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Abstract

This paper considers cost-reducing R&D investment with spillovers in a Cournot
oligopoly with overlapping ownership. We show that overlapping ownership leads 
to internalization of rivals’ profits by �firms and�find that, for demand not too con-
vex, increases in overlapping ownership increase (decrease) R&D and output 
for high (low) enough spillovers while it increases R&D but decreases output for 
intermediate levels of spillovers. There is scope for overlapping ownership to 
improve welfare provided that spillovers are sufficiently large. The socially optimal 
degree of overlapping ownership increases with the number of �firms, with the 
elasticity of demand and of the innovation function, and with the extent of spillover 
effects. In terms of consumer surplus standard, the desirability of overlapping 
ownership is greatly reduced even under low market concentration. When R&D 
has commitment value and spillovers are high the optimal extent of overlapping 
ownership is higher. The results obtained are robust in the context of a Bertrand 
oligopoly model with product differentiation.
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oligopoly with overlapping ownership. We show that overlapping ownership leads to
internalization of rivals�pro�ts by �rms and �nd that, for demand not too convex,
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that spillovers are su¢ ciently large. The socially optimal degree of overlapping own-
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1 Introduction

In many industries, overlapping ownership arrangements (OOAs) are prevalent in the form

of cross-shareholding agreements among �rms or common ownership by investment funds.

The latter in particular has grown tremendously in the last three decades and with investors

holding signi�cant stakes in the same industry. The tendency of such OOAs to reduce price

competition has been documented in the airline and banking industries (Azar et al. 2015,

2016), and it has raised antitrust concerns (Elhauge 2016, Baker 2016). At the same time,

there is a debate about whether and why innovative activity and business dynamism have

abated recently (e.g., CEA 2016 and Obama�s executive order to promote competition)

pointing at increased market power as the culprit (e.g., De Loecker and Eeckhout 2017).

The paper contributes by analyzing the interaction of OOAs and R&D activity in the

presence of technological spillovers and deriving testable predictions. OOAs lessen compet-

itive pressure but may have a bene�cial e¤ect on investment provided there are positive

spillovers across �rms. The reason is that OOAs help to internalize the spillover externality,

which is especially important for highly innovative industries. Empirical estimates �nd that

gross social returns to R&D are at least twice as high as the private returns (Bloom et al.,

2103). To what extent, and by what means, should antitrust authorities limit the �partial�

mergers that result from overlapping ownership in innovative industries? In this paper we

provide a welfare analysis of OOAs in the presence of spillovers and derive some implications

for competition policy. The analysis may help elucidate whether the documented increase

in OOAs has outrun its social value.

In our benchmark model, �rms compete in quantities and invest in cost reduction, and

we consider simultaneous output and R&D decisions. That approach aids tractability while

helping to capture the imperfect observability of �rms�R&D investment levels.1 We con-

sider a general symmetric model of overlapping ownership; this model allows for a range of

corporate control structures (as in Salop and O�Brien, 2000) and for distinguishing between

stock acquisitions made by investors and those made by other �rms. The key parameter

1Even though R&D investment typically precedes market interaction, this does not mean necessarily that
it has strategic commitment value. R&D investment e¤ort, or even contracts with managers that reward
e¤ort, need not be observable. The evidence on the strategic commitment value of R&D is scant: according to
Geroski (1991) strategic e¤ects may be of second�order importance in determining innovation incentives, and
according to Cohen (1995) and Griliches (1995) we know little about their empirical relevance. Simultaneous
decisions models� in the presence or absence of R&D spillovers� are analyzed by, among others, Dasgupta
and Stiglitz (1980), Levin and Reiss (1988), Ziss (1994), Leahy and Neary (1997), Cabral (2000), and Vives
(2008).
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is the degree of internalization of rivals�pro�ts (� in our model, ranging from independent

ownership, � = 0, to cartelization � = 1). The parameter � corresponds to what Edge-

worth (1881) termed the coe¢ cient of �e¤ective sympathy�among �rms. Higher degrees of

overlapping ownership (common or cross-ownership) lead to a higher �. We test the robust-

ness of results by way of a two-stage speci�cation and by considering Bertrand competition

with product di¤erentiation. The latter allows to study the impact of market spillovers on

the e¤ects of changing �. The model subsumes earlier contributions to the literature that

were based on linear or constant elasticity of demand and on speci�c innovation functions

(Dasgupta and Stiglitz 1980; Spence 1984; d�Aspremont and Jacquemin 1988; Kamien et al.

1992). Perhaps the work closest to ours in spirit is the paper by Leahy and Neary (1997).

Our paper seeks to answer the following questions: How do R&D and output levels vary

with the degree of internalization of rivals�pro�ts? How those relationships are a¤ected by

structural market parameters (demand and cost conditions, industry technological oppor-

tunity, and extent of spillovers)? What are the key determinants of the socially optimal

extent of overlapping ownership? How is that optimal level a¤ected by the above mentioned

structural parameters and by the competition authority�s objective (to maximize total or

rather consumer surplus)?

We note �rst that if an increase in the degree of internalization of rivals�pro�ts (�) lowers

R&D then it must lower output also (but the converse is not true). This is so because a

lower R&D leads to higher marginal cost and a higher � relaxes competition. This leaves

three possibilities. If � increases then either both output and R&D fall or rise, or output falls

and R&D rises. A higher � tends to decrease incentives to produce, because of its collusive

e¤ect, but in the presence of spillovers raises incentives to invest in R&D reducing cost, and

has an output expansion e¤ect, because it internalizes the externality of independent R&D

choices. The question is how the output and investment decisions interact.

The main results on the e¤ects of changes in � can be summarized as follows. If demand

is not too convex, then increasing � will increase (resp. decrease) both R&D and output

when spillovers are high (resp. low); for intermediate levels of spillovers, an increase in � will

increase R&D but reduce output. Furthermore, the two thresholds that partition the three

regions for spillovers are generally increasing in the level of market concentration, indicating

that positive R&D and output e¤ects of overlapping ownership should be found typically

only in markets not too concentrated for given spillover levels.

We identify the degree of market concentration and the extent of spillovers as key deter-
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minants of the welfare-optimal degree of internalization � be it according to total surplus

(TS) or a consumer surplus (CS) standard. High spillovers increase the desirability of in-

ternalizing the pro�ts of rivals. The range of spillovers is typically partitioned into three

regions: one optimally with � = 0 for low levels of spillovers; one optimally (by TS and CS

standards) with � > 0 for high levels of spillovers; and one optimally (by the TS standard

only) with � > 0 in an intermediate region. Furthermore, the optimal interior � (both by TS

and CS standards) is increasing in the extent of spillovers. We remark that the CS standard

is always more stringent than the TS standard. Numerical results reveal that the (TS-based)

socially optimal � is increasing in the number of �rms, in the elasticity of demand and of the

innovation function (both positively associated to the e¤ectiveness of R&D), and, indeed,

in the level of spillover e¤ects. Qualitatively similar results hold for the CS-based optimal

�, except that the scope for overlapping ownership is much reduced.

The results provide testable predictions since the sign of the relationship between R&D,

output and the degree of overlapping ownership depends on several potentially measurable

variables. For example, while an unconditional regression between R&D and overlapping

ownership might not yield signi�cant results, a positive relationship should be found in

industries with high enough spillovers, low enough concentration and demand not too convex.

In industries with a high e¤ectiveness of R&D, the positive association should extend to

output. Furthermore, if we check the impact of � on R&D investment to be negative then

we are sure that raising � will decrease consumer welfare. This is so since a positive e¤ect

of � on R&D is necessary, but not su¢ cient, for output, and therefore consumer welfare, to

increase with a higher �.

The context analyzed here is of more than theoretical interest. The growth of common

ownership due to the rise of institutional investors (e.g., by 2010 owning close to 70% of

the US the stock market while in 1950 this was 7-8%, Blume and Keim 2014) has been

formidable. A consequence is that the proportion of US public �rms in the hands of in-

stitutional investors which at the same time hold large blocks of other �rms in the same

industry has grown dramatically (from under 10% in 1980 to about 60% in 2010, He and

Huang 2017). For example, as reported by Azar et al. (2015), there are substantial common

ownership interests of institutional investors (e.g., BlackRock, Vanguard, State Street, Fi-

delity) in �rms in industries as diverse as technology, pharmacies, and banks. Furthermore,

minority shareholdings with cross-ownership patterns are widespread in many industries

(e.g., automobiles, airlines, �nancial, energy, and steel).
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There is growing interest among competition authorities in assessing the competitive

e¤ects of partial stock acquisitions. This increased attention stems mainly from three fac-

tors: (i) the increase in institutional common ownership with investors holding large stakes

in �rms in the same industry; (ii) the rapid growth of private equity investment �rms,

which often hold partial ownership interests in competing �rms (Wilkinson andWhite 2007);

and (iii) some notorious cases, such as Ryanair�s acquisition of Aer Lingus�s stock and the

Renault�Nissan alliance (under which Renault owns 44.3% of Nissan even as Nissan owns

15% of Renault).2

In the United States, minority shareholdings are examined with reference to merger con-

trol rules, the Clayton Act and the Hart�Scott�Rodino Act in particular. However, there

is an exception to antitrust scrutiny if the participation is �solely for investment�purposes,

although it is subject to interpretation whether institutional investors can hold as much as

15% without needing to notify. OOAs can be challenged if they substantially lessen com-

petition.3 Elhauge (2016) proposes to use antitrust to control the e¤ects of rising common

ownership; Posner et al. (2016) propose limits to ownership in oligopolistic industries for

institutional investors if they want to bene�t from a safe harbor from enforcement of the

Clayton Act.4 In Europe there is debate over the possibly anticompetitive e¤ects of partial

ownership. Yet the European Commission (EC) is not authorized to examine the acquisition

of minority shareholdings,5 and it has proposed extending the scope of its merger regulations

so that it can intervene in cases involving minority shareholdings among competitors or in

a vertical relationship.6

2 Other cases include BskyB�s acquisition of 17.9% of ITV, which was deemed anticompetitive by the UK
Competition Commission in 2007, and the acquisition of a 25% stake in Premiere by the News Corporation,
which was allowed by the European Commission subject to conditions in 2008. Gilo (2000) delineates
four other cases of minority acquisitions involving Microsoft and Apple in 1997; Northwest Airlines and
Continental Airlines in 1998; TCI and Time Warner in 1996; and Gillette and Wilkinson Sword in 1990.

3Section 7 of the Clayton Act prohibits acquisitions (of any part) of a company�s stock that �may�sub-
stantially lessen competition either by (a) enabling the acquirer to manipulate, directly or indirectly, prices
or output or by (b) reducing its own incentives to compete. The substantive passive investor provision states
that the prohibition does �not apply to persons purchasing such stock solely for investment and not using
the same by voting or otherwise to bring about, or in attempting to bring about, the substantial lessening
of competition�. According to a regulation of the Federal Trade Commission (FTC) and Department of
Justice (DOJ), (properly de�ned) passive investors acquiring no more than 15% of the stock of a corporation
have a �ling exemption (Salop and O�Brien 2000, Elhauge 2016).

4Rock and Rubinfeld (2017) provide a criticism of those views.
5Currently, the EC can consider the e¤ects on competition only of (pre-existing) minority shareholdings

in the context of a noti�ed merger (and in which the merging �rms each have stakes in a third �rm). In
some European countries (e.g., Austria, Germany, the United Kingdom), national merger control rules give
competition authorities the scope to examine minority shareholdings.

