φt is the conditional variance of st, as defined in equation (7).

9The F.O.C. implies that, given that the market rationally conjectures the equilibrium manipulation level
m∗

t , the MB of manipulation equals the MC of manipulation such that the manager (weakly) prefers the
equilibrium manipulation choice m∗

t . Hence m∗
t constitutes one and the only rational-expectation equilibrium.

Note that by adding even a small convexity in the cost of manipulation, e.g., making the manipulation penalty
Ct = c(rt − st)+

ϵ
2
(rt − st)

2, where ϵ > 0 can be arbitrarily small, we can show that, at the market conjecture
of m∗

t , the manager strictly prefers to choose m∗
t . Detailed analysis is available upon requests.
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Given the manager’s optimal manipulation choice, Φt evolves endogenously in the model,

and standard Bayesian updating yields its law of motion, as shown in Lemma 2 below:

Lemma 2 In each period t, if the regulator detects fraud, the conditional variance about the

firm’s earnings st drops to zero, i.e., Φt ≡ 0. If the regulator fails to detect fraud, Φt is a

function of the last-period Φt−1 and the manager’s period-t manipulation in equilibrium m∗
t

Φt (d
∗
t ,Φt−1) =

m∗
t q (1− q)

(
ρ2Φt−1 + σ2

ε

)
ρ2Φt−1 + σ2

ε +m∗
t q (1− q)

. (15)

The law of motion (15) is intuitive. It states that the uncertainty about the firm’s earnings

Φt is increasing in both the prior uncertainty Φt−1 and the manager’s equilibrium manipula-

tion m∗
t in the current period. Iterating (15) over time suggests that Φt essentially depends

on the manager’s undetected manipulation accumulated in the past, i.e.,
{
m∗

t ,m
∗
t−1, ...

}
. We

thus hereafter refer to the state variable Φt as either the information uncertainty about the

firm fundamentals in period t or the cumulative level of fraud up to period t interchangeably.

B.2. The regulator’s problem

We then analyze the regulator’s choice of detection probability dt, given the manager’s

equilibrium manipulation choice m∗
t in equation (14). Specifically, the regulator seeks to

maximize her total utility in future periods

Wt = max
dt

EI

[ ∞∑
k=0

δkvt+k

∣∣∣∣Ft

]
. (16)

EI [·|Ft] indicates that the regulator has the same information set as the investors. vt is the

regulator’s period-t utility

vt = − (1− dt) Φt −
κ

2
(dt − d0)

2 . (17)

Equation (17) sums up the regulator’s expected utility in period t over two scenarios. If

detection succeeds with probability dt, then the true earnings st is revealed and the conditional

variance Φt drops to zero. Alternatively, if detection fails with probability 1 − dt, then the
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conditional variance remains at Φt > 0. Under either scenario, the regulator incurs a cost for

detection of κ
2 (dt − d0)

2.

As in the manager’s maximization problem, the regulator’s choice of detection likelihood

in period t also carries two effects. First, a higher dt increases the regulator’s period-t utility

by boosting the chance of detection success (upon which Φt is decreased to zero); this is the

contemporaneous effect of detection. Second, clearing Φt also reduces the expected level of

Φt+ℓ for all ℓ > 0 because Φt affects all future Φt+ℓ through the law of motion specified in

equation (7); this is the intertemporal effect of detection.

Now we solve the regulator’s choice of optimal detection likelihood, d∗t . We obtain the

F.O.C. as

κ (dt − d0)︸ ︷︷ ︸
MC of dt

= Φt − 0︸ ︷︷ ︸
MB of dt from the contemporaneous effect

+ δ [Wt+1 (0)−Wt+1 (Φt)] .︸ ︷︷ ︸
MB of dt from the intertemporal effect

(18)

Wt+1 (Φ) denotes the regulator’s objective function evaluated at an initial level of uncer-

tainty Φ. As in the F.O.C. for the manager’s problem, we express the MC of detection on

the LHS and the MB of detection on the RHS. The MC is proportional to the amount of

detection intensity contributed by the regulator, drt = dt − d0. The MB is increasing in the

cumulative level of fraud Φt as it comes from clearing uncertainty about st in the current

period (the contemporaneous effect) and decreasing prior uncertainty for all future periods

(the intertemporal effect). Specifically, Wt+1(0) − Wt+1(Φt) > 0 represents the capitalized

value of resetting the initial uncertainty from Φt to zero for all future periods upon successful

detection. Finally, we solve d∗t from the F.O.C, which yields the following lemma.

Lemma 3 In each period t, the regulator chooses the optimal detection probability

d∗t (Φt−1) = d0 +
Φt + δ [W (0)−W (Φt)]

κ
, (19)

where Φt is expressed recursively in equation (7).
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B.3. The equilibrium

Because our model features an infinite horizon and both m∗
t and d∗t can be written recur-

sively as functions of Φt−1, we can treat Φt−1 as the state variable for period t and characterize

the equilibrium as a dynamic programming problem with the Bellman equations. For ease of

notation, we omit the time subscript and denote variables of the next period with a prime.

Proposition 1 For a given level of accumulated past fraud Φ, the regulator’s equilibrium

detection choice d∗ (Φ) and the manager’s equilibrium manipulation choice m∗ (Φ) are given

by the following set of equations, with the two agents rationally anticipating each other’s

optimal policy function:

d∗ (Φ) = d0 +
Φ′ + δ [W (0)−W (Φ′)]

κ
, (20)

m∗ (Φ) =
ρ2Φ+ σ2

ε

q (1− q)

[
1− d∗

cd∗

(
1

1− δρ
+ δρcq (1− q)

d∗ (Φ′)m∗ (Φ′)

ρ2Φ′ + σ2
ε

)
− 1

]
, (21)

where

Φ′ (Φ) =
m∗ (Φ) q (1− q)

(
ρ2Φ+ σ2

ε

)
ρ2Φ+ σ2

ε +m∗ (Φ) q (1− q)
, (22)

W (Φ) = − (1− d∗) Φ′ − κ

2
(d∗ − d0)

2 + δ
[
d∗W (0) + (1− d∗)W

(
Φ′)] . (23)

The dynamic programming problem in Proposition 1 does not permit a fully analytical

solution, so we take two steps to analyze the model’s implications. First, we demonstrate the

model’s key insights by analytically solving a special case of the model when the discounting

factor δ is set to zero. This simplified case represents a situation in which the manager and

the regulator are impatient and care only about the contemporaneous effects of their choices.

We then confirm that the key insights in the simplified case with δ = 0 generalize to the full

model with δ > 0. In doing so, we resort to the numerical method detailed in Appendix I to

solve the full model.

When δ = 0, all intertemporal effects exit and only the contemporaneous effect remains.
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The F.O.C. of the manipulation decision m∗
t in equation (13) is reduced into:

c (1− q) d∗︸ ︷︷ ︸
MC of m

= (1− d∗)
(1− q)

1− δρ

ρ2Φ+ σ2
ε

ρ2Φ+ σ2
ε +m∗q (1− q)︸ ︷︷ ︸ .

MB of m from the contemporaneous effect

(24)

The MC of manipulation is the same as in the full model whereas the MB of manipulation

includes only the contemporaneous effect of manipulation in boosting the firm valuation

in the current period EI [st|Ft]. Therefore, the MB of manipulation in our special case is

qualitatively similar to that in the full model but quantitatively smaller as manipulation in the

full model also generates an additional intertemporal benefit in boosting the future firm value.

Hence, the equilibrium properties of manipulation m∗ in the special case extend qualitatively

to the full model, as suggested by our later numerical simulations. Solving equation (24)

gives the equilibrium manipulation m∗ as a function of the fraud-induced uncertainty Φ and

the equilibrium detection strength d∗:

m∗ =
ρ2Φ+ σ2

ε

q (1− q)

(
1− d∗

cd∗
− 1

)
. (25)

Equation (25) illustrates some equilibrium properties of manipulation m∗. First, holding

d∗ constant, m∗ is increasing in the level of fraud-induced uncertainty Φ. Intuitively, all

else equal, the manager has greater incentives to commit fraud as the market faces a higher

uncertainty about the firm and relies on the manager’s report to a larger extent. Second, m∗

is decreasing in the detection strength d∗ as a higher d∗ increases the MC of manipulation

and deters manipulation in equilibrium.

Substituting equation (15) and equation (25) into the F.O.C. of the detection choice in

equation (18) gives the optimal detection choice d∗:

κ (d∗ − d0)︸ ︷︷ ︸
MC of d

=
(
ρ2Φ+ σ2

ε

)(
1− cd∗

1− d∗

)
︸ ︷︷ ︸

MB of d from the contemporaneous effect

. (26)

Compared to the first-order condition (equation (18)) in the full model, the MC of detection in

the special case is the same whereas the MB of detection includes only the contemporaneous
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effect of detection in clearing the uncertainty about st in the current period. Hence, the

MB of detection in the special case is qualitatively similar to that in the full model but

quantitatively smaller as detection in the full model also generates an additional intertemporal

benefit in reducing prior uncertainty for all future periods. In particular, applying the implicit

function theorem equation (A.10) to equation (26) shows that the regulator’s choice of optimal

detection strength d∗ is increasing in the fraud-induced uncertainty Φ. That is, the regulator

matches the strength of fraud detection with the severity of fraud in equilibrium. This

result is intuitive because the manager’s manipulation in the past adds noises to the firm’s

reports and decreases informativeness. Since the regulator’s objective is to clear fraud and

restore informativeness of the firm’s reports, her gains are higher from detecting reports with

more extensive fraud. In other words, the regulator’s MB of detection is increasing in the

cumulative level of fraud and so is her choice of optimal detection strength.

Next, we use the expression of d∗ in equation (26) to draw inferences about the properties

of the equilibrium manipulation m∗ (Φ) in equation (25). Interestingly, we find that m∗ can

be non-monotonic in Φ. To see this, recall that from equation (25), fixing the regulator’s

detection choice, m∗ is increasing in Φ. However, equation (25) also suggests that as Φ

increases, the regulator would invest more heavily in the detection technology, which deters

manipulation and reduces m∗. The two countervailing effects go hand-in-hand, leading to a

non-monotonic relation between m∗ and Φ (which is consistent with the evidence presented in

Figure 3 and Table III). The following proposition summarizes the equilibrium manipulation

choice and detection strength {m∗ (Φ) , d∗ (Φ)} in our special case of δ = 0.

Proposition 2 Consider a special case of our model with the discount factor δ = 0. For a

given level of accumulated past fraud Φ, the regulator’s equilibrium detection choice d∗ (Φ)

and the manager’s equilibrium manipulation choice m∗ (Φ) are given by the following set of

equations, with the two agents rationally anticipating each other’s optimal policy function:

κ (d∗ (Φ)− d0) =
(
ρ2Φ+ σ2

ε

)(
1− cd∗ (Φ)

1− d∗ (Φ)

)
, (27)

m∗ (Φ) =
ρ2Φ+ σ2

ε

q (1− q)

(
1− d∗ (Φ)

cd∗ (Φ)
− 1

)
. (28)
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The equilibrium detection d∗ (Φ) is increasing in Φ. The equilibrium manipulation m∗ (Φ)

can be non-monotonic in Φ.

The analytical results in Proposition 2 build on a special case of the model solution with

δ = 0. Next, we solve the full model numerically to verify our findings. We set the seven model

parameters as follows: the subjective discount rate, δ, equals 0.9, a value commonly used in

the literature; the success rate of manipulation, q, equals 0.5, an innocuous assumption in

the model; the persistence of the AR(1) process that governs the dynamics of the economic

earnings st, ρ, equals 0.88; the conditional standard deviation of the AR(1) process, σε, equals

0.15; the detection cost parameter, κ, equals 2.5; and the manager’s cost parameter, c, equals

3, which suggests that the fine imposed on the manager is three times of his manipulation

amount upon detection. Last, we set the exogenous detection rate by the market participants

other than the regulator, d0, to be 3%.