6The EC has proposed a �targeted transparency� system under which the EC and its member states
must be noti�ed of potentially harmful acquisitions. Included in this category would be acquisitions of a
minority shareholding� in a competitor or vertically related company� when either the acquired sharehold-
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The extant literature, most of which focuses on the potential bene�ts of cooperative R&D

or on how innovation is a¤ected by mergers, has largely ignored the topic of how innovation

is a¤ected by minority shareholdings� despite clear evidence that antitrust policy attends

closely to innovation.7 The anticompetitive e¤ects of minority shareholdings tend to be

weaker than those of a merger; at the same time, minority shareholdings seldom yield

the e¢ ciencies (e.g., rationalization, fewer duplicated costs) that may arise from a merger.

The commonly held view is that, overall, minority shareholdings tend to lessen competition.

Nonetheless, the evidence of spillover-induced underinvestment in R&D suggests that OOAs

could be bene�cial.

The paper proceeds as follows. We review brie�y the literature in Section 2. In Section 3,

we describe the di¤erent types of minority shareholdings that can be analyzed via our model,

which is presented in Section 4. That section characterizes the equilibrium responses of out-

put and R&D in response to a change in the degree of overlapping ownership. In Section 5,

we examine the socially optimal degree of overlapping ownership and then illustrate the re-

sults with three leading speci�cations from the literature: the d�Aspremont�Jacquemin and

Kamien�Muller�Zang models, and a constant elasticity model as in Dasgupta and Stiglitz

(1980). Section 6 extends our model to allow for strategic R&D commitments in a two-stage

game. Section 7 tests the robustness of our results to Bertrand competition with product

di¤erentiation. Section 8 explores an alternative interpretation of our model when cooper-

ation in R&D extends to the product market. We conclude in Section 9 and the appendix

gathers some proofs. Online Appendix A provides further details and proofs of our analysis

and of the three model speci�cations considered. Online Appendix B develops the analysis

of the Bertrand model. We also o¤er application software (available on the Web), which the

reader can use to conduct simulations with the models.

2 Review of the literature

Previous literature has analyzed the anticompetitive e¤ects of overlapping ownership (Bres-

nahan and Salop 1986; Reynolds and Snapp 1986). These researchers show that the presence

ing amounts to 20% or ranges between 5% and 20% but allows the acquirer �a de-facto blocking minority,
a seat on the board of directors, or access to commercially sensitive information of the target" (EC 2014,
p. 13).

7During the period 2008�2014, 36% of the mergers challenged by the US Department of Justice or the
US Federal Trade Commission were characterized as harmful to innovation; of the challenged mergers, 76%
were in high�R&D intensity industries.
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of partial ownership interests in a Cournot industry may result in less output and higher

prices (even if those interests are relatively small). This is because the competitive decisions

of one �rm� with stakes in a competitor�s pro�t� will take those stakes into account by

reducing output (or raising the price) so as to increase that competitor�s pro�t and hence its

own �nancial pro�t. Farrell and Shapiro (1990) show that passive �nancial stakes may be

welfare increasing in asymmetric oligopolies; here we demonstrate the possibility in a sym-

metric oligopoly. Gilo et al. (2006) show how minority shareholdings can foster collusion

and Heim et al. (2017) �nd empirical support for the theory.

Azar et al. (2015) study how passive investments by institutional investors a¤ect market

outcomes in the US airline industry, and �nd that ticket prices are about 10% higher on the

average route than they would be with no overlapping ownership. Similar results are ob-

tained for the banking industry (Azar et al. 2016).8 Several authors have found anticompet-

itive price unilateral e¤ects of cross-ownership arrangements in �nancial and manufacturing

sectors.9

Gutiérrez and Philippon (2016) examine private �xed investment in the US since the

early 2000s, �nd underinvestment relative to standard valuation measures, and explain it

with proxies for competition and ownership. They �nd that the investment gap is driven by

�rms owned by quasi-indexers and belonging to industries which have more concentration

and more common ownership. This type of �rms spend a disproportionate amount of free

cash �ows in share buybacks.

There is some evidence that common ownership improves e¢ ciency. He and Huang

(2017), using data on US public �rms from 1980 to 2014, estimate the e¤ect of common

ownership on market performance and report that �rms increase their market share through

common ownership. They report also that, among Fama-French US industries, business

equipment, healthcare, telecommunications, and energy and �nance as well, have high levels

of overlapping ownership.10 The authors note that institutional cross-ownership facilitates

explicit forms of product market collaboration, in particular within industry joint ventures,

resource sharing and coordination of R&D e¤orts, and improves innovation productivity (in

terms of patents per $ spent in R&D) as well as operating pro�tability. There is evidence

8The work in airlines has been criticized and revisited by Kennedy et al. (2017) and in banking by
Gramlich and Grundl (2017).

9See Dietzenbacher et al. (2000), Brito et al. (2014), and Nain and Wang (2016).
10Economies of scale in fund management is one reason why. Fund managers may concentrate their

holdings in industries where they have informational advantages because of economies of scale in information
production and monitoring (Kacperczyk et al. 2005).
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also that OOAs o¤er strategic bene�ts in product market relationships (Allen and Phillips,

2000; Fee et al. 2006) and in R&D e¤ort and patent success in the presence of patent

complementarities (Geng et al. (2016)).11

Anton et al. (2017) and Liang (2016) provide evidence of the transmission mechanism of

common institutional ownership on managers�incentives �nding that relative performance

evaluation decreases in industries with more common ownership.

There is an extensive literature on the e¤ects of cooperation and competition in R&D

with spillovers, starting from the seminal articles of Brander and Spencer (1984), Spence

(1984), Katz (1986), and d�Aspremont and Jacquemin (1988). Leahy and Neary (1997)

present a general analysis of the e¤ects of strategic behavior and cooperative R&D in the

presence of price and output competition; they also study optimal public policy toward

R&D in the form of subsidies.12 One of this literature�s primary objectives is to examine

underprovision of R&D and the welfare e¤ects of moving from a noncooperative to a coop-

erative regime in R&D. For example, Leahy and Neary (1997) show that R&D cooperation

leads to more output, innovation, and welfare when spillovers are positive. We will see that

under overlapping ownership, R&D and output increase only for high enough spillovers. We

shall identify the conditions under which minority shareholdings may increase TS, and even

CS, in industries where R&D investment is important and spillovers are signi�cant. We also

identify conditions under which a cartelized Research Joint Venture (RJV) is optimal, gener-

alizing Kamien et al. (1992) and �nding that this result depends on the innovation function

having little curvature. Spulber (2013) shows that competitive pressure may decrease the

incentives to innovate when intellectual property (IP) is not fully appropriable but this will

not happen when IP is appropriable. Our results are therefore consistent with him since the

intensity of competition is inversely linked to the extent of overlapping ownership, and we

�nd that for high levels of spillovers an increase in overlapping ownership is bene�cial for

innovation while it is detrimental for low spillover levels.

Bloom et al. (2013) estimate the extent of spillovers in a panel of US �rms from 1981 to

2001 (building on Ja¤e 1986 who measures the spillovers of two �rms with the overlap in the

11Furthermore, institutional ownership itself disciplines management. Even passive investors can exert
signi�cant in�uences on corporate governance and decision-making (Appel et al. 2016, Crane et al. 2016)
and institutional investors can improve R&D e¤ort and outcomes (Francis and Smith 1995, Bushee 1998,
Eng and Shackell 2001, Aghion et al. 2013 and Giannetti and Yu 2017).
12Suzumura (1992) extends the analysis to multiple �rms and general demand and cost functions in

Cournot competition. Ziss (1994) does likewise but also considers product di¤erentiation and price com-
petition. Kamien et al. (1992) analyze the e¤ects of R&D cartelization and joint research ventures. For a
survey, see Gilbert (2006).
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distribution of their patents) and �nd that gross social returns to R&D are at least twice as

high as the private returns. Their state-of-the-art estimates of technological spillovers obtain

a high sensitivity of the stock of knowledge of a �rm in relation to the R&D investment of

another �rm across a range of industries. They �nd that technology spillovers are present in

all sectors (and are more important than product market spillovers) but with greater impor-

tance in high-tech industries such as computers, pharmaceuticals, and telecommunications.

Their results imply that the internalization of those technological spillovers is a matter of

�rst-order welfare importance.

The empirical literature �nds a negative relationship between spillovers and patent pro-

tection levels in a range of industries. That is, industries with low patent protection tend to

have higher spillover levels than do industries with high patent protection (Griliches 1990).13

At the same time there is evidence that in the last decade �rms in more concentrated mar-

kets possess more patents (Grullon et al. 2017). If those statistical relationships are stable,

then there would be a link between increased concentration and reduced spillovers in an

industry.

3 Overlapping ownership

We may consider two types of acquisitions: when investors acquire �rms�shares in an indus-

try, called common ownership; and when �rms acquire other �rms�shares, cross-ownership

by �rms.

In the �rst case (common ownership), �rms�stakes are held by investors� for example,

large institutional investors such as pension or mutual funds, which now have stakes in nearly

three fourths of all publicly traded US �rms. Consider an industry with n �rms and I � n

investors. Salop and O�Brien (2000) model how the ownership shares and levels of control

of investors translate into the objectives of the managers of �rms. Each investor derives a

total pro�t from his portfolio holdings. The authors assume that the manager of a �rm

takes into account shareholders�incentives (through the control weights) and maximizes a

weighted average of the shareholders�portfolio pro�ts. We discuss in the Appendix two

important cases: silent �nancial interests (SFI, a.k.a. passive investments) and proportional

control (PC, the �rm�s manager accounts for shareholders�own-�rm interests in other �rms

13Galasso and Schankerman (2015) �nd that patent rights block knowledge spillovers and downstream
innovation in industries such as computers, electronics, and medical instruments (but not in others such as
drugs or chemicals).
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in proportion to their respective stakes).14 In both cases we assume that each �rm has a

reference shareholder and each investor acquires a share � of the �rms which are not under

his control. The reference shareholder keeps an interest 1 � (I � 1)� in his �rm and we

assume that �I < 1 so that 1� (I � 1)� > �.

In the second case (cross-ownership, CO), we assume that each of the n �rms may acquire

their rivals�stock in the form of passive investments with no control rights (e.g., nonvoting

shares; see Gilo et al. 2006). This setting features a complex, chain-e¤ect interaction between

the pro�ts of �rms. Here � denotes a �rm�s ownership stake in another �rm, and the strategy

decisions are made by the controlling shareholder.

In each case we show that, when the stakes are symmetric, the �rm-i manager�s problem

is to maximize

�i = �i + �
X
k 6=i

�k; (1)

where the value of � depends on the type of ownership. Note that � = 0 corresponds to

independently maximizing �rms while � = 1 corresponds to a cartel (or full merger).

In the common ownership cases, the parameter � is the relative weight that the manager

of �rm i places on the pro�t of �rm k in relation to the own pro�t (of �rm i) and re�ects

the control of �rm i by investors with �nancial interests in �rms i and k. The upper bound

of cross-ownership is � = 1=I, in which case � = 1 and the managers of �rms will maximize

total joint pro�t. We have that for � < 1=I, � is increasing in both I and �. The driving force

of the comparative statics result is the decline in the interest in the own �rm (undiversi�ed

stake) of reference investors 1� (I � 1)� as I or � increase.15

In the cross-ownership case � is the ratio of the stake of �rm i in �rm k over the claims

of �rm i on its own �rm and on �rm k. It follows that the upper bound of cross-ownership

is � = 1=(n� 1), in which case � tends to 1 as � approaches 1=(n� 1). We have that � is

increasing in n and �.16

14Other governance structures are discussed in Salop and O�Brien (2000). Any structure that preserves
symmetry (in the sense that �jk = � for any j, k) will be encompassed by our approach. In Banal-Estanol
et al. (2017) we extend the model to allow for a partition of active and passive investors, which preserves
symmetry in the ��s, with the later having less control than their stake in �rms.
15The mechanism can be grasped more directly in a simpler ownership structure with proportional control.