Figure 5 depicts the regulator’s optimal detection intensity d∗t as a function of the firm’s

state variable Φt−1. Consistent with our analysis in the special case with δ = 0, the numerical

solution suggests that a higher level of cumulative fraud increases the regulator’s choice of

detection intensity, which in turn increases the manager’s MC of manipulation.

Figure 6 depicts the manager’s optimal manipulation m∗
t also as a function of the state

variable Φt−1. Based on the set of parameter values that we use in the numerical solution,

we find that the equilibrium manipulation is non-monotonic in the firm’s cumulative fraud.

The intuition is clear: when Φ is very low (close to 0), the market is highly informed about

the firm’s economic earnings and puts little weight on the firm’s new report. This implies a

low MB of manipulation and weaker incentives for the manager to inflate the report. When

Φ is very high, the regulator increases detection efforts, which sharply increase the MC

of manipulation. Trading off the MB and MC of manipulation, the manager’s maximum

manipulation may appear in the intermediate range of Φ, leading to an inverse U-shaped

relation between m∗ and Φ.

Having characterized the equilibrium policies of manipulation and detection decisions

with a set of fixed parameters, we next analyze how the equilibrium decisions vary with these

parameters through the lens of comparative statics. Figure 7 illustrates how varying the
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Figure 5: Equilibrium detection probability d∗ (Φ). This figure plots the regulator’s optimal
choice of detection intensity, d, as a function of the information uncertainty induced by
cumulative fraud, Φ. The parameters used in generating this figure are: δ = 0.9, q = 0.5,
ρ = 0.88, σε = 0.15, k = 2.5, c = 3, d0 = 0.03.
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Figure 6: Equilibrium manipulation m∗ (Φ). This figure plots the manager’s optimal choice of
manipulation, m, as a function of the information uncertainty induced by cumulative fraud,
Φ. The parameters used in generating this figure are: δ = 0.9, q = 0.5, ρ = 0.88, σε = 0.15,
k = 2.5, c = 3, d0 = 0.03.
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weight on the intertemporal effects (i.e., the discounting factor δ) shifts the equilibrium out-

comes. Intuitively, when δ increases, the manager anticipates a higher MB of manipulation,

as inflating the current period report rt boosts firm valuation not only in the current period

but also in future periods, as equation (13) shows. Therefore, the manager chooses higher

manipulation in equilibrium when he values his future payoffs more. Similarly, the regula-

tor’s MB of detection also has both a contemporaneous and an intertemporal components,

as equation (18) suggests. Therefore, the MB increases when the regulator places a larger

weight on the intertemporal effects, which induces the regulator to choose greater detection

effort. However, the last panel of Figure 7 suggests that, despite of the regulator exerting

greater detection effort, the social surplus W , as defined in equation (17), decreases when the

discounting factor δ increases. Intuitively, with a higher δ, the present value of the discounted

future information loss is more damaging, thus impairing the social surplus.

Another interesting observation from Figure 7 is that when the discounting factor in-

creases, the equilibrium manipulation is more likely to be inverse U-shaped in the firm’s

cumulative fraud. To see the intuition, recall that the equilibrium manipulation is non-

monotonic in the cumulative fraud Φ only when the MB and the MC of manipulation move

in tandem with the level of Φ. From the second panel of Figure 7, the regulator is most likely

to respond to a jump in Φ and increase her detection effort when the discounting factor is

large and any fraud-induced uncertainty is highly detrimental. This sharper response by the

regulator makes the MC of manipulation more likely to countervail the positive effect of Φ

on the MB of manipulation, leading to the inverse U-shaped relationship.

Figure 8 sheds light on how increasing the persistence in the firm’s cash flows across dif-

ferent periods (i.e., the correlation ρ) alters the equilibrium outcomes. It suggests that when

the cash flows become more persistent over time, it will reinforce both the manager’s manip-

ulation and the regulator’s detection incentives, but reduce the social surplus. The economic

forces driving the effect of ρ are largely in line with that of δ. Intuitively, when cash flows are

more correlated across periods, the manager’s inflation of the current-period report boosts

firm valuation in the future by a greater extent, thus contributing to a stronger intertemporal

effect of manipulation and resulting in more manipulation in equilibrium. Similarly, when

25

Electronic copy available at: https://ssrn.com/abstract=3762260



0 0.2 0.4 0.6
0

2

4

6

8

10

12

14

$ =0$
$ =0.5$
$ =0.9$

0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

$ =0$
$ =0.5$
$ =0.9$

0 0.2 0.4 0.6
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

$ =0$
$ =0.5$
$ =0.9$

Figure 7: Comparative statics w.r.t. δ. This figure plots the manager’s optimal choice of
manipulation m, the regulator’s optimal choice of detection intensity d, and the equilibrium
welfare W , when the discount factor, δ, is set to 0 (black solid line), 0.5 (blue dashed line),
and 0.9 (red dotted line). Other parameters used in generating this figure are: q = 0.5,
ρ = 0.88, σε = 0.15, k = 2.5, c = 3, d0 = 0.03.

cash flows are more correlated, the regulator has stronger incentives to detect manipulation

in the current period as diminishing the current-period uncertainty translates into a greater

reduction in the future uncertainty due to the higher persistence in the cash flows. In the

mean time, the social surplus decreases in ρ since a higher cash flow persistence also implies

that any uncertainty unresolved in this period will persist in the future.

Similar to the effect of δ, Figure 8 also suggests that the equilibrium manipulation is

more likely to be inverse U-shaped in the firm’s cumulative fraud when the cash flows are

more persistent. Intuitively, the second panel of Figure 8 suggests that the detection effort

by the regulator increases more sharply in Φ when the persistence parameter ρ is high. An

important thing to notice is that, when ρ = 0, firm performance becomes i.i.d and thus

investors would not use past performance to infer the current and future performance. As a

result, the effect of fraud committed in the past does not build up uncertainty in the firm’s

market value, and thus the regulator’s detection effort would be independent of Φ. When

the persistence parameter is large, the regulator also cares about the cumulative fraud as the

26

Electronic copy available at: https://ssrn.com/abstract=3762260



0 0.2 0.4 0.6
0

2

4

6

8

10

12

14

$ =0$
$ =0.5$
$ =0.9$

0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

$ =0$
$ =0.5$
$ =0.9$

0 0.2 0.4 0.6
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

$ =0$
$ =0.5$
$ =0.9$

Figure 8: Comparative statics w.r.t. ρ. This figure plots the manager’s optimal choice of
manipulation m, the regulator’s optimal choice of detection intensity d, and the equilibrium
welfare W , when the discount factor, ρ, is set to 0 (black solid line), 0.5 (blue dashed line),
and 0.9 (red dotted line). Other parameters used in generating this figure are: δ = 0.9,
q = 0.5, σε = 0.15, k = 2.5, c = 3, d0 = 0.03.

cash flows are correlated across periods. As a result, the equilibrium detection effort becomes

more responsive to Φ, which partly offsets the boosting effect of Φ on the MB of manipulation

and makes the equilibrium manipulation non-monotonic in Φ.

Figures 9 and 10 describe the effects of shifting the costs of manipulation and detection.

The intuitions for both figures are relatively straightforward. When the MC of manipulation

c increases, it disciplines the manager’s manipulation incentive and improves the informa-

tiveness of financial reports. The resulting decrease in the fraud-induced uncertainty, in turn,

improves the social surplus and allows the regulator to save some of her costly detection effort.

Similarly, when the MC of detection k increases, it forces the regulator to shrink her detec-

tion effort. This, in turn, lowers the MC of manipulation and the manager’s manipulation

incentive heightens. Consequently, the social surplus decreases.
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Figure 9: Comparative statics w.r.t. c. This figure plots the manager’s optimal choice of
manipulation m, the regulator’s optimal choice of detection intensity d, and the equilibrium
welfare W , when the penalty on fraud, c, is set to 1 (black solid line), 3 (blue dashed line),
and 5 (red dotted line). Other parameters used in generating this figure are: δ = 0.9, q = 0.5,
ρ = 0.88, σε = 0.15, k = 2.5, d0 = 0.03.
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Figure 10: Comparative statics w.r.t. k. This figure plots the manager’s optimal choice of
manipulation m, the regulator’s optimal choice of detection intensity d, and the equilibrium
welfare W , when the cost of detection, d, is set to 1.5 (black solid line), 2.5 (blue dashed
line), and 3.5 (red dotted line). Other parameters used in generating this figure are: δ = 0.9,
q = 0.5, ρ = 0.88, σε = 0.15, c = 3, d0 = 0.03.
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III. Multi-firm Model

A. Model Setup

In this section, we expand the single-firm model to study the dynamic features of fraud

among multiple firms; the model setup is similar with two exceptions. First, the economy con-

tains N firms, and their economic earnings are independent of each other. This assumption

rules out the mechanical correlation of fraud among firms due to correlated economic funda-

mentals. It also allows us to abstract away from the effects of information spillovers, which

are not a central focus of this study. Second, the regulator has to allocate limited resources

among N firms towards fraud detection. Specifically, in each period, the regulator conducts

an independent inspection of each firm’s report and we denote the probability that the in-

spection uncovers fraud in firm i’s report by dit = d0 + dirt ∈ [d0, 1], where i ∈ {1, 2, ..., N}

and dirt represents the regulator’s choice of detection technology to influence the probability

of detecting fraud at firm i. We assume that the total detection cost for each period is:

κ

2

(
N∑
i=1

dirt

)2

. (29)

The structure of this cost function is consistent with the regulator facing a convex cost func-

tion for fraud detection, in the sense that if she allocates more resources towards inspecting

one firm’s report, her MC of detecting fraud at other firms goes up.

B. Analysis

Even though the multi-firm setting has no restrictions on the maximum number of firms

in the model, most of our analyses in this section focus on the case with three firms (i.e.,

N = 3), because a 3-firm setting is sufficient to deliver the key implications of a general

multi-firm model.

In the multi-firm setting, the manipulation decision of each manager and the detection

decision of the regulator can be similarly characterized as in the single-firm model. Both

m∗
it and d∗it can be written recursively as functions of the cumulative levels of past fraud at
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all firms, {Φ1t−1,Φ2t−1,Φ3t−1}. Hence, we can treat {Φ1t−1,Φ2t−1,Φ3t−1} as the set of state

variables for period t and characterize the equilibrium as a dynamic programming problem

with the Bellman equations below. For ease of notation, we omit the time subscript and

denote variables of the next period with a prime.

Proposition 3 Consider a three-firm model. Given the levels of accumulated past fraud at

the three firms {Φ1,Φ2,Φ3}, the manager in firm 1 chooses manipulation

m∗
1 (Φ1,Φ2,Φ3) =

ρ2Φ1 + σ2
ε

q (1− q)

(
1− d∗1
cd∗1

(
1

1− δρ
+

cδρq (1− q)

ρ2Φ′
1 + σ2

ε

× E
[
m∗′

1 d
∗′
1

])
− 1

)
, (30)

and the regulator chooses to detect fraud at firm 1 with probability

d∗1 (Φ1,Φ2,Φ3) =
1

κ
{Φ′

1 + δ (1− d∗2) (1− d∗3)
[
W
(
0,Φ′

2,Φ
′
3

)
−W

(
Φ′
1,Φ

′
2,Φ

′
3

)]
+ δ (1− d∗2) d

∗
3

[
W
(
0,Φ′

2, 0
)
−W

(
Φ′
1,Φ

′
2, 0
)]

+ δd∗2 (1− d∗3)
[
W
(
0, 0,Φ′

3

)
−W

(
Φ′
1, 0,Φ

′
3

)]
+ δd∗2d

∗
3

[
W (0, 0, 0)−W

(
Φ′
1, 0, 0

)]
} − (d∗2 + d∗3 − 3d0) , (31)

where

Φ′
i (Φ1,Φ2,Φ3) =

m∗
i q (1− q)

(
ρ2Φi + σ2

ε

)
ρ2Φi + σ2

ε +m∗
i q (1− q)

, (32)

E
[
m∗′

1 d
∗′
1

]
= (1− d∗2) (1− d∗3)m

∗
1

(
Φ′
1,Φ

′
2,Φ

′
3

)
d∗1
(
Φ′
1,Φ

′
2,Φ

′
3

)
+ d∗2 (1− d∗3)m

∗
1

(
Φ′
1, 0,Φ

′
3

)
d∗1
(
Φ′
1, 0,Φ

′
3

)
+ (1− d∗2) d

∗
3m

∗
1

(
Φ′
1,Φ

′
2, 0
)
d∗1
(
Φ′
1,Φ

′
2, 0
)

+ d∗2d
∗
3m

∗
1

(
Φ′
1, 0, 0

)
d∗1
(
Φ′
1, 0, 0

)
, (33)
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W (Φ1,Φ2,Φ3) = − (1− d∗1) (1− d∗2) (1− d∗3)
[
Φ′
1 +Φ′

2 +Φ′
3 − δW

(
Φ′
1,Φ

′
2,Φ

′
3

)]
− (1− d∗1) d

∗
2 (1− d∗3)

[
Φ′
1 +Φ′

3 − δW
(
Φ′
1, 0,Φ

′
3

)]
− (1− d∗1) (1− d∗2) d

∗
3

[
Φ′
1 +Φ′

2 − δW
(
Φ′
1,Φ

′
2, 0
)]

− (1− d∗1) d
∗
2d

∗
3

[
Φ′
1 − δW

(
Φ′
1, 0, 0

)]
− d∗1 (1− d∗2) (1− d∗3)

[
Φ′
2 +Φ′

3 − δW
(
0,Φ′

2,Φ
′
3

)]
− d∗1d

∗
2 (1− d∗3)

[
Φ′
3 − δW

(
0, 0,Φ′

3

)]
− d∗1 (1− d∗2) d

∗
3

[
Φ′
2 − δW

(
0,Φ′

2, 0
)]

+ δd∗1d
∗
2d

∗
3W (0, 0, 0)− κ

2
(d∗1 + d∗2 + d∗3 − 3d0)

2 . (34)

The manipulation choices {m∗
2,m

∗
3} and the detection choices {d∗2, d∗3} at firms 2 and 3 can

be analogously derived and given in Appendix I.F.

Proposition 3 suggests that the dynamics of the manipulation and the detection decisions

in the multi-firm model is largely in line with that in the single-firm model. There are,

however, two new insights. First, the managers’ manipulation decisions are endogenously

linked because the regulator’s choices of detection intensity are interdependent across firms.

As such, a manager’s manipulation choice becomes a function of the cumulative levels of fraud

at all firms. Second, while the manager in the single-firm model is able to precisely conjecture

the future equilibrium manipulation and detection choices
{
m∗

t+1, d
∗
t+1

}
(as shown in equation

(14)), managers in the multi-firm model face uncertainty and must form expectations about

the two equilibrium choices. This is because, due to the interdependence of detection and

manipulation choices across firms, the manager at firm i rationally anticipates that the pair of

the future manipulation and detection choices
{
m∗

it+1, d
∗
it+1

}
are also functions of the future

cumulative levels of fraud at the other firms, {Φit}. However, at the time of choosing mit in

period t, the value of Φit is random as it depends on whether the regulator detects fraud in

the other firms later in period t.

As in the single-firm model, the dynamic programming problem in Proposition 3 does
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not have a closed-form solution so we solve the full model numerically to analyze the key

properties of these policy functions. To glean some analytical results, we, again, first solve a

special case of our model in which the discounting factor δ = 0. The following proposition

summarizes the regulator’s equilibrium allocation of detection strength among the three firms.

Proposition 4 Consider a special case of our model with the discount factor δ = 0 and three

firms. Without loss of generality, assume that the levels of accumulated past fraud at the three

firms Φ1 ≥ Φ2 ≥ Φ3. The equilibrium detection strength at the three firms {d∗1, d∗2, d∗3} are

given as follows:

1. If Φ1 is much larger than Φ2 (i.e., Φ1 > H (Φ2)), d
∗
2 = d∗3 = d0 and d∗1 solves

(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
= κ (d∗1 − d0) , (35)

and is increasing in Φ1;

2. If Φ1 and Φ2 are of similar sizes but both much larger than Φ3 (i.e., Φ1 ≤ H (Φ2) and

L (Φ1,Φ2) > Φ3), d
∗
3 = d0 and the pair of {d∗1, d∗2} solves

(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
= κ (d∗1 + d∗2 − 2d0) , (36)

(
ρ2Φ2 + σ2

ε

)(
1− cd∗2

1− d∗2

)
= κ (d∗1 + d∗2 − 2d0) . (37)

d∗1 is increasing in Φ1 and decreasing in Φ2 whereas d
∗
2 is increasing in Φ2 and decreasing

in Φ1;

3. If Φ1, Φ2 and Φ3 are of similar sizes (i.e., Φ1 ≤ H (Φ2) and L (Φ1,Φ2) ≤ Φ3), the

triplet of {d∗1, d∗2, d∗3} solves:

(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
= κ (d∗1 + d∗2 + d∗3 − 3d0) , (38)

(
ρ2Φ2 + σ2

ε

)(
1− cd∗2

1− d∗2

)
= κ (d∗1 + d∗2 + d∗3 − 3d0) , (39)

(
ρ2Φ3 + σ2

ε

)(
1− cd∗3

1− d∗3

)
= κ (d∗1 + d∗2 + d∗3 − 3d0) . (40)
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d∗1 is increasing in Φ1 and decreasing in {Φ2,Φ3}, d∗2 is increasing in Φ2 and decreasing

in {Φ1,Φ3} and d∗3 is increasing in Φ3 and decreasing in {Φ1,Φ2}.

H (Φ2) and L (Φ1,Φ2) are strictly increasing functions defined in the proof.

Proposition 4 generates two insights. First, as in the single-firm model, the regulator

matches the strength of fraud detection at a given firm with the severity of fraud at that

firm. Second, since the regulator needs to allocate the regulatory resources across the three

firms, the detection intensity imposed by the regulator on a given firm depends on not only

the firm’s own information uncertainty from cumulative fraud but also how it compares to

information uncertainty about the other two firms in the economy. Stated differently, when

there are multiple firms, the regulator determines the strength of fraud detection at each firm

based on the relative severity of fraud. When the fraud-induced uncertainty at one firm is

much higher than that at the other firms, the regulator will devote most of the regulatory

resource to detect fraud at that firm and almost none to the other firms. Furthermore,

even when the regulator directs regulatory resources to all three firms, she will direct fewer

regulatory resources to a firm when she anticipates the fraud at the other firms to rise. This,

in turn, boosts the incentive of the underlying firm to manipulate. In this light, an increase

of fraud at a firm generates spillovers to the other firms through the interdependence of

detection and manipulation choices across firms. We will later explore how these spillovers

may drive fraud waves across firms.

Next, we solve the full model with the three firms (δ > 0) numerically using the same

parameter values set for the one-firm model: δ = 0.9, q = 0.5, ρ = 0.88, σε = 0.15, k = 2.5,

c = 3, and d0 = 0.03. Based on the numeric solution, we first analyze the regulator’s detection

decisions. To facilitate our analysis below, we present the model solution for a special case

when Φ2 = Φ3. That is, we exemplify our model predictions by analyzing the detection

intensity on different firms assuming that firm 2 and 3 have the same level of information

uncertainty from cumulative fraud. It is easy to verify that, by model symmetry, the detection

intensity on firm 2 and 3 is identical in this case, that is, d2 = d3.

Figure 11 illustrates the model solution for d1 and d2 (d3) in heatmaps. Specifically,
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Figure 11: Equilibrium detection probability d∗i in the three-firm setting. This figure plots
the manager’s optimal choice of manipulation m for firm 1 (left panel) and firm 2 and 3 (right
panel) as a function of Φ1, Φ2, and Φ3 in a heatmap. We assume that Φ2 = Φ3 in this figure.
The parameters used in generating this figure are: δ = 0.9, q = 0.5, ρ = 0.88, σε = 0.15,
k = 2.5, c = 3, d0 = 0.03.

the x-axis represents the information uncertainty for firm 2 and 3, which is assumed to be

identical in this example (i.e., Φ2 = Φ3). The y-axis represents the information uncertainty

for firm 1 (i.e., Φ1). The depth of color indicates the detection intensity, with light color

representing a higher intensity of detection. The scale bar on the side maps the depth of

color to the numerical value of detection intensity. The left (right) panel shows the detection

intensity for firm 1 (firm 2 and 3) as a function of the three state variables, Φ1, Φ2, and Φ3.

Three interesting observations emerge. First, the regulator focuses on firm 1 when its

cumulative fraud is high and its information uncertainty stands out among the three firms.

Specifically, in the northwest corner where Φ1 >> Φ2 = Φ3, the regulator invests almost all

resources in detecting fraud at firm 1, leaving firm 2 and 3 under the radar. Vice versa, in

the southeast corner where firm 2 and 3 both accumulate much fraud and leave firm 1 behind

(i.e., Φ2 = Φ3 >> Φ1), we observe more regulatory resources directed towards firm 2 and 3

and little regulatory attention is given to firm 1. Note that this is in line with the analytical

results derived in the special case of δ = 0 (i.e., Parts 1 and 2 of Proposition 4).
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Second, the two scenarios are not entirely symmetric as the detection intensity imposed on

firm 1 (about 0.12) in the first scenario is much larger than the detection intensity imposed on

firm 2 and 3 (about 0.08, respectively) in the second scenario. This is because the regulator’s

cost of detection is convex in the aggregate detection intensity, as shown in equation (29),

and thus the MC of detecting one firm also depends on whether other firms in the economy

require close scrutiny. The model implies that detection is the most costly if fraud tends to

cluster across firms (i.e., fraud wave), a feature that we will study later in the paper.

Lastly, we observe that when the three firms’ information uncertainty converges along the

45-degree line (i.e., Φ1 = Φ2 = Φ3), the regulator has to split the detection resource equally

among them, which implies d1 = d2 = d3. Note that this result corresponds to Part 3 of

Proposition 4.

It is noteworthy that, even though we illustrate the model-implied detection policy above

using a special case with Φ2 = Φ3, the intuition is the same in more general cases when the

three firms have different levels of information uncertainty from cumulative fraud.

Given the regulator’s detection policy discussed above, equation (30) suggests that man-

agers’ manipulation decisions are also interdependent in our model. Intuitively, if one firm

stands out in its cumulative fraud, it should expect close scrutiny from the regulator and

so the MC of further committing fraud likely outweighs the MB, leading the manager to be

more conservative. Ironically, as the firm with the highest information uncertainty attracts

the most attention by the regulator, other firms are subject to less scrutiny and can afford to

become more aggressive in committing fraud. To the extent that manipulation in each period

accumulates and adds to the firms’ information uncertainty over time, our model predicts an

unintended consequence of regulation: it synchronizes managers’ manipulation decisions and

may eventually lead to fraud waves even in the absence of systematic shocks in the economy.