If we had I investors in each �rm with a total interest 1 � � and a common investor with stake � in all
�rms, then �PC = �2=[(1� �)2 I�1 + �2]. As I ! 1, undiversi�ed investors become small, and �PC ! 1;
while if each �rm has a large reference investor (I = 1 with 1� � large), then �PC will be small.
16This is so, since for given �, an additional �rm reduces the share of pro�ts that �rm j receives from

its own operational pro�t in relation to the received operational pro�t from any other �rm k (in proportion
�). Similarly, for given n, a higher � increases the share of pro�ts that �rm j receives from the operational
pro�t of �rm k, while it reduces the share of pro�ts that �rm j receives from its own operational pro�t,
thereby also increasing �.
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Table 1 summarizes the value of � according to the type of overlapping ownership (SFI,

PC, or CO). We can see that more investors and higher investment stakes are both positively

associated with �. In addition, it is straightforward to show that �PC > �SFI and that for

I = n, �SFI > �CO. The implication is that, in order to attain the same degree of pro�t

internalization (and for a given number of �rms n), the investment stake with proportional

control must be lower than with silent �nancial interests, �PC < �SFI, which in turn must be

lower than with (passive) cross-ownership by �rms, �SFI < �CO, for I = n.17 Consistently

with the results found here, Anton et al. (2017) show that in industries with higher degrees

of common ownership (i.e., higher �), relative performance evaluation is used less to provide

incentives to managers, which means that the degree of pro�t internalization � is higher.

Table 1: Pro�t Internalization (�) under Di¤erent Ownership Structures

Common Ownership,
Silent Financial Interests

Common Ownership,
Proportional Control

Cross-ownership
(by �rms)

� �
1�(I�1)�

2�[1�(I�1)�]+(I�2)�2
[1�(I�1)�]2+(I�1)�2

�
1�(n�2)�

4 Framework and equilibrium

We consider an industry consisting of n � 2 identical �rms, where each �rm i = 1; : : : ; n

chooses simultaneously their R&D level (xi) and production quantity (qi). Firms produce

a homogeneous good characterized by a smooth inverse demand function f(Q), where Q =P
i qi. We make the following three assumptions.

A.1. f(Q) is twice continuously di¤erentiable, where (i) f 0(Q) < 0 for all Q � 0 such that

f(Q) > 0 and (ii) the elasticity of the slope of the inverse demand function,

�(Q) � Qf 00(Q)

f 0(Q)
;

17The intuition for �SFI < �CO is easy to grasp for n = 2. Then under SFI the manager of i puts weight
1 � � in the own �rm�s pro�ts �i while under CO the manager of i puts weight 1 on those pro�ts (since
he is maximizing �i = (�i + ��k)/

�
1� �2

�
); note that �2�i is the share of the total pro�t of j that �rm i

recovers through its passive investment � in �rm k (the chain e¤ect). And consequently, 1��2 is the share
of the total pro�t of i net of the chain e¤ect. In both cases the manager of i puts weight � in the pro�ts of
the other �rm.
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is constant and equal to �.

The parameter � is the curvature (relative degree of concavity) of the inverse demand func-

tion, so demand is concave for � > 0 and is convex for � < 0. Furthermore, demand is

log-concave for 1 + � > 0 and is log-convex for 1 + � < 0. If 1 + � = 0, then demand is

both log-concave and log-convex.18 The family of inverse demand functions for which �(Q)

is constant, includes linear or constantly elastic cases, and can be represented as

f(Q) =

8><>:a� bQ�+1 if � 6= �1;

a� b logQ if � = �1;

here a is a nonnegative constant and b > 0 (resp., b < 0) if � � �1 (resp., � < �1).

A.2. The marginal production cost or innovation function of �rm i, or ci, is independent of

output and is decreasing in both own and rivals�R&D as follows: ci = c(xi+�
P

j 6=i xj) > 0,

where c0 < 0, c00 � 0, and 0 � � � 1 for i 6= j.

A.3. The cost of R&D level xi is given by �(xi), where �(0) = 0, �0 > 0, and �00 � 0.

The parameter � represents the spillover level of the R&D activity. Since we focus on sym-

metric �rms, we assume symmetric spillover levels; moreover, R&D outcomes are imperfectly

appropriable to an extent that varies between 0 and 1. The intensity of spillover levels is

quite heterogeneous across industries. Bloom et al. (2013) �nd an average sensitivity of :4

to :5 of the stock of knowledge of a �rm in relation to the R&D investment of another �rm.

However, the dispersion of the estimates across industries is large.

Firm i�s pro�t is given by

�i = f(Q)qi � c

�
xi + �

X
j 6=i

xj

�
qi � �(xi);

and the objective function for the manager of �rm i is to maximize �i = �i + �
P

k 6=i �k

choosing (qi; xi). The model represents distinct scenarios depending on the values of � and �.

When � 2 (0; 1) and � 2 [0; 1), �rms compete in the presence of partial ownership interests

and the R&D outcomes are again imperfectly appropriable. When � 2 (0; 1) and � = 1,

18This class of demands features a constant pass-through from cost to price of (2 + �)�1for a monopoly
�rm (Bulow and P�eiderer 1983). We note that � is also related to the marginal consumer surplus from
increasing output� that is, to MS = �f 0(Q)Q. Weyl and Fabinger (2013) argue that �MS � MS=(MS0Q))
measures the curvature of the logarithm of demand. Under A.1, we can write 1=�MS = 1 + �.
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�rms form a Research Joint Venture (RJV) under which all R&D outcomes are fully shared

among RJV members and the duplication of R&D e¤orts is avoided. When � = � = 1, �rms

form a �cartelized�RJV.19 If � = 0 then there is no overlapping ownership.

For markets with cross-shareholdings, a modi�ed HHI is proposed by Bresnahan and Sa-

lop (1986). This index corresponds to the market share�weighted Lerner index in a Cournot

market, and we write MHHI =
�P

i siLi
�
�. Here si and Li are (respectively) the market

share and Lerner index of �rm i; the term � denotes the demand (price) elasticity..20 In

our case it is easy to see that, for a given common marginal cost, (p� c)=p = MHHI=� at a

symmetric Cournot equilibrium; here MHHI = �=n for � = 1+�(n�1), which is monotone

in �. When � = 0 we have the standard HHI for a symmetric solution, 1=n, and if � = 1

then the modi�ed HHI is equal to 1.

Now we consider symmetric solutions of the game. Let B � 1+�(n� 1); then Bx is the

�e¤ective�investment that lowers costs for a �rm. Let � � 1 + ��(n� 1). Then �c0(Bx)q�

is the marginal e¤ect of investment by a �rm on its internalized pro�t �i. A symmetric

interior equilibrium (Q� = nq�; x�) must solve the �rst-order necessary conditions for the

maximization of �i (@�i=@qi = 0; @�i=@xi = 0):

f(Q�)� c(Bx�)

f(Q�)
=
MHHI
�(Q�)

; (2)

�c0(Bx�)Q
��

n
= �0(x�): (3)

Here �(Q�) = �f(Q�)=(Q�f 0(Q�)) is the elasticity of demand. Equation (2) is the modi�ed

Cournot�Lerner pricing formula; expression (3) equates the marginal bene�t and marginal

cost of investment by a �rm taking into account its internalized pro�t �i. Note that both

MHHI and � are increasing in � and therefore respectively exert pressure to reduce output

(or increase prices and margins) and to increase investment.

Let second-order derivatives be denoted, at symmetric solutions, by @zizj�i � @2�i=@zi@zj

and @hzi�i � @2�i=@h@zi (with h = �, �, and z = q; x). We assume that the following

19We follow here the terminology in Kamien et al. (1992). d�Aspremont and Jacquemin (1988) identify
cooperation in R&D only, in our terminology, with � = 0 for output decisions and � = 1 for R&D decisions
with � 2 [0; 1]. This situation is termed an "R&D cartel" by Kamien et al. (1992). For the latter the
situation where � = 1 and � = 1 only for R&D decisions is termed "R&D cooperation".
20Azar et al. (2015) use the MHHI (in terms of control and share rights) to measure anticompetitive

incentives stemming from �nancial interests in the US airline industry. These authors �nd that, in year
2013, the increased market concentration generated by such �nancial interests was more than 10 times
greater than the HHI increase above which mergers are likely to generate antitrust concerns.
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regularity conditions hold:

�q � @qiqi�i + (n� 1)@qiqj�i < 0;�x � @xixi�i + (n� 1)@xixj�i < 0;

and

� � �q�x � (@xiqi�i)2�B > 0: (4)

Together these conditions imply that (2) and (3) both have a unique solution if they hold

globally.21 Condition �q < 0 is a standard stability condition in a quantity Cournot game

(e.g., Dixit (1986)) and implies that @qiqi�i < 0. Condition�x = �c00(Bx�)q��B��00(x�) < 0

is the equivalent for the innovation choice (e.g., Leahy and Neary (1997), Vives (2008)). It

is noteworthy that �x < 0 requires that at least one of c00 and �00 be positive and implies

that @xixi�i < 0. (See Table 4 in the Appendix.)

If �(Q�; x�) > 0 then we say that the equilibrium is regular. In particular, we assume

that there is a unique regular symmetric interior equilibrium (Q�; x�).22 The focus of our

paper is on characterizing that equilibrium.

4.1 Model speci�cation examples

We will consider the well-known R&D model speci�cations� with linear (and therefore log-

concave) demand� of d�Aspremont�Jacquemin (AJ) and Kamien�Muller�Zang (KMZ); we

also consider a constant elasticity (CE) model with log-convex demand that is similar to

the Dasgupta and Stiglitz (1980) model but with spillover e¤ects. In AJ c(�) is linear and

�(�) is quadratic while in KMZ and CE, c(�) is strictly convex and �(�) linear. The AJ

and the KMZ model speci�cations are only equivalent for a subset of spillover values (which

includes the case of no spillovers and depends on the number of �rms).23 Table 2 summarizes

these model speci�cations (where � is the demand curvature), and tables A.1 and A.2 (in

online appendix A.2.1) provide, respectively, equilibrium values of output and R&D that

are obtained by solving equations (2) and (3), and the su¢ cient second-order and regularity

21This is so since they imply that the Jacobian of the FOC at the symmetric solution is negative de�nite.
This implies that the Gale-Nikaido univalence conditions are ful�lled (see Section 2.5 in Vives 1999).
22Provided �i is strictly concave in (qi; xi) and some mild boundary conditions hold, then an interior

equilibrium will exist. (Strict concavity of �i is ensured with the usual di¤erential second-order conditions,
see A.1.2 in the online appendix.)
23Furthermore, while in AJ the joint returns to scale (in R&D expenditure and number of �rms) are

decreasing, constant, or increasing when � is less than, equal to, or greater than 1=(n+1); in KMZ the joint
returns to scale are always nonincreasing if � � 1 (Proposition 4.1 in Amir 2000). See also Section A.2 of
the online appendix.
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Table 2: Model Speci�cations

AJ KMZ CE
Demand f(Q) = a� bQ f(Q) = a� bQ f(Q) = �Q�", 0 < " < 1

� = 0; a; b > 0 � = 0; a; b > 0 � = �(1 + "); a = 0, b = �� < 0
c(�) �c� xi � �

P
j 6=i xj �c�

��
2=
)(xi + �

P
j 6=i xj

��1=2
�
�
xi + �

P
j 6=i xj

���
�(x) (
=2)x2 x x

conditions for each speci�cation. In all cases outputs are strategic substitutes since � > �2.

4.2 Comparative statics with respect to �

We are interested in how output and R&D respond, in equilibrium, to a change in �. The

sign of the derivatives @q�=@� and @x�=@� can be ambiguous. Di¤erentiating totally the

FOCs, we obtain

@q�=@� = [(@�xi�i) (@xiqi�i)B � (@�qi�i)�x]=� (5)

@x�=@� = [(@�qi�i) (@xiqi�i) � � (@�xi�i)�q]=�: (6)

For a given x, the extent of overlapping ownership � has a negative e¤ect on output:

@�qi�i = f 0(Q)q(n�1) < 0. This is the well-known e¤ect of reducing output so as to increase

price when the pro�t of rivals is being taken into account. For a given q, however, � has

a positive e¤ect on investment: @�xi�i = ��q(n � 1)c0(xB) > 0. This is the internalizing

e¤ect of spillovers with a higher �, and its strength depends directly on the size (�) of those

spillovers. The total impact of � on the equilibrium values of per-�rm output and R&D will

depend on which of the two previous e¤ects dominates. What is clear is that, if @x�=@� � 0,

then @q�=@� < 0 because @xiqi�i = �c0(xB) > 0 (output and R&D are complements for a

�rm). That is, an increase in R&D investment is necessary (but not su¢ cient) for output to

rise with increasing �. When � is small, the positive e¤ect on investment is small and so the

negative e¤ect on output dominates. Then q� decreases with � and, as a result, �rms invest

less also when � increases� given that the bene�t to �rms from investing in R&D decreases

proportionally with output.

We shall use RI to denote the region in which @q�=@� < 0 and @x�=@� � 0. If �

is su¢ ciently high, then the positive e¤ect on R&D reduces signi�cantly the unit cost of

production, which in turn stimulates output. Two e¤ects are present in this case. On the one
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hand, �rms want to reduce output in order to increase competitors�pro�t and hence their

own �nancial pro�t. On the other hand, �rms now have incentives to produce more because

they are more e¢ cient. If the �rst e¤ect dominates, then @q�=@� < 0 and @x�=@� > 0 (we

label this region RII). But if the second e¤ect dominates, then @q�=@� > 0 and @x�=@� > 0

(region RIII). Which of these two cases arises in equilibrium will depend on the extent of

the spillovers. We �nd that, whereas RI always exists, regions RII and RIII might not exist.

We next derive the conditions and threshold values (in terms of �) that de�ne the bound-

aries of the regions characterizing the signs of @x�=@� (Lemma 1) and @q�=@� (Lemma 2).24

LEMMA 1 At equilibrium, sign f@x�=@�g = signf�(1 + n+ ��)� 1g:

COROLLARY 1 For any �xed � and for any � 2 [0; 1]; only RI exists (with @x�=@� � 0)

if and only if demand is convex enough� that is, i¤ � � �n=�.25 This statement holds for

any � in [0; 1] provided that � � �n.

We can interpret the critical spillover threshold for � in terms of the cost pass-through

coe¢ cient (i.e., the rate at which the price changes with marginal cost). This threshold is

equal to the industry-wide per-�rm cost pass-through coe¢ cient (P 0(c)=n) multiplied by the

internalized cost-reducing e¤ect of a unit increase in R&D expenditures by each �rm (�);

formally, we have sign
�
@x�=@�

	
= signf� � P 0(c)�=ng. Firms, in principle, should be less

interested in reducing costs when doing so translates, in e¤ect, into lower prices. Note that

P 0(c) is increasing with the degree of convexity of the demand.26

A consequence of Lemma 1 is that the threshold for spillovers to induce @x�=@� � 0

is decreasing (resp. increasing) in � when demand is concave (resp. convex)� that is, when

� > 0 (resp. � < 0).27

If demand is extremely convex, then increases in overlapping ownership are so restrictive

of output that they induce @x�=@� < 0, in which case only RI exists for any �. And since

MHHI = �=n, the applicable condition is that � � �(MHHI)�1. Corollary 1 implies that the
24The e¤ects on output and investment of changes in � do not depend on the assumption of a constant �.

However, the characterization of the boundary in � space between RI and RII is made much simpler with �
constant.
25When � > �(n+ 1)=�, there exists a positive threshold of spillover above which @x�=@� > 0; however,

that threshold exceeds unity unless � > �n=�.
26Let P (c) � f(nq�(c)); then P 0(c) = f 0(nq�)n

�
dq�=dc

�
= n=[�(1 + �) + n]. Since the stability condition

�q < 0 holds when �(1 + �) + n > 0, it follows that P 0(c) > 0. Furthermore, the pass-through increases
with the number of �rms when demand is log-concave (� > �1). See Weyl and Fabinger (2013).
27So for � > 0, if @x�=@� > 0 for some � then that inequality must hold also for larger values of �.

Analogously: for � < 0, if @x�=@� < 0 for some � then that inequality holds also for larger values of �.
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degree of demand convexity required for only RI to exist is decreasing in the concentration

measured by MHHI; in other words, the condition is less restrictive in markets that are more

concentrated. The corollary implies also that RII can exist only when quantities are strategic

substitutes.28 Indeed, if quantities are instead strategic complements (i.e., if @qiqj�i > 0,

which holds when � < �n(1+�)=�, then the condition � < �n=� always holds and only RI
exists. When � is such that �n(1 + �)=� < � < �n=�, quantities are strategic substitutes

(as e.g. when demand is log-concave) but again only RI exists. If � > �n=�, then quantities

are strategic substitutes and RII exists (see Figure 7 in the Appendix which depicts the

existence of regions RI and RII in (�; �) space together with conditions for outputs to be

strategic substitutes or complements).29

As regards the comparative statics on output, totally di¤erentiating the �rst-order con-

dition (FOC) with respect to � yields

sign f@q�=@�g = sign f@�qi�i +B(@xiqi�i)@x
�=@�g ; (7)

here B = 1+�(n� 1) captures the e¤ect, on each �rm�s marginal cost, of a unit increase in

R&D by all �rms. At equilibrium, the impact on output of a higher degree of overlapping

ownership depends directly on its e¤ect on marginal pro�t with respect to output (@�qi�i)

and indirectly through its e¤ect on the R&D e¤ort of each �rm at equilibrium. Recall that,

since @xiqi�i > 0, it follows that if @x�=@� � 0 then @q�=@� < 0 (RI). By Lemma 1 we

know that, if spillovers are su¢ ciently high and demand is not too convex, then @x�=@� > 0;

however, the sign of @q�=@� can be negative (RII) or positive (RIII).

We derive an inverse measure of R&D e¤ectiveness in terms of the model�s basic elastici-

ties. This measureH is an indirect function of �, since the equilibrium depends on �, and pro-

vides the appropriate threshold for the positive e¤ect of minority shareholdings on R&D in-

vestments to dominate its negative e¤ect on output. Let �(Bx�) � �c00(Bx�)Bx�=c0(Bx�) �

0 be the elasticity of the slope of the innovation function (i.e., the relative convexity of c(�))

evaluated at the e¤ective R&D, Bx�; and let y(x�) � �00(x�)x�=�0(x�) � 0 be the elasticity

of the slope of the investment cost function. Our regularity assumptions imply that either

28This is so when � > �(1 + �)n=� (see Table 4 in the Appendix), which holds for all � and n when
� > �2� in other words, the convexity of inverse demand must not be too high, which in turn implies that
marginal revenue is strictly decreasing in output. It is worth noting that, in order for strict concavity of �i
with respect to qi (@qiqi�i < 0) at a symmetric equilibrium to be guaranteed for all �, we need the condition
� > �2 (which guarantees strategic substitutability for all � and n). The concavity condition is � > �2n=�,
and it is the strictest for � = 1 (in which case it reduces to � > �2).
29It is worth noting that cost reduction e¤orts are strategic substitutes (@xixj�i < 0) provided that � > 0

(see Table 4 in the Appendix).
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c00 > 0 or �00 > 0 (or both). If �00(x�) > 0, let �(Q�; x�) � �(c0(Bx�))2=(f 0(Q�)�00(x�)) > 0

measure the relative e¤ectiveness of R&D.30 Note also that a higher ratio y=� means that

the investment is more e¤ective in reducing costs. Then H can be written as

H =
1

�(Q�; x�)

�
1 +

�(Bx�)

y(x�)

�
;

evaluated at the equilibrium (Q�; x�). Note that H is positive and decreasing in the e¤ec-

tiveness of R&D as measured by � and by y=�.

LEMMA 2 Let B = 1 + �(n� 1). At equilibrium, sign f@q�=@�g = signf�B �Hg.

For � > 0 we have that the term H=� provides the appropriate threshold for B (the

e¤ect on each �rm�s marginal cost of a unit increase in R&D by all �rms) for a rise in � to

increase output. Therefore, if B > H=� then the positive e¤ect of overlapping ownership on

R&D investments dominates its negative e¤ect on output. The values of H for each model

speci�cation are presented in Table 3.31 Note that H is independent of � under the AJ and

KMZ models but is strictly increasing in � under the CE model. As we shall discuss later,

the relationship betweenH and � has important consequences for the optimal welfare policy.

It is worth noting that the e¤ectiveness of R&D increases with the elasticity of demand (b�1;

"�1) and with the elasticity of the innovation function (
�1; �) in the speci�ed models.

Table 3: H (Inverse Measure of R&D E¤ectiveness)

AJ KMZ CE
H b
 b
B B

�
�+1
�

�
"

n�"��

We introduce the following mild assumption on H : [0; 1]! R+ (considered as a function

of �). H is continuous (see proof of Lemma 2).

A.4. H(�)=� is downward sloping.

Under Assumption A.4, the equation B = H(�)=� has at most a unique positive solution

(since lim�!0H(�)=� =1). This assumption is su¢ cient but not necessary for uniqueness.

An (almost) necessary and su¢ cient condition for uniqueness is that H(�)=�B is decreasing

in � whenever B = H(�)=�. Denote that solution by �0; then, for � > �0 we have that

@q�=@� > 0. Assumption A.4 seems not to be restrictive in light of the model speci�cations

30As de�ned by Leahy and Neary (1997, Sec. V, p. 654).
31In AJ, y = 1 and � = 0; in KMZ, y = 0 and � = 1=2; in CE, y = 0 and � = �+ 1.
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typically used in the literature; it is ful�lled in AJ and KMZ. In CE, H(�)=�B is strictly

decreasing in �. Assumption A.4 does not guarantee that there exists �0 < 1, so RIII may

fail to exist. We have that a solution �0 < 1 exists if n > H(1). Our next corollary states

the results formally.

COROLLARY 2 Under A.4, if n > H(1) then region RIII exists when � > �0 with �0 < 1

(where �0 is the unique positive solution to �B �H(�) = 0).

Using Lemmata 1 and 2� and observing that � > �n=� implies that 1+n+�� > 0� we

obtain the following result.

PROPOSITION 1 Let � = 1 + �(n � 1). Under assumptions A.1�A.3, if demand is

su¢ ciently convex (� � �n=�) then only region RI exists. Otherwise, assume A.1�A.4,

n > H(1), and let �(�) = 1=(1 + n+ ��) and �0 (�) be as de�ned in Corollary 2. Then the

following statements hold :

(i) if � � � (�) ; then @q�=@� < 0 and @x�=@� � 0 (RI);

(ii) if � (�) < � � �0 (�) ; then @q�=@� � 0 and @x�=@� > 0 (RII);

(iii) if � > �0 (�) ; then @q�=@� > 0 and @x�=@� > 0 (RIII).

Fig. 1. Spillover threshold values that limit regions RI, RII and RIII for a
given �.