We next use the model to study the dynamics of the fraud-detection game between the

regulator and three firms with different levels of fraud-induced information uncertainty in

the initial period. Without loss of generality, we assume that ΦH > ΦM > ΦL at t = 1 and

denote the three firms H-, M- and L-firm, respectively. We then simulate the magnitude of

manipulation committed by each manager mi, the regulator’s detection policy on each firm
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di, and the realization of detection outcomes at the end of each period. As we simulate the

model forward, it generates the time series of Φit, d
∗
it, and m∗

it. Figure 12 plots the three

variables over the simulation path.

Starting with L-firm (depicted by the red-dash line), because the regulator anticipates

a low level of cumulative fraud in the firm (i.e., a low ΦL in Panel A), she spends little on

detection (i.e., a low dL in Panel B). The firm manager thus continues to commit fraud (i.e.,

increasing mL in Panel C) because the MC is low and fraud starts building up (i.e., increasing

ΦL in Panel A). The first ten periods of the red dash line in Figure 12 illustrate this stage.

M-firm (depicted by the brown-solid line) starts with an intermediate level of cumulative

fraud. On the one hand, the manager of M-firm has greater incentives to commit fraud

than the manager of L-firm, because a higher Φ increases the MB of committing fraud. On

the other hand, the regulator invests more heavily in fraud detection of M-firm than L-firm,

which suggests a higher MC of committing fraud. The two effects go hand-in-hand. The

first five periods of the brown-solid line in Figure 12 show the stage when MB dominates

MC, and thus mM increases over time as ΦM grows. After the sixth period, we observe that

the detection intensity on M-firm quickly rises (see the brown-solid line in Panel B) and MC

outweighs MB, leading to a sharp decline in manipulation by M-firm (see the brown-solid

line in Panel C). The dynamics in mM therefore demonstrates the counteracting forces of

MB and MC.

Last, H-firm (depicted by the blue-dot line) starts with the highest level of cumulative

fraud. Accordingly, it is under the closest scrutiny by the regulator. The regulator concen-

trates on detecting H-firm in the first five periods until the cumulative fraud of M-firm (and

L-firm) catches up and gets close to that of H-firm after the 6th (11th) period, after which

the detection intensity of H-firm and M-firm (and L-firm) starts converging. The blue-dot

line depicts the trajectory of H-firm’s ΦH , mH , and dH in three panels, respectively.

To examine the impact of actual detection, we assume in the simulation trial that H-

firm is caught by the regulator at period 30. Upon detection, H-firm’s cumulative fraud is

cleared and ΦH drops to zero immediately, as shown in Panel A. As an optimal response, the

regulator shifts attention from H-firm to the original M- and L-firms, as shown in Panel B.
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Figure 12: Simulated paths of the three-firm model. This figure plots the simulated path
of information uncertainty induced by cumulative fraud Φ, the regulator’s optimal choice of
detection intensity d, and the manager’s optimal choice of manipulation m for firms with
high- (H), medium- (M), and low- (L) level of initial Φ. In the simulation, H-firm is detected
at period 30. The parameters used in generating this figure are: δ = 0.9, q = 0.5, ρ = 0.88,
σε = 0.15, k = 2.5, c = 3, d0 = 0.03.
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Interestingly, as the detection intensity on H-firm drops substantially, H-firm faces a low MC

of committing fraud and can now afford to become more aggressive in manipulating its report.

This explains the sharp increase in mH and ΦH in Panel C and A right after period 31. If M-

and L-firms remain undetected, cumulative fraud in the three firms will be synchronized again

after another few periods. This analysis sheds further light on an unintended consequence of

regulation: it may synchronize firms’ manipulation decisions and lead to fraud waves even in

the absence of aggregate shocks. The intuition is simple: anticipating the optimal allocation of

regulatory resources in the economy, firms with a low level of cumulative fraud endogenously

choose a high level of manipulation, allowing them to catch up to more fraudulent firms.

Indeed, the predicted convergence of fraud level across firms over time gains support from

the data. When we sort firm-quarters in the sample into quintiles based on the firm’s level

of implied volatility prior to a quarter (our empirical proxy for Φt)), we show that firms in a

higher-ranked quintile (i.e., those having a higher level of implied volatility prior to a quarter)

have a smaller increase in implied volatility during the quarter. This finding supports the

model prediction that firms with a higher level of cumulative fraud are more cautious about

continuing fraud (because they anticipate closer scrutiny from the regulator) while firms with

a lower level of cumulative fraud are more aggressive at committing fraud (because they can

hide under the radar). The results are presented in Table IV and detailed in Appendix II.B.

IV. Conclusion

Throughout history, developed and emerging financial markets alike have been booming,

crashing, and recovering their way through a wide range of corporate frauds. With the fallout

of every major financial scandal comes the public outcry for regulations and reforms to crack

down on fraud. This paper aims to lay out a theoretical foundation to better understand the

formation and evolvement of corporate fraud, which would then allow for an assessment of

anti-fraud regulations.

We first build a dynamic model featuring a representative firm and a regulator. Analyses

of this single-firm model show that fraud is unlikely to go extinct, as long as uncovering
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fraud consumes regulatory resources and such resources are finite. This is because, the inter-

dependent nature of fraud and regulation essentially presents a cat-and-mouse equilibrium in

which the strength of detection optimally matches the severity of fraud. As such, an increas-

ing level of fraud accumulated in the firm attracts scrutiny, but at the same time generates

information uncertainty, which gives further incentives to commit fraud. These two effects

go hand-in-hand, counteracting each other. Hence, the amount of fraud committed in the

firm may exhibit repeated cycles of rise, peak, fall, and collapse (upon detection).

We then expand the model to consider a regulator and three firms with a high, medium,

and low level of cumulative fraud, respectively. Analyses of this multi-firm model offer addi-

tional insights. Anti-fraud regulations can be highly effective at lowering the most fraudulent

firms’ incentives to continue fraud, by not only raising their MC of committing fraud but also

sharply decreasing their MB of committing fraud upon detection. However, the rational al-

location of regulatory resources towards such firms may imply less scrutiny of less fraudulent

firms (a whack-a-mole equilibrium), allowing the latter’s fraudulent behavior to go unde-

tected and their level of fraud to catch up. As such, despite the pro tem “cracking-down,”

anti-fraud regulations do not eradicate fraud. Rather, they synchronize firms’ idiosyncratic

fraud decisions and induce corporate fraud waves over time.

These results carry strong policy implications. In our model, regulations lead frauds not

because regulations are ineffective. Rather, regulations effectively tamp down fraud in the

short term but in the long term, they synchronize firms’ fraud decisions and allow a wave of

frauds to resurface. Hence, fraud remains a permanent risk in the financial markets and the

efficacy of regulation is limited.
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Table I: Implied Volatility and Fraud Detection
This table reports the ordinary least squares (OLS) regression results estimating the relation
between implied volatility and fraud detection likelihood. IV is the quarterly average of the
daily implied volatility, measured in the quarter before DETECT . DETECT is an indicator
that denotes whether a firm discloses a fraud-related restatement that meets at least one of
the three conditions: (1) if the restatement is marked as being fraudulent by Audit Analytics;
(2) if the restatement has received a class-action lawsuit as tracked by Audit Analytics; or
(3) if the cumulative restated amount is in the top decile of the sample. Detailed variable
definitions are in Appendix II.C. Columns (1) and (2) include year-quarter fixed effects,
and columns (3) and (4) further include firm fixed effects. Column (1)-(3) include the full
sample, and column (4) only includes firms with at least one detected restatement from Audit
Analytics. Standard errors are clustered by year-quarter and firm. T-statistics are reported
in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively,
using two-tailed tests.

(1) (2) (3) (4)
Sample Full Full Full Detected Firms
Variables DETECT DETECT DETECT DETECT

IV 0.010*** 0.014*** 0.007*** 0.012***
(6.16) (6.41) (2.74) (2.96)

SIZE 0.001*** 0.004*** 0.006***
(3.22) (4.01) (4.11)

MB -0.000 -0.000 -0.000
(-0.94) (-0.14) (-0.13)

LEV 0.003* 0.003 0.004
(1.93) (1.21) (1.02)

ROA -0.005 -0.042*** -0.068***
(-0.66) (-3.84) (-3.82)

REVGWTH 0.002* 0.001 0.002
(1.81) (1.40) (1.45)

Observations 151,048 143,252 143,034 86,738
Adjusted R-squared 0.003 0.004 0.022 0.024
Firm Fixed Effects No No Yes Yes
Year-Qtr Fixed Effects Yes Yes Yes Yes
Two-way Clustering Yes Yes Yes Yes

42

Electronic copy available at: https://ssrn.com/abstract=3762260



Table II: Implied Volatility and Analyst Earnings Forecast Revision
This table reports the OLS regression results estimating the relation between implied volatil-
ity and analyst earnings forecast revision. IV is the implied volatility ten trading days before
earnings announcement. REV ISION is the change in the analyst consensus EPS forecast
for the current quarter surrounding the earnings announcement of the previous quarter. SUE
is the earnings surprise of the previous quarter. NEG is an indicator that denotes negative
earnings of the previous quarter. Detailed variable definitions are in Appendix II.C. Columns
(1) and (2) include year-quarter fixed effects, and column (3) further includes firm fixed ef-
fects. Standard errors are clustered by year-quarter and firm. T-statistics are reported in
parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively,
using two-tailed tests.

(1) (2) (3)
Variables REVISION REVISION REVISION

SUE 0.210*** 0.163*** 0.173***
(11.34) (7.76) (9.36)

IV -0.008*** -0.008*** -0.005***
(-18.88) (-13.60) (-8.29)

IV×SUE 0.088*** 0.106*** 0.086***
(4.18) (4.78) (4.25)

NEG -0.002*** -0.001***
(-9.51) (-5.82)

NEG×SUE -0.001*** -0.001***
(-7.97) (-10.33)

SIZE 0.000 -0.001***
(1.65) (-6.44)

MB 0.001*** 0.000***
(15.12) (10.34)

LEV -0.001*** -0.001
(-3.16) (-1.48)

ROA -0.004* 0.002
(-1.87) (0.65)

REVGWTH 0.001*** 0.001***
(9.57) (7.81)

Observations 142,054 134,873 134,566
Adjusted R-squared 0.175 0.196 0.333
Firm Fixed Effects No No Yes
Year-Qtr Fixed Effects Yes Yes Yes
Two-way Clustering Yes Yes Yes
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Table III: Implied Volatility and Fraud Magnitude
This table reports the OLS regression results estimating the relation between implied volatil-
ity and the magnitude of fraud. IV is the quarterly average of the daily implied volatility.
FRAUD is the magnitude of fraud-related restatement scaled by the standard deviation of
quarterly operating income. A restatement is defined as fraud-related if it meets one of the
three conditions: (1) if the restatement is marked as being fraudulent by Audit Analytics;
(2) if the restatement has received a class-action lawsuit as tracked by Audit Analytics; or
(3) if the cumulative restated amount is in the top decile of the sample. Detailed variable
definitions are in Appendix II.C. Columns (1) and (2) include year-quarter fixed effects, and
columns (3) and (4) further include firm fixed effects. Column (1)-(3) include the full sample,
and column (4) only includes firms with at least one detected restatement from Audit An-
alytics. Standard errors are clustered by year-quarter and firm. T-statistics are reported in
parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively,
using two-tailed tests.