Figure 1 depicts the three regions for the spillovers and the impact of changing �. Propo-

sition 1 implies that, for demand that is convex enough, the equilibrium is always in RI (and

that a higher � needs a less convex demand for the result to hold). Recall that when quan-

tities are strategic complements only RI exists. Otherwise, the equilibrium is in RI for a

low level of spillovers only. We write the thresholds as a function of �, � (�) and �0 (�), to

emphasize that Proposition 1 is for a given �: �(�) is decreasing or increasing in � according

to whether demand is concave (� > 0) or convex (� < 0); �0(�) is increasing in � if and only

if H is increasing in �. Recall that H is weakly increasing in � under all three model speci-

�cations: in AJ and KMZ, H is independent of �; in the CE model, H is strictly increasing
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in �. In those cases the e¤ectiveness of R&D is weakly decreasing in the degree of pro�t

internalization �. Both � (�) and �0 (�) (for a given e¤ectiveness of R&D) are decreasing in

n.32 Furthermore, �0 is decreasing in the e¤ectiveness of R&D (H�1). More e¤ective R&D

increases RIII.

We can compare these results with those reported by Leahy and Neary (1997, Prop. 3),

in which there are no minority shareholdings and where R&D cooperation leads to more

R&D and output (as in our RIII) whenever spillovers are positive. Yet in our case, RIII

obtains only when spillovers are su¢ ciently high. Thus the �output cooperation� induced

by overlapping ownership requires su¢ ciently high spillovers in order to increase R&D and

output.

Finally, we are interested in analyzing the e¤ect of � on each �rm�s pro�t. We have that

signf��0(�)g = sign
�
� �c0(Bx�)

@x�

@�
+ f 0(Q�)

@q�

@�

�
: (8)

Given that @x�=@� > 0 and @q�=@� < 0 in RII, we can use (8) to show that� in this

region� ��0(�) > 0. The sign of the e¤ect of � on �� is less clear in RI (since in that region,

@x�=@� < 0 and @q�=@� < 0) and in RIII (where @x�=@� > 0 and @q�=@� > 0). Nevertheless,

in online appendix A.1.2 we prove the following result.

PROPOSITION 2 At the symmetric equilibrium, the pro�t per �rm (��) increases with �.

According to this proposition, the positive e¤ect on price dominates the negative e¤ect

on R&D in RI, and conversely in RIII, so that pro�ts in both regions rise with the extent

of overlapping ownership. This means that investors and �rms have always incentives to

increase their interdependence. In the examples of ownership structures considered common

investors to the industry have incentives to increase their share of overlapping ownership

and similarly for �rms to increase the overlapping ownership stake in other �rms. This

is so provided the agreements are binding ones, because that feature allows the parties to

increase pro�ts.33 Before proceeding with the welfare analysis, we examine the e¤ect of �

32For the AJ model, �0 is decreasing in n while in KMZ �rm entry has no e¤ect. In the CE model �0 may
be increasing in n for � close to 1.

33Farrell and Shapiro (1990), Flath (1991), and Reitman (1994) show that unilateral incentives to imple-
ment passive ownership structures may be lacking in Cournot competition with constant marginal costs.
However, Gilo et al. (2006) show that cross-ownership arrangements facilitate tacit collusion (in the sym-
metric case) when the stakes are su¢ ciently high because they diminish incentives to deviate. For a di¤er-
entiated product market with two �rms, Karle et al. (2011) analyze the incentives of an investor to acquire
a controlling or noncontrolling stake in a competitor.
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on equilibrium values.

4.3 Comparative statics with respect to spillovers (�)

A su¢ cient (but not necessary) condition for increases in � to raise per-�rm R&D and output

is that @�xi�i > 0. It is not di¢ cult to see that signf@�xi�ig = signf�B=� ��(Bx�)g; here �

is the elasticity of the slope of the innovation function, which is nonnegative. For a positive

�, we have @�xi�i > 0 when the curvature (relative convexity) of the innovation function is

su¢ ciently low. The term �B=� = � (1 + � (n� 1)) = (1 + �� (n� 1)) increases with � for

� < 1, so it su¢ ces that � > � (since B=� = 1 for � = 0). Our next proposition follows.

PROPOSITION 3 If the curvature � of the innovation function is su¢ ciently low (� < �

would be low enough); then @q�=@� > 0 and @x�=@� > 0.

We can view the following results as corollaries. In AJ (where � = 0), stronger spillover

e¤ects raise the equilibrium values of output and R&D; in KMZ (where � = 1=2), the same

dynamic is observed when overlapping ownership induces a high enough � (� > 1=2) and

always in the case of a cartel (for which � = 1). In the CE model, � = � + 1 > 1. In this

case, some tedious algebra shows that, for any positive �, (i) @q�=@� > 0 (with @q�=@� = 0

when � = 0) and (ii) x� increases (resp. decreases) with � for high (resp. low) values of �.

It is worth noting that � and � tend to be complements in raising x�. We have that

@2x�=@�@� > 0 in our three model speci�cations according to simulations.34 A higher level

of spillovers makes increasing � more e¤ective in raising x�.

5 Welfare analysis

Welfare in equilibrium is given by the sum of consumer surplus (CS) and industry pro�ts:

W (�) =

Z Q�

0

f(Q) dQ� c(Bx�)Q� � n�(x�):

We are interested in studying the e¤ect of the degree of overlapping ownership � on

welfare. Using the equilibrium conditions (2) and (3), we can write

W 0(�) = �
�
�f 0(Q�)

@q�

@�
+ (1� �)�(n� 1)c0(Bx�)@x

�

@�

�
Q�: (9)

34Furthermore, @2x�=@�@� can be shown positive when evaluated at � = � = 0.
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An increase in overlapping ownership alters equilibrium values of quantities and R&D

investments, and each additional unit of output and R&D has social value equal to (re-

spectively) �(�f 0(Q�))Q� and (1 � �)�(n � 1)(�c0(Bx�))Q�. Here Proposition 1 is useful.

In RI we have that W 0(�) < 0 because @x�=@� � 0 and @q�=@� < 0; in RIII, W 0(�) > 0

because @x�=@� > 0 and @q�=@� > 0. In RII, however, the e¤ect of � on welfare is positive

or negative according as whether the positive e¤ect of overlapping ownership on R&D does

or does not dominate its negative e¤ect on output level. Moreover, the e¤ect of � on CS is

positive (i.e., CS0(�) > 0) only when @q�=@� > 0 (i.e. in RIII). So even as consumers su¤er

from a higher degree of overlapping ownership in RI and RII, it bene�ts them in RIII. One

consequence is that optimal antitrust policy will tend to be stricter under the CS standard.

5.1 Socially optimal degree of overlapping ownership

Let �oCS and �
o
TS denote the optimal degree of pro�t internalization (overlapping ownership)

under the (respectively) CS and TS standard. In the three model speci�cations (AJ, KMZ,

CE), H is weakly increasing in � and W (�) is single peaked.35 In the CE model, numerical

simulations show that� for the parameter range in which the second-order condition (SOC)

and the regularity condition are satis�ed�W (�) is strictly concave.

We know from Proposition 1 that if demand is convex enough then only RI exists, in

which case no overlapping ownership is optimal regardless of spillover levels. However, the

condition for this to happen for any � (� � �n) is very restrictive globally since it never

holds for n > 1 if the regularity condition �q < 0 is required to hold for all � (which

needs � > �2). We �nd when � > �2 (and recall that this implies that quantities are

strategic substitutes for all � and n) that under some mild assumptions: if spillovers � are

low enough then overlapping ownership is also not optimal; and if spillovers are high enough

then the level of overlapping ownership can be positive in terms of both total surplus and

consumer surplus (i.e., �oTS > 0 and �oCS > 0). For intermediate values of � we have that

�oTS > �oCS = 0. It follows that more overlapping ownership should be allowed under the total

surplus standard (i.e., �oTS � �oCS). These results are stated formally in our next proposition.

PROPOSITION 4 Suppose that Assumptions A.1�A.4 hold and let � > �2: Then if H is

weakly increasing in � and W (�) is single peaked, then there are threshold values �� and �0(0)

(with �� < �0(0)) such that

35W (�) is a function of one variable with only one stationary point that is a maximum (and hence a global
maximum). A mild additional condition is required in KMZ. See online appendix A.2.1.
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1. �oTS = �oCS = 0 if � � ��;

2. �oTS > �oCS = 0 if � 2 (��; �0(0)); and

3. �oTS � �oCS > 0 if � > �0(0).

In all cases, �oTS � �oCS. Furthermore, whenever both �
o
TS and �

o
CS lie in (0; 1), then

�oTS; �
o
CS are strictly increasing in �.

Figure 2 depicts the critical spillover threshold values stated in Proposition 4.

Fig. 2. Spillover threshold values that limit regions for
welfare-optimal �s.

Remark 1. We have that �� < 1 if n + (n � 1)(� + n) > H(1) (see Lemma 6 in the

Appendix). If �� � 1 then �oTS = �oCS = 0 for all � � 1. The threshold �� is such that for

� > ��, W 0(0) > 0.

Remark 2. The optimal �oTS is positively associated with the e¤ectiveness of R&D (H
�1).

Furthermore, both �� and �0(0) are decreasing in n for a given e¤ectiveness of R&D. With

more �rms the scope, in terms of the range of spillovers, for welfare improving overlapping

ownership increases. Furthermore, the monotonicity of �oTS and �
o
CS with respect to � follows

since at the optimum both � and � are strategic complements in optimizing W and CS (i.e.

@2W=@�@� > 0 and @2CS=@�@� > 0).

Remark 3. Our single-peakedness assumption on W (�) ensures that �� is the minimum

threshold above which total surplus increases with � (i.e., for which � � �� implies �oTS = 0).

Remark 4. The assumption that H is weakly increasing in � ensures that � < �0(0)

implies �oCS = 0 and that �
o
TS � �oCS. In the particular case where � = �0(0) we have that

�oTS � �oCS � 0.

Relaxation of assumptions. If we relax the assumptions thatW (�) be single peaked and

that H be monotonic in �, then we can provide a weaker characterization of the regions
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where overlapping ownership is socially optimal (Proposition 5) and we are able also to

characterize the extreme solution regions where �oCS = 0 or �
o
CS = �oTS = 1 (Proposition 6).

PROPOSITION 5 Let A.1�A.4 hold. If � > �(1 + n)=n; then there exist threshold values

� < �� < �0(0) (where � = inff1=(1 + n+��) : � 2 [0; 1]g) such that : (i) �oCS = �oTS = 0 for

� � �; (ii) �oTS > 0 for � > ��; and (iii) �oCS > 0 for � > �0(0).

Under the less restrictive assumptions we cannot ascertain what happens in the gap�
�; ��

�
. From Proposition 1 it now follows that, when � � �, only RI exists because � >

�(1 + n)=n implies that 1 + n+ �� > 0 and � > �n. The threshold � depends on the sign

of �. If demand is concave (� > 0), then � = 1=[1 + n(1 + �)]; if demand is convex (� < 0),

then � = 1=(1 + n+ �). In both cases, � decreases with n (and tends to 0 with n).36 Parts

(ii) and (iii) follow as in Proposition 4: part (ii) because if � > �� then W 0(0) > 0 and so

�oTS > 0; and part (iii) because if � > �0(0) then @q�=@�j�=0 > 0 and �oCS > 0. (See online

appendix A.1.2 for details.)

PROPOSITION 6 Under A.1�A.4, the following statements hold :

(i) � < �0min implies �
o
CS = 0; and

(ii) � > �0max implies �
o
CS = �oTS = 1 provided that �

0
max � 1.