(1) (2) (3) (4)
Sample Full Full Full Detected Firms
Variables FRAUD FRAUD FRAUD FRAUD

IV 0.105*** 0.114*** 0.040* 0.076**
(5.48) (4.59) (1.76) (2.06)

IV2 -0.066*** -0.071*** -0.027* -0.053**
(-5.03) (-4.45) (-1.95) (-2.30)

SIZE 0.002* 0.009*** 0.014***
(1.80) (2.73) (2.71)

MB 0.003*** 0.005*** 0.008***
(2.76) (3.39) (3.53)

LEV 0.002 -0.010 -0.019
(0.36) (-0.87) (-1.05)

ROA 0.019 -0.031 -0.060
(0.88) (-1.10) (-1.26)

REVGWTH 0.004** 0.003** 0.005**
(2.01) (2.49) (2.28)

INCOMESTD -0.000** -0.000** -0.000***
(-2.46) (-2.29) (-2.77)

Observations 147,234 139,681 139,432 84,059
Adjusted R-squared 0.008 0.010 0.345 0.348
Firm Fixed Effects No No Yes Yes
Year-Qtr Fixed Effects Yes Yes Yes Yes
Two-way Clustering Yes Yes Yes Yes
Lind-Mehlum U-shape Test
Extreme Point 0.792 0.800 0.730 0.718
T-statistics 4.04 3.77 1.70 1.98
P-value 0.000 0.000 0.047 0.025
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Table IV: Convergence of Implied Volatility
This table the OLS regression results estimating the relation between the level of implied
volatility and the subsequent change in implied volatility. IV Qn is an indicator variable that
denotes whether a firm-quarter falls into the nth-ranked quintile of IV (n=1 to 5) in quarter
q, with quintile five having the highest level of implied volatility. ∆IV is the change in implied
volatility from quarter q to quarter q + 1. WAV E is an indicator variable that denotes a
fraud wave in the firm’s industry overlapping quarter q. Detailed variable definitions are
in Appendix II.C. Column (1) includes year-quarter fixed effects, and columns (2) and (3)
further include firm fixed effects. Standard errors are clustered by year-quarter and firm.
T-statistics are reported in parentheses. ***, **, and * denote significance at the 1%, 5%,
and 10% levels, respectively, using two-tailed tests.

(1) (2) (3)
Variables ∆IVq to q+1

IVQ1 0.006* 0.019*** 0.018***
(1.90) (6.93) (5.90)

IVQ2 0.003* 0.009*** 0.008***
(1.89) (5.86) (5.08)

IVQ4 -0.005** -0.011*** -0.010***
(-2.20) (-5.07) (-4.51)

IVQ5 -0.035*** -0.055*** -0.054***
(-7.86) (-11.75) (-11.25)

WAVE×IVQ1 0.007***
(2.80)

WAVE×IVQ2 0.003**
(2.09)

WAVE×IVQ4 -0.007***
(-2.85)

WAVE×IVQ5 -0.011**
(-2.35)

WAVE -0.002
(-1.00)

SIZE -0.001 0.005*** 0.005**
(-1.21) (2.65) (2.64)

MB 0.001** 0.004*** 0.004***
(2.25) (3.69) (3.69)

LEV 0.006*** 0.006* 0.006*
(2.88) (1.77) (1.90)

ROA -0.102*** -0.066*** -0.067***
(-7.04) (-3.73) (-3.76)

REVGWTH 0.003*** 0.001 0.001
(2.72) (1.07) (1.08)

Observations 149,665 149,420 149,420
Adjusted R-squared 0.376 0.394 0.395
Firm Fixed Effects No Yes Yes
Year-Qtr Fixed Effects Yes Yes Yes
Two-way Clustering Yes Yes Yes
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                       Internet Appendix of “Everlasting Fraud”

Appendix I: Proofs

A. Lemma 1

Proof. of Lemma 1: Note that (13) can be simplified into

(1− δρ) cd∗t
1− d∗t

(
1 +

m∗
t q (1− q)

ρ2Φt−1 + σ2
ε

)
= 1 + δρ

(
1− d∗t+1

) m∗
t+1q (1− q)

ρ2Φt + σ2
ε +m∗

t+1q (1− q)

+ δ2ρ2
(
1− d∗t+1

) (
1− d∗t+2

) m∗
t+2q (1− q)

ρ2Φt+1 + σ2
ε +m∗

t+2q (1− q)

m∗
t+1q (1− q)

ρ2Φt + σ2
ε +m∗

t+1q (1− q)

+ ... (A.1)

By induction, in period t+1, conditional on that the regulator fails to detect fraud in period

t, the manager chooses m∗
t+1 that satisfies:

(1− δρ) cd∗t+1

1− d∗t+1

(
1 +

m∗
t+1q (1− q)

ρ2Φt + σ2
ε

)
= 1 + δρ

(
1− d∗t+2

) m∗
t+2q (1− q)

ρ2Φt+1 + σ2
ε +m∗

t+2q (1− q)

+ δ2ρ2
(
1− d∗t+2

) (
1− d∗t+3

) m∗
t+3q (1− q)

ρ2Φt+2 + σ2
ε +m∗

t+3q (1− q)

m∗
t+2q (1− q)

ρ2Φt+1 + σ2
ε +m∗

t+2q (1− q)

+ ... (A.2)
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Multiplying both sides of equation (A.2) by δρ
(
1− d∗t+1

) m∗
t+1q(1−q)

ρ2Φt+σ2
ε+m∗

t+1q(1−q)
yields:

δρ (1− δρ) cd∗t+1

m∗
t+1q (1− q)

ρ2Φt + σ2
ε

= δρ
(
1− d∗t+1

) m∗
t+1q (1− q)

ρ2Φt + σ2
ε +m∗

t+1q (1− q)

+ δ2ρ2
(
1− d∗t+2

) (
1− d∗t+1

) m∗
t+2q (1− q)

ρ2Φt+1 + σ2
ε +m∗

t+2q (1− q)

m∗
t+1q (1− q)

ρ2Φt + σ2
ε +m∗

t+1q (1− q)

+ δ3ρ3
(
1− d∗t+1

) (
1− d∗t+2

) (
1− d∗t+3

) m∗
t+1q (1− q)

ρ2Φt + σ2
ε +m∗

t+1q (1− q)

×
m∗

t+3q (1− q)

ρ2Φt+2 + σ2
ε +m∗

t+3q (1− q)

m∗
t+2q (1− q)

ρ2Φt+1 + σ2
ε +m∗

t+2q (1− q)

+ ... (A.3)

Substituting (A.3) into (A.1) yields:

(1− δρ) cd∗t
1− d∗t

(
1 +

m∗
t q (1− q)

ρ2Φt−1 + σ2
ε

)
= 1 + δρ (1− δρ) cd∗t+1

m∗
t+1q (1− q)

ρ2Φt + σ2
ε

. (A.4)

Solving (A.4) for mt yields (14) in the lemma.

B. Lemma 2

Proof. of Lemma 2: We only consider the case in which the detection fails:

Φt = var (st|Ft−1)− var
(
EI [st|Ft] |Ft−1

)
(A.5)

= var (ρst−1 + εt|Ft−1)− var
(
EI [st|rt, rt−1, ...] |Ft−1

)
= ρ2var (st−1|Ft−1) + σ2

ε − var

(
ρ2var (st−1|Ft−1) + σ2

ε

ρ2var (st−1|Ft−1) + σ2
ε +m∗

t q (1− q)
rt|Ft−1

)
= ρ2var (st−1|Ft−1) + σ2

ε −
[

ρ2var (st−1|Ft−1) + σ2
ε

ρ2var (st−1|Ft−1) + σ2
ε +m∗

t q (1− q)

]2
var (rt|Ft−1)

=
m∗

t q (1− q)
[
ρ2var (st−1|Ft−1) + σ2

ε

]
ρ2var (st−1|Ft−1) + σ2

ε +m∗
t q (1− q)

=
m∗

t q (1− q)
(
ρ2Φt−1 + σ2

ε

)
ρ2Φt−1 + σ2

ε +m∗
t q (1− q)

.
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The first equality uses the law of total variance. The third equality uses

EI [st|Ft] = EI [st|Ft−1] +
cov (rt, st|Ft−1)

var (rt|Ft−1)
{rt − E [rt|Ft−1]} (A.6)

= EI [st|Ft−1] +
ρ2var (st−1|Ft−1) + σ2

ε

ρ2var (st−1|Ft−1) + σ2
ε +m∗

t q (1− q)
{rt − E [rt|Ft−1]} ,

where

var (rt|Ft−1) = var (st|Ft−1) +m∗
t q (1− q) (A.7)

= ρ2var (st−1|Ft−1) + σ2
ε +m∗

t q (1− q) ,

cov (rt, st|Ft−1) = var (st|Ft−1) (A.8)

= ρ2var (st−1|Ft−1) + σ2
ε .

The last step uses the definition of Φt−1 ≡ var (st−1|Ft−1).

C. Lemma 3

Proof. of lemma 3: Using the law of motion (15), we rewrite the regulator’s payoff (17)

recursively:

Wt (Φt−1) = max
dt

− (1− dt) Φt (d
∗
t ,Φt−1)−

κ

2
(dt − d0)

2 + δEI

[ ∞∑
k=t+1

δk−(t+1)
(
− (1− d∗k) Φk −

κ

2
d∗2k

)]

= max
dt

− (1− dt) Φt (d
∗
t ,Φt−1)−

κ

2
(dt − d0)

2 + δ [dtWt+1 (0) + (1− dt)Wt+1 (Φt (d
∗
t ,Φt−1))] ,

(A.9)

where Φt (d
∗
t ,Φt−1) is given in (15). Note that the future cumulative level of fraud Φt depends

on the equilibrium detection probability d∗t and not on the actual detection probability dt.

This is because, the manager does not observe the regulator’s detection choice at the time

of choosing manipulation and his manipulation choice only depends on the equilibrium d∗t .

Taking the first-order condition of Wt with respect to dt yields (18) in the main text.
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D. Proposition 1

Proof. of Proposition 1: See the main text.

E. Proposition 2

Proof. of Proposition 2: To complete the proof, we prove that d∗ increases in Φ. Applying

the implicit function theorem to equation (26) yields that:

∂d∗

∂Φ
=

ρ2
(
1− cd∗(Φ)

1−d∗(Φ)

)
c(ρ2Φ+σ2

ε)

(1−d∗)2
+ κ

> 0. (A.10)

The result that m∗ can be non-monotonic in Φ is verified by numerical examples.

F. Proposition 3

Proof. of Proposition 3: We only derive the manipulation decision by manager 1 as the

manipulation decisions by the other managers can be derived analogously.

Taking the first-order condition of m1t gives that:

c (1− q) d∗1t

=
1− d∗1t
1− δρ

ρ2Φ1t−1 + σ2
ε

ρ2Φ1t−1 + σ2
ε +m∗

1tq (1− q)
(1− q)

+
(1− d∗1t) δρ

1− δρ

ρ2Φ1t−1 + σ2
ε

ρ2Φ1t−1 + σ2
ε +m∗

1tq (1− q)
(1− q)

× EΦ2t,Φ3t

[(
1− d∗1t+1

) m∗
1t+1q (1− q)

ρ2Φ1t + σ2
ε +m∗

1t+1q (1− q)

]
+

(1− d∗1t) δ
2ρ2

1− δρ

ρ2Φ1t−1 + σ2
ε

ρ2Φ1t−1 + σ2
ε +m∗

1tq (1− q)
(1− q)

× EΦ2t,Φ3t,Φ2t+1,Φ3t+1

[(
1− d∗1t+1

) (
1− d∗1t+2

) m∗
1t+2q (1− q)

ρ2Φ1t+1 + σ2
ε +m∗

1t+2q (1− q)

m∗
1t+1q (1− q)

ρ2Φ1t + σ2
ε +m∗

1t+1q (1− q)

]
+ ... (A.11)

Note that we need to take expectations over {Φ2t,Φ3t} because
{
d∗1t+1,m

∗
1t+1

}
depend on

{Φ2t,Φ3t}. Φ2t and Φ3t are random because they can be either 0 or positive, depending on
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whether the regulator detects fraud at the two firms.