It follows that if �0 is independent of � (i.e. since H is) then �0min = �0max and we

have a bang-bang solution for �oCS, while when �
0 is increasing in � (i.e. since H is) then

�0min = �0(0) as in Proposition 4.37

Proposition 6 determines when cartelization (� = 1) is optimal in terms of both consumer

and total surplus (in those cases, we are in RIII and welfare is increasing in �). In AJ and

KMZ, the term H is independent of �; thus the consumer surplus solution is bang-bang

under either model speci�cation. In both speci�cations it is clear that if �oCS > 0 then

necessarily �oTS = �oCS = 1. In the CE model, however, H and �0 are strictly increasing in �

and hence solutions of the form �oTS > �oCS > 0 are possible.
38

36Note that in AJ and KMZ, demand is linear and � = 0; hence � = 1=(1+n). Under CE, � = � (1 + ") < 0
and so � = 1=(n� ").
37This proposition is proved by noting that �0(�) is a continuous function on [0; 1] and so achieves a

maximum (�0max) and a minimum (�0min) within that interval. If � < �
0
min, then @q

�=@� < 0 for all � > 0
and so �oCS = 0; if � > �0max, then @q

�=@� > 0 for all �. Since @q�=@� > 0 implies @x�=@� > 0 by
equation (7), it follows that W 0(�) > 0 for all � by equation (9). Therefore, �oCS = �

o
TS = 1 provided that

�0max � 1.
38In the CE case, CS is globally concave in � when B > H(�)j�=0.
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The scope for a Research Joint Venture. An RJV can be understood as a situation

where spillovers are fully internalized (i.e., � = 1). If the RJV is �cartelized� then also

� = 1. This arrangement can be optimal only if RIII exists for � large (with �
0
max � 1) and

if @q�=@� > 0 and @x�=@� > 0 (which, by Proposition 3, requires that � < 1). Our next

corollary states the result.

COROLLARY 3 Again assume that A.1�A.4 hold. If �0max � 1 and if the innovation

function�s curvature is not too large (� < 1); then a cartelized RJV (� = � = 1) is optimal

in terms of consumer and total surplus.

The assumptions of the corollary are ful�lled in the AJ and KMZ models when RIII exists

(
b < n and 
b < 1 are needed (respectively) to ensure that �0AJ and �
0
KMZ are less than

unity); and recall that � = 0 in AJ and � = 1=2 in KMZ. In CE, � = 1 is never socially

optimal because �0CE(1) < 1 only if " < �=(1 + 2�)� which would contradict the regularity

condition (see Table A.2 in online appendix A.2.1).

Under some di¤erent conditions, an RJV with no overlapping ownership (� = 0 and � =

1) can be socially optimal in all three models (see Proposition A.1 in online appendix A.2.1).

When W (�) is single peaked, no overlapping ownership is optimal if �� � 1.39 In contrast

with the AJ model, in both KMZ and CE we �nd that if � = 0 then greater R&D spillovers

reduce R&D expenditures (@x�=@� < 0) while having no e¤ect on output (@q�=@� = 0).

Although R&D expenditures are lower with higher �, the production costs of all �rms are

also lower. In both cases, the greater R&D spillover�s negative e¤ect on R&D expenditures

is dominated by its positive e¤ect on the innovation function; as a result, � = 1 is also

socially optimal.

5.2 Comparative statics by model

We are interested in the comparative statics of the regions determining the scope for socially

e¢ cient overlapping ownership as described in Proposition 4. We are also interested in the

comparative statics on �oCS and �
o
TS in the speci�ed models. Table A.3 reports the spillover

thresholds for AJ, KMZ and CE models.

Comparative statics on �0(0) and ��. The thresholds �0(0) and �� are decreasing in

� the number of �rms (n),
39Satisfying that inequality requires 
b � n2 in AJ, 
b � n in KMZ, and an involved condition in CE.
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� the demand elasticity (b�1; "�1), and

� the innovation function�s elasticity (
�1; �).40

The results for �0(0) and for �� in relation to n (except in the CE model) are analytical,

the others according to numerical simulations.41 In KMZ, �0(0) is independent of n.

In terms of consumer surplus, in AJ it is optimal to suppress horizontal shareholdings

for any level of spillovers when �rm entry is insu¢ cient� that is, when n < 
b (since

then �0AJ > 1); in CE, suppression is optimal when n < "(2� + 1)=� (since �0CE > 1 for

n < "(2� + 1)�=�). We �nd also that �� may take values greater than 1 when there are

only a few �rms in the market.42 Therefore, for highly concentrated markets, no overlapping

ownership should be allowed for a wide range of spillovers. The reason is that the incentives

for �rms to �free ride�are stronger when the number of �rms increases because each �rm

can then appropriate the R&D e¤orts of a greater number of participants.43

Comparative statics on the socially optimal degree of overlapping ownership.

Our simulations generate three main �ndings. First, the socially optimal level of overlapping

ownership increases with the size of the spillovers, with the number of �rms (n), and with the

elasticities of demand (b�1; "�1) and of the innovation function (
�1; �). Note that larger

elasticities of demand and of the innovation function increase the e¤ectiveness of R&D,

which is positively associated with �oTS. Second, if the objective is to maximize consumer

surplus, then the comparative statics are qualitatively similar but the scope for minority

shareholdings is much lower. For example, increasing the number of �rms may not in itself

be su¢ cient for consumers to bene�t from overlapping ownership; in fact, this is the case

in KMZ. (Table A5 in online appendix A.2.1 provides more details of the simulations.)

We next provide graphical descriptions of the simulation results, �rst in the CE model

and then in the AJ and KMZ models. We have made available an application program for

readers to perform their own simulations.44

Constant elasticity model (Figure 3). When the number of �rms is small (less than �ve,

in our example), it is never optimal to allow minority ownership interests (since then the

equilibrium is in RI). As the spillover e¤ects and the number of �rms increase, �
o
TS also

40Note that b�1 and 
�1 move together with the elasticities, respectively, of demand and the innovation
functions.
41Values for parameters are chosen so that the regularity condition and the SOCs are satis�ed.
42In particular, from Table A.3 (in online appendix A.2.1) it is straightforward to show that, in a duopoly,

�� > 1 when 
b > 4 in AJ, when 
b > 2 in KMZ, and when � > 2"=("2 � 7"+ 6) in CE.
43In our model a high n means tougher competition and more incentives to free ride.
44See www.angelluislopez.net
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increases; however, any increase in �oCS is considerably smaller. The equilibrium is then in

RII, where �rms bene�t and consumers su¤er from a higher degree of overlapping ownership

(because output is lower). Even so, the overall e¤ect on welfare of increasing � is positive

because the positive e¤ect on x� dominates the negative impact on q�. Finally, we discover

that raising � slightly may be optimal from the consumer�s standpoint when the number of

�rms in the market is su¢ ciently large (since then the equilibrium is in RIII).

� Figures 3a and 3b here �

AJ (Figure 4) and KMZ models. Figure 4a plots �oTS increasing smoothly with � after

� = 0:4 and up to �0 = 0:91 where �oCS jumps to 1. In online appendix A.2.1 we can see

a snapshot of our app that illustrates the simulation for � = 0:5 and n = 6. In this case

the welfare translation of the increase in � shows in a decreasing consumer surplus and

increasing per-�rm pro�t that results in an interior solution for welfare �oTS > 0. Figure 4b

shows that �oTS increases with n, and �
o
CS does jump to 1 only if n is su¢ ciently large (our

example, where � = 0:8, requires n > 6).

� Figures 4a and 4b here �

Figures for the KMZ model are presented in online appendix A.2.1. In KMZ, increasing

n a¤ects neither �0 nor (as a result) signfCS0(�)g. Therefore, in contrast to AJ, where for a

su¢ ciently large number of �rms we may have �oCS = 1, in KMZ for a given � < �0KMZ, we

have �oCS = 0 irrespective of the number of �rms. Furthermore, in KMZ although �
o
TS also

increases with n , its rate of change decreases with n (see Fig. A6b where �oTS converges to

a value below one when n increases).

6 Two-stage model

In this section we consider two-stage competition. In the �rst stage, every �rm i commits

to investing an amount xi into R&D. In the second stage� and for given observable level

of R&D expenditures� �rms compete in the product market. We solve for the model�s

subgame-perfect equilibrium as a function of �.
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6.1 Equilibrium and strategic e¤ects

Let x = [x1; x2; : : : ; xn] be the �rst-stage R&D pro�le and let q = [q1; q2; : : : ; qn] be the

second-stage output pro�le. Let q�i (x) denote �rm i�s (interior) output equilibrium value of

the second-stage game associated with the R&D pro�le x. Then, for all i, we have

@

@qi
�i(q

�(x);x) = 0: (10)

In the �rst stage, the �rst-order necessary conditions for an interior equilibrium are (for

i 6= j and i; j = 1; 2; : : : ; n)

@

@xi
�i(q

�(x);x) +
X
j 6=i

@

@qj
�i(q

�(x);x)
@

@xi
q�j (x) = 0: (11)

The equilibrium R&D pro�le x� is characterized by the system of equations (10) and (11)�

provided the second-order conditions hold. Let q� = q�(x�); then fx�;q�g is the subgame-

perfect equilibrium path of the two-stage game. The second term in equation (11) is the

strategic e¤ect on pro�ts of investment. Evaluating at a symmetric equilibrium, where

q�i = q� and x�i = x� for all i, it is easy to see that @�i=@qj < 0, j 6= i, but the sign of

@q�j=@xi is ambiguous:

sign

�
@q�j
@xi

�
= signf� � ~�(�)g; where ~�(�) �

@qiqj�i
@qiqi�i

=
n(1 + �) + ��

2n+ ��
:

Note that the threshold ~� 2 (0; 1] depends only on �, n, and �. The inequality ~�(�) >

0 holds only if production decisions are strategic substitutes (i.e., only if @qiqj�i < 0).

Furthermore, ~�(�) < 1 for � < 1 and ~�(�)! 1 as �! 1.

We can also conduct comparative statics on the threshold value ~�(�). Under Assump-

tion A.1 and from the expression for ~�, it is straightforward to show the following result

which highlights the crucial role played by demand curvature �.

LEMMA 3 For � < 1; the threshold ~�: decreases (resp. increases) with n if demand is

concave (resp. convex); increases with � if � > �2; and increases with �.

When the stability condition in output is satis�ed (�q < 0), we have @q�i =@xi > 0. So if

a �rm increases its investment in R&D in the �rst stage, then it will increase its output in

the second stage. At the same time we have that @q�j=@xi > 0 when quantities are strategic

complements (since then ~� < 0). In the case of strategic substitutes, @q�j=@xi > 0 only if
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� > ~�(�). When a �rm increases the amount invested in R&D, it exerts two opposite e¤ects

on the output decision of rival �rms. There is a positive e¤ect because rival �rms become

more e¢ cient owing to the presence of spillovers. Yet there is also a negative e¤ect because

the reaction of rivals to �rm i�s higher quantity is to reduce their own output via competing

in the market for strategic substitutes. If spillover e¤ects are strong enough that � > ~�(�),

then the positive e¤ect outweighs the negative e¤ect; this outcome implies that @q�j=@xi > 0.

We can show (using A.1) that the strategic e¤ect of investment, at a symmetric equilib-

rium, is as follows:45

 � (n� 1) @�i
@qj

@q�j
@xi

= � (n� 1) c0(Bx�)q�!(�)(~�(�)� �), where (12)

!(�) =
�

n

�
2n+ ��

n+ �(1 + �)

�
> 0: (13)

Hence we may write the FOC (11) for � 2 [0; 1) as

�c0(Bx�)
�
� + (n� 1)!(�)(~�(�)� �)

�
q� � �0(x�) = 0: (14)

Since @�i=@qj < 0, it follows that

signf g = �sign
�
@q�j=@xi

	
= signf~�(�)� �g:

Thus the strategic e¤ect  is positive if production decisions are strategic substitutes and if

� < ~�. In this case, there are incentives to overinvest because increasing investment reduces

the rival�s output. Then, as shown by Leahy and Neary (1997, Prop. 1) for � = 0, equations

(10) and (14) together imply that output and R&D are higher in the two-stage model than in

the static model.46 Since each �rm expects a higher �rst-stage investment in R&D to reduce

the second-stage output of rival �rms, each �rm is then led to increase their �rst-stage R&D

investments, which in turn boosts output in the second stage (@q�i =@xi > 0). Observe that

~�(1) = 1: if there is no RJV (� < 1) then, for high levels of �, the strategic e¤ect is always

positive (� < ~�). In contrast, if � exceeds ~� then the strategic e¤ect is negative; hence both

output and R&D are lower in the two-stage model than in the static model.