Equation (A.11) can be simplified into

(1− δρ) cd∗1t
1− d∗1t

(
1 +

m∗
1tq (1− q)

ρ2Φ1t−1 + σ2
ε

)
= 1 + δρEΦ2t,Φ3t

[(
1− d∗1t+1

) m∗
1t+1q (1− q)

ρ2Φ1t + σ2
ε +m∗

1t+1q (1− q)

]
+ δ2ρ2EΦ2t,Φ3t,Φ2t+1,Φ3t+1

[(
1− d∗1t+1

) (
1− d∗1t+2

) m∗
1t+2q (1− q)

ρ2Φ1t+1 + σ2
ε +m∗

1t+2q (1− q)

m∗
1t+1q (1− q)

ρ2Φ1t + σ2
ε +m∗

1t+1q (1− q)

]
+ ... (A.12)

There are four possible cases of {Φ2t,Φ3t} in period t+1. For each realization of {Φ2t,Φ3t},

by induction, the first-order condition of m1t+1 is given by:

(1− δρ) cd∗1t+1

1− d∗1t+1

(
1 +

m∗
1t+1q (1− q)

ρ2Φ1t + σ2
ε

)
= 1+δρEΦ2t+1,Φ3t+1

[(
1− d∗1t+2

) m∗
1t+2q (1− q)

ρ2Φ1t+1 + σ2
ε +m∗

1t+2q (1− q)

]
+...

(A.13)

Multiplying both sides by
(
1− d∗1t+1

) m∗
1t+1q(1−q)

ρ2Φ1t+σ2
ε+m∗

1t+1q(1−q)
gives that:

(1− δρ) cd∗1t+1

m∗
1t+1q (1− q)

ρ2Φ1t + σ2
ε

=
(
1− d∗1t+1

) m∗
1t+1q (1− q)

ρ2Φ1t + σ2
ε +m∗

1t+1q (1− q)

+ δρEΦ2t+1,Φ3t+1

[(
1− d∗1t+1

) (
1− d∗1t+2

) m∗
1t+1q (1− q)

ρ2Φ1t + σ2
ε +m∗

1t+1q (1− q)

m∗
1t+2q (1− q)

ρ2Φ1t+1 + σ2
ε +m∗

1t+2q (1− q)

]
+ ... (A.14)

Taking the expectation over {Φ2t,Φ3t} gives that:

c (1− δρ) q (1− q)

ρ2Φ1t + σ2
ε

EΦ2t,Φ3t

[
d∗1t+1m

∗
1t+1

]
= EΦ2t,Φ3t

[(
1− d∗1t+1

) m∗
1t+1q (1− q)

ρ2Φ1t + σ2
ε +m∗

1t+1q (1− q)

]
+ δρEΦ2t,Φ3t,Φ2t+1,Φ3t+1

[(
1− d∗1t+1

) (
1− d∗1t+2

) m∗
1t+1q (1− q)

ρ2Φ1t + σ2
ε +m∗

1t+1q (1− q)

m∗
1t+2q (1− q)

ρ2Φ1t+1 + σ2
ε +m∗

1t+2q (1− q)

]
+ ... (A.15)
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Substituting (A.15) into (A.12) yields:

(1− δρ) cd∗1t
1− d∗1t

(
1 +

m∗
1tq (1− q)

ρ2Φ1t−1 + σ2
ε

)
= 1+

cδρ (1− δρ) q (1− q)

ρ2Φ1t + σ2
ε

EΦ2t,Φ3t

[
d∗1t+1m

∗
1t+1

]
. (A.16)

Solving for m∗
1t gives that

m∗
1t =

ρ2Φ1t−1 + σ2
ε

q (1− q)

[
1− d∗1t
cd∗1t

(
1

1− δρ
+ δρcq (1− q)

EΦ2t,Φ3t

[
m∗

1t+1d
∗
1t+1

]
ρ2Φ1t + σ2

ε

)]
− 1, (A.17)

where

EΦ2t,Φ3t

[
d∗1t+1m

∗
1t+1

]
= (1− d∗2t) (1− d∗3t)m

∗
1t+1 (Φ1t,Φ2t,Φ3t) d

∗
1t+1 (Φ1t,Φ2t,Φ3t)

+ d∗2t (1− d∗3t)m
∗
1t+1 (Φ1t, 0,Φ3t) d

∗
1t+1 (Φ1t, 0,Φ3t)

+ (1− d∗2t) d
∗
3tm

∗
1t+1 (Φ1t,Φ2t, 0) d

∗
1t+1 (Φ1t,Φ2t, 0)

+ d∗2td
∗
3tm

∗
1t+1 (Φ1t, 0, 0) d

∗
1t+1 (Φ1t, 0, 0) . (A.18)

Analogously, dropping the time subscript, the manipulation choice m∗
i by the manager at

firm i can be derived as:

m∗
i =

ρ2Φi + σ2
ε

q (1− q)

(
1− d∗i
cd∗i

(
1

1− δρ
+

cδρq (1− q)

ρ2Φ′
i + σ2

ε

× E
[
m′

id
′
i

])
− 1

)
, (A.19)

where

E
[
m′

1d
′
1

]
= (1− d∗2) (1− d∗3)m

∗
1

(
Φ′
1,Φ

′
2,Φ

′
3

)
d∗1
(
Φ′
1,Φ

′
2,Φ

′
3

)
+ d∗2 (1− d∗3)m

∗
1

(
Φ′
1, 0,Φ

′
3

)
d∗1
(
Φ′
1, 0,Φ

′
3

)
+ (1− d∗2) d

∗
3m

∗
1

(
Φ′
1,Φ

′
2, 0
)
d∗1
(
Φ′
1,Φ

′
2, 0
)

+ d∗2d
∗
3m

∗
1

(
Φ′
1, 0, 0

)
d∗1
(
Φ′
1, 0, 0

)
, (A.20)
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E
[
m′

2d
′
2

]
= (1− d∗1) (1− d∗3)m

∗
2

(
Φ′
1,Φ

′
2,Φ

′
3

)
d∗2
(
Φ′
1,Φ

′
2,Φ

′
3

)
+ d∗1 (1− d∗3)m

∗
2

(
0,Φ′

2,Φ
′
3

)
d∗2
(
0,Φ′

2,Φ
′
3

)
+ (1− d∗1) d

∗
3m

∗
2

(
Φ′
1,Φ

′
2, 0
)
d∗2
(
Φ′
1,Φ

′
2, 0
)

+ d∗1d
∗
3m

∗
2

(
0,Φ′

2, 0
)
d∗2
(
0,Φ′

2, 0
)
, (A.21)

E
[
m′

3d
′
3

]
= (1− d∗1) (1− d∗2)m

∗
3

(
Φ′
1,Φ

′
2,Φ

′
3

)
d∗3
(
Φ′
1,Φ

′
2,Φ

′
3

)
+ d∗1 (1− d∗2)m

∗
3

(
0,Φ′

2,Φ
′
3

)
d∗3
(
0,Φ′

2,Φ
′
3

)
+ (1− d∗1) d

∗
2m

∗
3

(
Φ′
1, 0,Φ

′
3

)
d∗3
(
Φ′
1, 0,Φ

′
3

)
+ d∗1d

∗
2m

∗
3

(
0, 0,Φ′

3

)
d∗3
(
0, 0,Φ′

3

)
. (A.22)

Dropping the time subscript, the regulator’s objective function can be rewritten recur-

sively as:

W (Φ1,Φ2,Φ3) = max
d1,d2,d3

− (1− d1) (1− d2) (1− d3)
[
Φ′
1 +Φ′

2 +Φ′
3 − δW

(
Φ′
1,Φ

′
2,Φ

′
3

)]
− (1− d1) d2 (1− d3)

[
Φ′
1 +Φ′

3 − δW
(
Φ′
1, 0,Φ

′
3

)]
− (1− d1) (1− d2) d3

[
Φ′
1 +Φ′

2 − δW
(
Φ′
1,Φ

′
2, 0
)]

− (1− d1) d2d3
[
Φ′
1 − δW

(
Φ′
1, 0, 0

)]
− d1 (1− d2) (1− d3)

[
Φ′
2 +Φ′

3 − δW
(
0,Φ′

2,Φ
′
3

)]
− d1d2 (1− d3)

[
Φ′
3 − δW

(
0, 0,Φ′

3

)]
− d1 (1− d2) d3

[
Φ′
2 − δW

(
0,Φ′

2, 0
)]

+ δd1d2d3W (0, 0, 0)− κ

2
(d1 + d2 + d3 − 3d0)

2 , (A.23)

where

Φ′
i ≡

m∗
i q (1− q)

(
ρ2Φi + σ2

ε

)
ρ2Φi + σ2

ε +m∗
i q (1− q)

. (A.24)
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Taking the F.O.C. yields:

d∗1 =
1

κ
{Φ′

1 + δ (1− d∗2) (1− d∗3)
[
W
(
0,Φ′

2,Φ
′
3

)
−W

(
Φ′
1,Φ

′
2,Φ

′
3

)]
+ δ (1− d∗2) d

∗
3

[
W
(
0,Φ′

2, 0
)
−W

(
Φ′
1,Φ

′
2, 0
)]

+ δd∗2 (1− d∗3)
[
W
(
0, 0,Φ′

3

)
−W

(
Φ′
1, 0,Φ

′
3

)]
+ δd∗2d

∗
3

[
W (0, 0, 0)−W

(
Φ′
1, 0, 0

)]
} − (d∗2 + d∗3 − 3d0) , (A.25)

d∗2 =
1

κ
{Φ′

2 + δ (1− d∗1) (1− d∗3)
[
W
(
Φ′
1, 0,Φ

′
3

)
−W

(
Φ′
1,Φ

′
2,Φ

′
3

)]
+ δ (1− d∗1) d

∗
3

[
W
(
Φ′
1, 0, 0

)
−W

(
Φ′
1,Φ

′
2, 0
)]

+ δd∗1 (1− d∗3)
[
W
(
0, 0,Φ′

3

)
−W

(
0,Φ′

2,Φ
′
3

)]
+ δd∗1d

∗
3

[
W (0, 0, 0)−W

(
0,Φ′

2, 0
)]
} − (d∗1 + d∗3 − 3d0) , (A.26)

d∗3 =
1

κ
{Φ′

3 + δ (1− d∗1) (1− d∗2)
[
W
(
Φ′
1,Φ

′
2, 0
)
−W

(
Φ′
1,Φ

′
2,Φ

′
3

)]
+ δ (1− d∗1) d

∗
2

[
W
(
Φ′
1, 0, 0

)
−W

(
Φ′
1, 0,Φ

′
3

)]
+ δd∗1 (1− d∗2)

[
W
(
0,Φ′

2, 0
)
−W

(
0,Φ′

2,Φ
′
3

)]
+ δd∗1d

∗
2

[
W (0, 0, 0)−W

(
0, 0,Φ′

3

)]
} − (d∗1 + d∗2 − 3d0) . (A.27)

G. Proposition 4

Proof. of Proposition 4: When δ = 0, dropping the time subscript, the regulator’s objective

function becomes:

W
(
{Φi}i∈{1,2,3}

)
= −

3∑
i=1

(1− di) Φ
′
i −

κ

2
(

3∑
i=1

(di − d0))
2. (A.28)

53

Electronic copy available at: https://ssrn.com/abstract=3762260



In addition, using equation (30) at δ = 0, we can simplify the law of motion for Φi (as in

(15)) into:

Φ′
i ≡

(
ρ2Φi + σ2

ε

)(
1− cd∗i

1− d∗i

)
. (A.29)

Taking the first-order condition gives that

∂W

∂di
= Φ′

i − κ(
3∑

i=1

(di − d0)). (A.30)

Without loss of generality, we assume that Φ1 ≥ Φ2 ≥ Φ3. This further implies that ρ2Φ1 +

σ2
ε ≥ ρ2Φ2 + σ2

ε ≥ ρ2Φ3 + σ2
ε .