45The stability condition, �q < 0, requires that n+�(1+�) > 0 and implies that 2n+�� > 0. Therefore,
!(�) > 0.
46This result is derived under assumptions yielding a unique symmetric equilibrium and such that the

two models�respective pro�t functions satisfy the Seade stability condition with respect to R&D� namely,
that the marginal pro�t of each �rm with respect to R&D must decrease with a uniform increase in R&D
by all �rms.
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Remark 5. Recall that � > �2 if we want the regularity condition �q < 0 for all �. We

have then that the strategic e¤ect will tend to be positive in industries with a higher degree

of overlapping ownership since then @~�=@� > 0 according to Lemma 3.

The sign of the strategic e¤ect determines whether investment in cost reduction leads to

a "top dog" or a "puppy dog" strategy in the terminology of Fudenberg and Tirole (1984).

In the �rst case there is overinvestment and in the second underinvestment in relation to

the simultaneous move case.

6.2 Comparative statics with respect to �

Next we analyze how the degree of overlapping ownership a¤ects the decisions on output and

R&D that are made in equilibrium. By using (12) and by totally di¤erentiating the system

formed by (10) and (11) before evaluating it at a symmetric equilibrium, we can solve both

for @q�=@� and for @x�=@� under regularity conditions. Let s(�) � !(�)
�
~�(�)� �

�
. We

obtain the following result.

LEMMA 4 In the two-stage model :

sign f@x�=@�g = sign
�
(� + s0(�))P 0(c)�1n� [� + (n� 1)s(�)]

	
; (15)

sign f@q�=@�g = sign
�
(� + s0(�))B � �H(�)

	
: (16)

Moreover, if @x�=@� � 0 then @q�=@� < 0.

So once again we �nd that allowing for some additional degree of overlapping ownership

will increase output only if it also boosts R&D. From (15) we obtain that @x�=@� > 0 if

and only if � > �2S (see the proof of this lemma in online appendix A.1.3 for an expression

for �2S).47 We assume that there is at most a unique positive �, denoted �2S0, that solves

the equation (� + s0(�))B = �H(�).48

We are now in a position to derive the threshold values of spillovers that determine

the sign of the e¤ect, at equilibrium, of � on R&D and output. We have @q�=@� � 0

for � 2 [0; �2S0] and @q�=@� > 0 for � 2 (�2S0; 1]. Therefore: RI (where @x�=@� � 0 and

47When there is no strategic e¤ect (i.e. !(�) = 0), then �2S equals the corresponding expression in
Proposition 1(i).
48In AJ there exists a unique �2S

0
< 1 when n is su¢ ciently large� or when 
 and b are su¢ ciently

low� and � is su¢ ciently large. In KMZ for high � and su¢ ciently low 
 and b, there exists a unique �2S
0

that is nearly (but still less than) 1. In CE there seems to be no solution, in which case region RIII does
not exist.
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@q�=@� < 0) occurs when � � �2S; RII (where @q�=@� � 0 and @x�=@� > 0) occurs for

� 2 (�2S; �2S0]; and RIII (where @q�=@� > 0 and @x�=@� > 0) occurs when � > �2S0 with

�2S0 < 1:These results extend Proposition 1 to the two-stage model and we can derive the

threshold values for each of the model speci�cations considered in the paper (see online

appendix A.2.2).

Our �ndings can be compared to those of Leahy and Neary (1997, Prop. 3). Those authors

show that if cooperation happens only at the R&D then the result is reduced output and

R&D� unless spillovers are high enough, in which case �rms increase both output and R&D.

These two results correspond to regions RI and RIII, respectively. In addition, we identify

region RII: where cooperation driven by overlapping ownership leads to less output and more

R&D. Another di¤erence is that, in Leahy and Neary�s model, the spillover threshold above

which cooperation leads to more output and R&D lies strictly between 0 and 1. In contrast,

here (as in the simultaneous choice case) there is no guarantee that RIII exists; that is, �
2S0

may lie above 1.

6.3 Welfare

We show that our welfare analysis is generally robust to the two-stage model. The only

caveat is that the presence of a strategic e¤ect of investment induces the �rms to underinvest

-puppy dog ploy- when spillovers are high (negative strategic e¤ect). In this case the socially

optimal level of overlapping ownership is higher than in the static model. This is consistent

with our �nding that the strategic e¤ect will tend to be positive in industries with a higher

degree of overlapping ownership.

Now we have (see the proof of Lemma 7 in online appendix A.1.3) that

W 0(�) = �
�
�f 0(Q�)

@q�

@�
+
�
(1� �)� � !(�)(~�(�)� �)

�
(n� 1)c0(Bx�)@x

�

@�

�
Q�:

Hence the term !(�)(~�(�) � �) coming from the strategic e¤ect of investment plays an

important role in determining the impact of overlapping ownership on welfare. When the

strategic e¤ect is negative (� > ~�(�)), the two-stage model behaves like the simultaneous

model (W 0(�) < 0 in RI,W 0(�) > 0 in RIII, andW 0(�) either positive or negative (depending

on �) in RII) but there are social incentives to increase more �. In this case the impact of �

on welfare through a change in R&D is magni�ed. Yet when the strategic e¤ect is positive

and spillovers are su¢ ciently low (though not necessarily close to zero),W 0(�) < 0 in RII and
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W 0(�) can be positive or negative in RI and in RIII. In this case the impact of � on welfare

through a change in R&D is dampened. A consequence of some interest is that, in RIII�

where @x�=@� > 0 and @q�=@� > 0, so consumer surplus increases with � (indeed, � = 1 is

optimal for consumers)� total surplus can be decreasing in � for su¢ ciently high �.49 Then,

in stark contrast to the simultaneous model and owing to the strategic e¤ect of investment,

for some spillover values it may be that �oCS = 1 > �oTS > 0. The resulting overinvestment

increases output (and is good for consumer surplus) but comes at the cost of reducing �rms�

pro�ts, reducing total surplus, and �overshooting�marginal cost reductions. We illustrate

this possibility under the AJ and KMZ model speci�cations in the simulations that follow

(see Figure 6 for AJ and Figures A11 in the online appendix A.2.2 for KMZ).50 Similarly as

in the simultaneous case, there is a threshold value ��2S for which �oTS > 0 if � > ��
2S; the

condition under which ��2S < 1 is given by Lemma 7 (in the Appendix).51

In summary, the welfare results of the simultaneous model are robust to the two-stage

speci�cation with the proviso that for high spillovers a higher degree of overlapping owner-

ship should be allowed. In this case the strategic e¤ect is negative and there are incentives

to underinvest; then it pays to increase � in order to stimulate investment and output.52

This need not be the case for low values of spillovers, in which case the incentive is typically

to overinvest.

6.4 Simulations

This section presents our simulations of the three considered models. These simulations con-

�rm the qualitative results obtained in the static model, but with the two above mentioned

caveats: (i) in the two-stage model, the socially optimal level of overlapping ownership tends

to be higher when spillovers are high; and (ii) in some cases the consumer surplus standard

may call for more cooperation than does the total surplus standard (i.e., �oCS > �oTS > 0).

In the simulations (see online appendix A.2.2) we �nd that as in the simultaneous case, for

the three models considered, the spillover threshold over which some overlapping ownership

is optimal ��2S decreases with the number of �rms, the elasticity of demand and with the

elasticity of the innovation function. We turn now to the optimal levels of overlapping

49For � < 1, we have (1� �)� � !(�)(~�(�)� �)j�=1 = �(1� �) < 0.
50In CE, as in the simultaneous model, ��CS is usually zero or very close to zero.
51If the condition holds then W 0(0)j�=1 > 0, in which case there exists a su¢ ciently large spillover value

for which some degree of overlapping ownership is welfare enhancing.
52Note that ~�(�)! 1 as �! 1 and so ~�(�) > � for � high enough and the strategic e¤ect turns positive.
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ownership. Some highlights from the simulations, comparing the results of the static and

the two-stage model follow.

Constant elasticity model. As in the simultaneous case, we observe here that if n is

small then the equilibrium is in RI, which implies that no overlapping ownership is socially

optimal. Yet as � and n increase, �oTS also increases.
53 Note that �oTS in the two-stage game is

above the static level in a large region of spillovers. For low values of �, the strategic e¤ect is

positive. Then, as stated previously, the two-stage model behaves di¤erently than the static

model in that welfare can increase with � in RI because it reduces R&D overinvestment by

�rms. This case is illustrated in Figure 5, where� for low �� �oTS in the two-stage model

is larger than in the static model. For intermediate values of spillovers, the strategic e¤ect

becomes negative (but remains close to zero); for higher spillover values, �oTS increases with

� more rapidly (i.e., convexly) when the strategic e¤ect is strong.

� Figures 5 and 6 here �

AJ model. We �nd that �oTS and �
o
CS are weakly larger in the two-stage case (see Figure 6).

In contrast with the static model, the simulations indicate (for � = 0:65 and n = 6) that

prices may be hump-shaped while cost decreases with �; correspondingly, output per �rm is

U-shaped when R&D per �rm increases. The welfare translation of the increase in � shows

U-shaped consumer surplus and increasing pro�t per �rm, with the result of an interior

solution for welfare that features a large positive value of �oTS (see panel in online appendix

A.2.2) with �oCS = 1 > �oTS > 0.

This becomes possible when the strategic e¤ect is positive and strong enough. Then there

is overinvestment in R&D during the �rst stage, which boosts output in the second stage.

The strategic e¤ect becomes positive for intermediate values of � when � is su¢ ciently high.

For an intermediate level of spillovers, total surplus is not maximized with full cooperation

because that would entail too much production (reducing �rms�pro�ts).54

53This result is consistent with the literature. For example, in a model with no overlapping ownership
Spence (1984) used numerical simulations to demonstrate that an increase in � reduces x� and that, for
a given � and n � 2, the cost reduction relative to the social optimum declines with n (see Spence 1984,
Table I). It is socially good then to increase the degree of pro�t internalization.
54More precisely, since �2S0 decreases with �, it follows that� for a given � and a su¢ ciently high �� we

have � > �2S0 and so the equilibrium is then in RIII, where CS increases with � (CS is strictly convex
in � and so ��CS = 1 when CS(1) > CS(0)). In particular: for � = 0:62, the equilibrium is in RIII when
� > 0:41. Here the strategic e¤ect is positive since ~�(�) > 0:62 for � > 0:24. Furthermore, if � > 0:69
then the strategic e¤ect is strong enough to reverse the sign of the e¤ect of @x�=@� on W 0(�) (i.e., to make
it negative); as a result, in a neighborhood of � = 0:62 there is a global maximum for W (�): even if the
equilibrium is in RIII we have that W 0(�) < 0 for high values of �, which implies �oTS 2 (0; 1).
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Results for the KMZ model are reported in the online appendix A.2.2. As in AJ, we can

have �oCS > �oTS for intermediate spillover values (because of the strategic e¤ect).