Consider three cases. First, suppose that

(
ρ2Φ2 + σ2

ε

)(
1− cd0

1− d0

)
<
(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
, (A.31)

that is, Φ1 is much larger than Φ2. We will restate condition (A.31) in terms of exogenous

parameters after solving the equilibrium. We now conjecture the equilibrium is that d∗2 =

d∗3 = d0 and d∗1 > d0, where d∗1 solves:

Φ′
1 =

(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
= κ (d∗1 − d0) . (A.32)

To verify that this is indeed an equilibrium, note first that the solution to (A.32) is unique

because the left-hand side is decreasing in d∗1 whereas the right-hand side is increasing in d∗1.

In addition, by the implicit function theorem, since the left-hand side is increasing in Φ1, d
∗
1

is increasing in Φ1. Next, using the first-order condition (A.32), we can rewrite the condition

(A.31) as:

κ (d∗1 − d0) = Φ′
1 =

(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
>
(
ρ2Φ2 + σ2

ε

)(
1− cd0

1− d0

)
. (A.33)

Since d∗1 is increasing in Φ1, the condition (A.31) holds if and only if Φ1 is sufficiently large
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and/or Φ2 is sufficiently small. In other words, we can rewrite the condition (A.31) as

Φ1 > H (Φ2) , (A.34)

where H (·) is some given increasing function. Finally, we verify that d∗2 = d∗3 = d0. This is

because, at d2 = d3 = d0, the first-order condition for d2 is always negative, i.e.,

∂W

∂d2
= Φ′

2 − κ (d∗1 − d0) (A.35)

=
(
ρ2Φ2 + σ2

ε

)(
1− cd0

1− d0

)
− κ (d∗1 − d0)

<
(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
− κ (d∗1 − d0)

= 0.

The third step uses (A.31). The last step uses (A.32).

Second, suppose that Φ1 ≤ H (Φ2) and

(
ρ2Φ3 + σ2

ε

)(
1− cd0

1− d0

)
<
(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
, (A.36)

that is, Φ1 and Φ2 are of similar sizes but both are much larger than Φ3. We will restate

condition (A.36) in terms of exogenous parameters after solving the equilibrium. We now

conjecture the equilibrium is that d∗3 = d0, d
∗
1 > d0 and d∗2 > d0, where the pair of {d∗1, d∗2}

solves:

Φ′
1 =

(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
= κ (D∗ − 2d0) , (A.37)

Φ′
2 =

(
ρ2Φ2 + σ2

ε

)(
1− cd∗2

1− d∗2

)
= κ (D∗ − 2d0) , (A.38)

where D∗ = d∗1+d∗2. To verify that this is indeed an equilibrium, note that, since the left-hand

side of the two first-order conditions of {d∗1, d∗2} are increasing in Φ1 and Φ2, respectively,

applying the implicit function theorem gives that D∗ is strictly increasing in Φ1 and Φ2.

In addition, applying the implicit function theorem gives that d∗1 is increasing in Φ1 and
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decreasing in Φ2 whereas d∗2 is increasing in Φ2 and decreasing in Φ1. Using the first-order

condition of d1, we can rewrite the condition (A.36) as:

κ (D∗ − 2d0) = Φ′
1 =

(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
>
(
ρ2Φ3 + σ2

ε

)(
1− cd0

1− d0

)
. (A.39)

Since D∗ is increasing in Φ1 and Φ2, the condition (A.36) holds if and only if either Φ1 or Φ2

is sufficiently large and/or Φ3 is sufficiently small. In other words, we can rewrite (A.36) as

L (Φ1,Φ2) > Φ3, (A.40)

where L (·, ·) is some given increasing function in both Φ1 and Φ2. Finally, we verify that

d∗3 = d0. This is because, at d3 = d0, the first-order condition for d3 is always negative, i.e.,

∂W

∂d3
= Φ′

3 − κ (d∗1 + d∗2 − 2d0) (A.41)

=
(
ρ2Φ3 + σ2

ε

)(
1− cd0

1− d0

)
− κ (d∗1 + d∗2 − 2d0)

<
(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
− κ (d∗1 + d∗2 − 2d0)

= 0.

Lastly, suppose that Φ1 ≤ H (Φ2) and L (Φ1,Φ2) ≤ Φ3. That is, Φ1, Φ2 and Φ3 are of

similar sizes. In this case, the equilibrium can only be interior such that the equilibrium is a

triplet of {d∗1, d∗2, d∗3} > 0, which solve:

Φ′
1 =

(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
= κ (d∗1 + d∗2 + d∗3 − 3d0) , (A.42)

Φ′
2 =

(
ρ2Φ2 + σ2

ε

)(
1− cd∗2

1− d∗2

)
= κ (d∗1 + d∗2 + d∗3 − 3d0) , (A.43)

Φ′
3 =

(
ρ2Φ3 + σ2

ε

)(
1− cd∗3

1− d∗3

)
= κ (d∗1 + d∗2 + d∗3 − 3d0) . (A.44)

Applying the implicit function theorem gives that d∗1 is increasing in Φ1 and decreasing in

{Φ2,Φ3}, d∗2 is increasing in Φ2 and decreasing in {Φ1,Φ3} and d∗3 is increasing in Φ3 and

decreasing in {Φ1,Φ2}.
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Appendix II: Empirical Analyses

A. Data and Sample

A.1. Sample Selection

We obtain the initial sample of 18,340 accounting restatements from Audit Analytics.

These restatements, announced by 10,404 unique firms between 1995Q1 and 2019Q3, cover

105,088 firm-quarters between 1983Q1 and 2019Q2 based on misstating periods. Because

the coverage of the Audit Analytics restatement database is limited before 1999, we focus on

the time period starting from 1999Q1. We merge the restating quarters into the universe of

Compustat-CRSP. We then obtain implied volatility data from Option Metrics and analyst

forecast data from IBES. The final sample, spanning from 1999Q1 to 2017Q4, represents an

intersection of the databases that we use. The number of firm-quarter observations used in

our main analyses ranges between 134,566 and 151,048.

A.2. Variable Measurement

Our model centers on the interdependence of Φ, the fraud-induced information uncer-

tainty, d, the fraud detection likelihood, and m, the fraud amount. To measure information

uncertainty, we extract the implied volatility from options. While options typically expire on

the third Friday of the contract month, firms make their earnings announcements at various

times. Thus, the time between each firm’s earnings announcement and its option expiration

date differs. To minimize possible measurement error due to non-constant maturity, we use

the implied volatility from 90-day standardized option prices provided by Option Metrics.

Specifically, we first take the mean of the 90-day call- and put-implied volatility to capture

the market’s uncertainty about the firm’s economic earnings. We then construct monthly

(quarterly) implied volatility by taking the mean of daily implied values over a given month

(quarter). We denote the resulting variable monthly (quarterly) IV , respectively.

To measure detection likelihood, we code DETECT as an indicator variable that equals

one if a fraud-related earnings restatement is announced in a quarter, and zero otherwise.

Prior literature finds that not all restatements are related to fraud and some are unintentional
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misapplications of accounting rules (Hennes et al. (2008); Fang et al. (2017)). We define fraud-

related restatements as those meeting at least one of the three following conditions: (1) if the

restatement is marked as fraudulent by Audit Analytics; (2) if the restatement has received a

class-action lawsuit as tracked by Audit Analytics; or (3) if the cumulative restated amount

(scaled by the total assets as of the last restating period) is in the top decile of the sample.

To measure fraud amount, we calculate FRAUD as the firm’s magnitude of fraud-related

restatement in net income in the misstating quarter (proxied using the average restatement

amount of all involved quarters), scaled by the standard deviation of quarterly operating

income (after restatement, if any) measured over the most recent eight quarters. FRAUD is

coded as zero for all other firm-quarters. Again, we limit the calculation of FRAUD to firms

that are associated with fraud-related restatements as defined above. If the dollar amount of

a fraud-related restatement is missing in Audit Analytics, we remove the firm-quarters that

are associated with the restatement from the analyses involving FRAUD.

We use analyst consensus earnings forecast as a proxy for earnings expectation. To

measure how earnings expectation changes in response to reported earnings, we first define

REV ISION as the difference of one-quarter-ahead earnings forecast issued before and after

the earnings announcement. We then define earning surprise, SUE, as the difference between

reported earnings and the pre-announcement consensus forecast. The REV ISION -to-SUE

sensitivity thus captures how market updates its expectation in response to reported earnings.

For controls, we follow prior literature and include four controls previously shown to affect

a firm’s level of earnings manipulation (e.g., Zang (2012)), namely, the natural logarithm of

total assets (SIZE), market-to-book (MB), return on assets (ROA), and leverage (LEV ).

Among the four controls, SIZE and MB also help control for firm growth. This is important

because prior studies show that growth affects firms’ incentives to manipulate earnings (e.g.,

Povel et al. (2007); Wang et al. (2010); Strobl (2013); Wang and Winton (2014)). We further

include REV GWTH, the percentage change of sales from the same quarter of the last year,

as an additional control for growth. Firm financials are from the Compustat quarterly files.
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B. Results

B.1. Information Uncertainty and the Regulator’s Decision

We conduct two analyses to shed light on the role that information plays in the regulator’s

calculus. First, we plot monthly implied volatility surrounding restatement announcements.

As Figure 2 shows, implied volatility drops sharply upon revelation of fraud, suggesting

that detection clears fraud and lowers information uncertainty. Second, we link detection

likelihood in a given quarter to the level of implied volatility during the prior quarter by

estimating the following regression:

DETECTi,q+1 = α+ β1IVi,q + βcCONTROLSi,q−1. (A.45)

The dependent variable, DETECT , is an indicator variable that denotes whether a fraud-

related earnings restatement is announced for firm i in a given quarter q + 1. IV is the

average daily implied volatility of quarter q. We include year-quarter fixed effects, and

cluster standard errors by firm and quarter.

Table I column (1) reports the regression results of estimating equation (A.45) excluding

controls. The coefficient of interest, β1, is positive and significant at the 1% level. In columns

(2) and (3), we reestimate equation (A.45) including controls. The coefficient of interest, β1,

remains positive and significant at the 1% level in column (2) excluding firm fixed effects

and in column (3) including firm fixed effects, respectively. This result suggests that fraud

detection likelihood is larger when the information uncertainty about a firm is greater possibly

because of a higher level of cumulative fraud. A potential concern is that not all firms in the

sample are consistently covered by Audit Analytics so measurement error is likely greater

for firms with no recorded restatements in the database. To address this concern, in Table

I column (4), we focus on a subsample of firms with at least one restatement announcement

tracked by Audit Analytics. For each firm, we include the entire time series of quarterly

observations during the sample period. Results using this subsample remain similar.

Results from these two analyses point to the role that information plays in the regulator’s

calculus: as detection helps restore information precision, she benefits more by directing
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detection efforts towards firms with higher levels of fraud-induced information uncertainty.

B.2. Information Uncertainty and the Manager’s Decision

We then conduct two analyses to shed light on the role that information plays in the

manager’s calculus. We first note that results in Table I indicate that the manager’s cost of

committing fraud is expected to increase with information uncertainty as detection likelihood

is higher. To shed light on how information uncertainty affects the manager’s benefit from

committing fraud, we link implied volatility to analyst forecast revision, a proxy for changes

in the market’s expectation about the firm’s value, by estimating the following regression:

REV ISIONi,q = α+β1SUEi,q × IVi,q +β3SUEi,q +β4IVi,q +βcCONTROLSi,q−1, (A.46)

where subscript i indexes firms and q indexes fiscal quarters. US companies are required

to report earnings no later than 45 days after the end of a fiscal quarter and analysts can

continue to revise their estimates until the day of earnings announcement. The dependent

variable, REV ISION , thus measures the change in the analyst consensus earnings per share

(EPS) forecast for firm i’s quarter q, between earnings announcement for quarter q−1 (made

in quarter q) and that for quarter q (made in quarter q + 1). Among the regressors, SUE

represents standardized unexpected earnings of firm i-quarter q − 1 announced in quarter q.

Unexpected earnings are defined as the difference between the firm’s reported EPS and its

analyst consensus EPS forecast two days prior to earnings announcement, scaled by stock

price two days prior to earnings announcement. As discussed in Section V.A, IV intends

to capture the degree of information uncertainty about firm i brought by cumulative fraud,

taken ten trading days before earnings announcement for quarter q − 1 in quarter q. The

interaction term between SUE and IV captures the extent to which implied volatility affects

the sensitivity of analyst forecast revision to unexpected earnings. We include year-quarter

fixed effects, and cluster standard errors by firm and quarter.

Table II column (1) reports the regression results of estimating equation (A.46) excluding

controls. The coefficient of interest β1 on SUE × IV is positive and significant at the 1%
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level. Column (2) repeats the analysis including controls and column (3) further includes

firm fixed effects. The coefficient of interest, β1, remains positive and significant at the 1%

level, in both columns. This result suggests that the MB of committing fraud is larger when

the information uncertainty about the firm is higher because unexpected earnings elicit more

responsive analyst forecast revision.

Together, results in Table I and Table II point to a non-monotonic relation between the

amount of fraud committed in a period and the amount of fraud accumulated to date, because

a high level of cumulative fraud increases both the MB and MC of further committing fraud.

Indeed, when we plot the empirical proxy for m∗
t (FRAUD) against the empirical proxy

for Φt−1 (IV ), with FRAUD being the amount of fraud in the reported net income for a

given quarter q and IV being the level of implied volatility measured prior to the earnings

announcement of quarter q, we observe an inverse U-shaped relation between the two. The

plot is shown in Figure 3.10

Based on the univariate plot, we then examine the relation by estimating the following

multivariate quadratic regression:

FRAUDi,q = α+ β1IVi,q + β2IV
2
i,q + βcCONTROLSi,q−1. (A.47)

Again, the dependent variable, FRAUD, measures firm i’s fraud amount in its fiscal quarter

q. IV is the average daily implied volatility of quarter q prior to the earnings release, and IV 2

is its squared term. As for controls, we continue to include the five basic firm characteristics.

Since FRAUD is scaled by the standard deviation of operating income, we also include this

scaling factor (labeled INCOMESTD) as an additional control to alleviate the concern that

any observed relation between IV and FRAUD is entirely driven by a denominator effect. As

before, we include year-quarter fixed effects, and cluster standard errors by firm and quarter.

Table III column (1) reports the regression results of estimating equation (A.47). As

shown, IV exhibits a positive coefficient and its squared term exhibits a negative coefficient,

10For ease of presentation, we sort the number of observations into 100 bins based on the level of IV . Each
marker then represents the average level of FRAUD for the observations in a bin. We fit a quadratic curve
to the plotted data.
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both significant at the 1% level. This result demonstrates an inverse U-shaped relation

between the amount of fraud committed in a quarter and the level of information uncertainty

induced by past fraud. Column (2) repeats the analysis including controls and column (3)

further includes firm fixed effects. The inference that we draw on IV and its squared term

remains qualitatively similar, although the statistical significance weakens with the inclusion

of firm fixed effects. Column (4) again focuses on a subsample of firms with at least one

restatement announcement tracked by Audit Analytics. Results using this subsample become

stronger. In the last two rows of the table, we formally test the relation using the U-shape

test developed in Lind and Mehlum (2010). The p-values of the Lind-Mehlum test statistics

reject the null of no inverse U-shaped in all columns at the 5% level or lower.

B.3. Convergence of Fraud

One important prediction from our multi-firm model is that anti-fraud regulations are

unlikely to eradicate fraud but may synchronize firms’ fraud decisions. To test this prediction,

we sort firm-quarters in the sample into quintiles based on firms’ level of implied volatility of

prior quarter, and then estimate the following regression:

∆IVi,q to q+1 = α+ β1IV Q1i,q + β2IV Q2i,q + β3IV Q4i,q + β4IV Q5i,q + βcCONTROLSi,q−1,

(A.48)

∆IV measures the change in the firm’s average daily implied volatility from quarter q to q+1.

IV Qn is an indicator variable that denotes whether a firm-quarter falls into the nth-ranked

quintile (n = 1 to 5), with a higher-ranked quintile representing the subsample with a higher

level of average daily implied volatility in quarter q. We omit IV Q3 from the regression to

avoid multicollinearity so the middle quintile serves as the benchmark group. We include

basic controls and year-quarter fixed effects, and cluster standard errors by firm and quarter.

Table IV columns (1) and (2) report the regression results of estimating equation (A.48),

without and with firm fixed effects. Compared with those in the middle quintile (IV Q3=1),

firms in a lower-ranked quintile of implied volatility prior to a quarter tend to have a larger

increase in implied volatility during the quarter, as evidenced by a positive coefficient es-
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timate on IV Q2 and an even larger one on IV Q1. Also benchmarked against the middle

quintile, firms in a higher-ranked quintile of implied volatility prior to a quarter tend to have

a smaller increase in implied volatility during the quarter, as evidenced by a negative coeffi-

cient estimate on IV Q4 and an even more negative one on IV Q5. This finding sheds light

on the convergence of corporate fraud across firms over time.

One concern is that this finding merely reflects the mean-reverting nature of IV . To

address the concern, we augment equation (A.48) by further including the interaction terms

between IV Qn (n = 1, 2, 4, and 5) and WAV E, an indicator denoting whether a firm-

quarter overlaps with a fraud wave in the firm’s industry. To define WAV E, we first compute

FRAUD%, the percentage of firms with restatement announcement in an industry-quarter.

We code WAV E as one if the actual FRAUD%j,q for industry j–quarter q exceeds the 90th

percentile of its sample distribution and zero otherwise. The industry classification is based

on the Global Industry Classification Standard (GICS) 4-digit industry groups.

Table IV column (3) reports the regression results of estimating the augmented equation,

including firm fixed effects. As in columns (1)-(2), firms in a higher-ranked quintile (i.e.,

those having a higher level of implied volatility prior to a quarter) have a smaller increase

in implied volatility during the quarter, as evidenced by the positive coefficient estimates on

IV Q1 and IV Q2 and the negative coefficient estimates on IV Q4 and IV Q5. This pattern

is more pronounced when a firm-quarter overlaps with a fraud wave in the firm’s industry,

as evidenced by the positive coefficient estimates on the interaction term between WAV E

and IV Q1 and that between WAV E and IV Q2 and the negative coefficient estimates on the

interaction term between WAVE and IV Q4 and that between WAV E and IV Q5. This find-

ing suggests that the negative relation between prior level of implied volatility (as measured

by quintile rank) and the increase in implied volatility in a quarter is not merely reflective of

the mean-reverting nature of corporate fraud, or it should not be affected by the existence of

an industry-level fraud wave. Rather, this finding is more consistent with the convergence in

firms’ level of fraud over time.
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C. Variable Definitions

IVq: in equation (29), IVq is the daily implied volatility of the 90-day standardized option

measured 10 trading days before the earnings announcement of q−1 (made in q). In equation

(30)-(32), IVq is the quarterly average of the daily implied volatility of the 90-day standardized

option in quarter q. IV 2
q is the squared term of IVq.

REV ISIONq: the EPS consensus forecast for quarter q after earnings announcement (EA)

of quarter q − 1 (made in q) minus the corresponding EPS forecast before EA, scaled by the

stock price two days before EA. Pre-EA consensus forecast is the latest forecast for quarter q

issued at least two days before EA of quarter q−1 (announced in q), averaged cross analysts.

Post-EA consensus forecast is the first forecast for quarter q issued within the first 30 days

after EA of quarter q − 1 (announced in q), averaged cross analysts.

SUEq: reported EPS of quarter q − 1 (announced in q) minus the pre-EA EPS consensus

forecast, scaled by the stock price two days before EA. Pre-EA consensus forecast is the latest

forecast for quarter q − 1 issued at least two days before EA of quarter q − 1, averaged cross

analysts.

NEGq: an indicator variable that equals one if the reported EPS of quarter q−1 (announced

in q) is negative and zero otherwise.

SIZEq−1: the natural logarithm of total assets at the end of q − 1.

MBq−1: market value of equity plus book value of debt, divided by book value of assets, at

the end of q − 1.

LEVq−1: book value of total debt divided by book value of total assets, at the end of q− 1.

ROAq−1: operating income of quarter q − 1 divided by book value total assets at the end of

q − 2.

REV GWTHq−1: sales revenue of quarter q − 1 divided by sales revenues of quarter q − 5

(i.e., one-year lag) minus one, in percentage points.

DETECTq+1: an indicator variable that equals one if a firm has disclosed a fraud-related
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restatement that meets at least one of the following three conditions in quarter q + 1 and

zero otherwise: (1) if the restatement is marked as being fraudulent by Audit Analytics; (2)

if the restatement has received a class-action lawsuit as tracked by Audit Analytics; or (3) if

the cumulative restated amount (scaled by the total assets as of the last restating quarter)

is in the top decile of the sample.

FRAUDq: the absolute magnitude of fraud-related restatement in the misstating quarter

(proxied using the cumulative net income impact of the restatement divided by the number

of restating quarters), scaled by the standard deviation of quarterly operating income (after

restatement, if any) measured over the most recent eight quarters. If a quarter does not

have any fraud related restatement, FRAUD is coded as zero. Fraud-related restatements

are defined above. If the dollar amount of a fraud-related restatement is missing in Audit

Analytics, the observations associated with that restatement are removed from the analyses

involving FRAUD.

INCOMESTDq: the standard deviation of quarterly operating income (after restatement,

if any) measured over the most recent eight quarters (from q − 7 to q).

IV Qnq: an indicator variable that equals one if a firm-quarter falls into the nth-ranked

quintile of IV (n=1 to 5) and zero otherwise, with a higher-ranked quintile representing the

subsample with a higher level of average daily implied volatility in quarter q.

WAV Eq: an indicator variable that equals one if an industry-quarter’s fraud detection rate

exceeds the 90th percentile of the empirical distribution based on the industry’s fraud de-

tection rates over all quarters in the sample. The fraud detection rate of an industry i in a

given quarter q is the number of firms with restatement announcement in industry-quarter

j, q divided by the number of firms in industry-quarter j, q. The industry classification is

based on the Global Industry Classification Standard (GICS) 4-digit industry groups.
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