The pattern of results in our comparative statics analysis of the other parameters in AJ,

KMZ, and CE is similar to that for the one-stage game (see Table A5). The only exceptions

we have found are as follow. In AJ: although decreasing b enlarges the region where �oCS = 1

is optimal (as in the static case), �oCS can be lower than 1 (for a su¢ ciently low b) when

spillovers are su¢ ciently high. In KMZ: although �oCS is independent of n in the static case,

in the two-stage game it can decrease with n when there are few �rms in the market.

7 Bertrand competition

In this section we test the robustness of our results to Bertrand pricing with di¤erentiated

products. To advance the conclusion, the results obtained in the Cournot model are robust.

Two interesting features of the Bertrand model are the following. First, the socially optimal

level of overlapping ownership tends to have a U-shaped relationship with the degree of

product di¤erentiation (market spillovers). This is so since the closeness of the products

has typically an ambiguous e¤ect on the impact of � on R&D and output, but with positive

impact for low or high market spillovers. Second, the strategic e¤ect typically plays towards

underinvestment even for moderate levels of spillovers (this is consistent with the analysis

in Leahy and Neary 1997). For a fuller and detailed development of the analysis and proofs

see online appendix B.

Consider an industry with n di¤erentiated products, each produced by one �rm. The

demand for good i is given by qi = Di(p) where p is the vector of prices.

Assumption 1B. For any product i, the function Di (�) is smooth whenever positive,

downward sloping, products are gross substitutes @Di=@pj > 0, j 6= i, and the demand system

D (�) is symmetric with negative de�nite Jacobian.

Under Assumption 1B the demand system can be obtained from a representative con-

sumer with quasilinear utility and can be inverted to obtain inverse demands.55 Furthermore,

it follows that the demand for a variety when all �rms set the same price (the Chamber-

linian DD function) is downward sloping since the own-price e¤ect dominates the cross-price

e¤ects: v � @Di=@pi + (n � 1)@Dj=@pi < 0, j 6= i. A fortiori, and for further reference, it

follows that v� � @Di=@pi + �(n � 1)@Dj=@pi < 0. The innovation function is as before;

55See Vives (1999) Section 6.3 and pp. 144-148.
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�rm i�s pro�t is given by

�i =

 
pi � c

 
xi + �

P
j 6=i

xj

!!
Di(p)� �(xi).

and the objective function for the manager of �rm i is �i = �i + �
P

k 6=i �k. The �rst-order

conditions for an interior symmetric equilibrium (p�; x�) yield

p� � c(Bx�)

p�
=

1

�i � �(n� 1)�ik
; (17)

�c0(Bx�)q�� = �0(x�): (18)

Here �i = �
@Di(p

�)
@pi

p�

Di(p�)
and �ik =

@Dk(p
�)

@pi

p�

Dk(p�)
; k 6= i.

We assume parallel regularity conditions to the Cournot case which imply as before that

(17) and (18) both have a unique symmetric solution if the conditions hold globally, and

we assume that a symmetric regular equilibrium exists. We consider two leading examples

corresponding, respectively, to the analog of the AJ and CE models with (symmetric) prod-

uct di¤erentiation. The demand systems of the examples can be derived from a symmetric

(sub)utility function of a representative consumer on the vector q of the quantities of the

varieties of the di¤erentiated product. The �rst example follows our base speci�cation with

quasilinear utility while the second presents a robustness analysis in a CES model à la Dixit

and Stiglitz (1977).

Linear example (with quasilinear utility). The demand for product i is given by

Di(p) = a � bpi +m
P

j 6=i pj with a > 0; b > m > 0, assumption 1B holds, and as before

ci = �c� xi � �
P

j 6=i xj and �(x) = (
=2)x
2.56

Constant elasticity example (with non-quasilinear utility). The demand for

product i is given by

Di(p) =
p
�1��=(1��)
iPn
j=1 p

��=(1��)
j

S,

56This demand system can be obtained from

U(q) = u1
nP
i=1

qi �
1

2

 
u2

nP
i=1

q2i + 2u3
P
j 6=i
qiqj

!
,

where u2 > u3 > 0 and a; b and m are a function of u1, u2, u3 (Vives 1999, pp. 146-147.) In order to insure
positive outputs we assume that u1 � �c > 0. The products range from independent (u3 = 0) to perfect
substitutes (u3 = u2).
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where � 2 (0; 1), and S is the total spending on the di¤erentiated product varieties. Note

that � � 1=(1� �) is the constant elasticity of substitution between any two products. As

� ! 1, products become perfect substitutes (� ! 1), while as � ! 0, products become

independent (� ! 1). We have that �i = 1+(1�n�1)= (��1 � 1) and �ik = n�1�= (1� �).57

As before, ci = �(xi + �
P

j 6=i xj)
�� with �,� > 0 and �(xi) = xi.58

7.1 Comparative statics with respect to �

In the Bertrand model we have that: for a given investment level, � has a positive e¤ect on

price because products are gross substitutes, @�pi�i = (n� 1)(p� c)@Dk=@pi > 0, k 6= i; for

a given price, � has a positive e¤ect on investment as before, @�xi�i = ��q(n�1)c0 � 0; and

again the total impact of � on the equilibrium values of price and R&D will depend on which

of the two previous e¤ects dominates. We have also that if @x�=@� � 0, then @p�=@� > 0,

because @xipi�i = � (@Di=@pi + ��(n� 1)@Dk=@pi) c
0 < 0, k 6= i, since v < 0 and �� < 1

(price and R&D are substitutes for a �rm). The upshot is that a similar result to Lemmata

1 and 2 can be established here (see Lemma B.2 in online appendix B). We �nd that:

(i) sign f@x�=@�g = sign
�
� � P 0(c) jvj �v�2� @Dk=@pi

	
where P 0(c) � dp�=dc > 0 is the

cost pass-through coe¢ cient;

(ii) sign f@p�=@�g = sign fH � �Bg, where H = (1 + �=y) =�, and for �00 > 0; � �

(v�c
0)2 = (�00@Dk=@pi) > 0. The di¤erence with respect to the Cournot model is that here

the expression for the relative e¤ectiveness of R&D (�) takes into account the fact that

products are di¤erentiated (and the term (f 0)�1 is replaced by v2� (@Dk=@pi)
�1).

We can de�ne the three regions as in the Cournot case: RI, where @x�=@� � 0 and

@p�=@� > 0; RII where @x�=@� > 0 and @p�=@� > 0; RIII where @x�=@� > 0 and @p�=@� <

0. Regarding RI, because of gross substitutes (@Dk(p
�)=@pi > 0, k 6= i), we can have

@x�=@� < 0 for all �. Regarding the critical spillover threshold that bounds RII and RIII,

note that here, as in Cournot, Assumption A.4 implies that the equation H � �B = 0 has a

unique positive solution, which again we may denote by �0 (�). It follows that for � > �0 (�),

57The demand system is obtained from maximizing

V (q; q0) =

�
nP
i=1

q�i

�1=�
q�0 ,

with � 2 (0; 1), � > 0, and q0 the numéraire good, subject to the budget constraint q0 +
Pn

i=1 piqi = Y ,
where Y is aggregate income. Then S = Y= (1 + �) :
58In this model it is worth noting that the regularity condition require that � < 1. That is, the cartel

problem is ill-de�ned with �rms having incentives to set in�nite prices. See online appendix B.
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@p�=@� < 0. Furthermore, RIII exists (because �
0 < 1) when n > H(1). As before, �0 is

decreasing in the e¤ectiveness of R&D, H�1.

In online appendix B we state the equivalent of Proposition 1 characterizing explicitly

the regions for the linear and constant elasticity cases (see, respectively, propositions BL1

and BCE1).59 We �nd that the thresholds that bound the regions RI, RII and RIII, � (�) and

�0 (�) respectively, are increasing in � in both cases (see �gures B1 and B11 in the online

appendix), but while both � (�) and �0 (�) are hump-shaped in u3=u2 in the linear case,

both are decreasing in � in the constant elasticity model. In the linear model we have that

� (�) = �0 (�) = 0 both when products are independent (u3=u2 = 0) or perfect substitutes

(u3=u2 = 1), in which case only RIII exists. This is so since when goods are independent to

increase � always increases x� and q� since market power is already at its maximum level

while when products tend to be homogeneous competition is so intense that the impact of

increasing � in market power is small.60 In the constant elasticity model we also have that

similarly that � (�) = �0 (�) = 0 for � = 1 but not when � = 0. This is so because the local

monopoly solution is ill-de�ned as �rms would like to charge an in�nite price as �! 0 (the

elasticity of demand �i becomes unity).
61 The comparative static results for �0 follow since

H (inverse e¤ectiveness of R&D) has the same properties. The e¤ectiveness of R&D H�1 is

U-shaped in the closeness of the products as in the linear case (with H�1 !1 both when

products are close to independent and close to perfect substitutes). In the constant elasticity

case H�1 is always increasing in the elasticity of substitution of the varieties � = 1= (1� �).

In sum, the closeness of the products (or the degree of market spillovers) has typically an

ambiguous e¤ect on the impact of � on x� and q�, with positive impact for low or high

market spillovers.

We �nd that @2x�=@�@� > 0 in the constant elasticity model and, according to simula-

tions, also for the linear model.

7.2 Welfare analysis

Welfare (with quasilinear utility) at a symmetric equilibrium is given by W = U(q�) �

c(Bx�)nq� � n�(x�), where q� is the equilibrium output vector and U is the utility of

59As in the Cournot model, in the linear Bertrand model, assumption A.4 is ful�lled and in the constant
elasticity version we have that H (�) =�B is decreasing in �:
60When u3 ! u2, we are always in RIII since then sign f@x�=@�g = sign f@p�=@�g = sign f�c� u1g < 0.
61In both the linear and constant elasticity cases the products do not have to be too close in order for the

regularity conditions to hold.
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a representative consumer, assumed to be smooth and strictly concave (with a negative

de�nite Hessian). By di¤erentiating with respect to � and from the maximization problem

of the consumer we have that pi = @U=@qi, and at an equilibrium

W 0(�) =

�
(p� � c(Bx�))

@q�

@�
� (c0(Bx�)Bq� + �0(x�)) @x

�

@�

�
n,

which may be written as

W 0(�) = �
�
v

v�

@p�

@�
+ (1� �)�(n� 1)c0(Bx�)@x

�

@�

�
nq�. (19)

Thus, since v=v� > 0, we have as in the Cournot case that in RI , where @x�=@� < 0 and

@p�=@� > 0 (so @q�=@� < 0), W 0(�) < 0; in RII, where @x�=@� > 0 and @p�=@� > 0 (so

@q�=@� < 0), W 0(�) 7 0; and in RIII, where @x�=@� > 0 and @p�=@� < 0 (so @q�=@� > 0),
W 0(�) > 0.

It is worth noting that when products are independent, with the local monopoly problem

well de�ned, and � > 0 we have always that �oTS = �oCS = 1. This is so since with local

monopolies, as stated above, increasing � does not a¤ect the degree of monopoly and helps

internalizing the investment externality (if � = 0, then � has no impact on total surplus or

consumer surplus).

We can check that propositions 2 and 4 hold for the Bertrand linear and constant elastic-

ity models, and that thresholds �� (above which �oTS > 0) and �
0 (0) (above which �oCS > 0)

are strictly decreasing in n.62 Furthermore, �� in the linear case is hump-shaped in u3=u2

since �� = 0 both for u3=u2 = 0 and u3=u2 = 1, while in the constant elasticity case is

monotone decreasing in � (or � = 1= (1� �)) according to simulations.

The socially optimal � increases with � and with n, and in terms of consumer surplus

in the linear model, the scope for overlapping ownership is lower. Furthermore, both �oTS

and �oCS have a U-shaped relationship with respect the degree of product di¤erentiation

in the linear case. Indeed, both �oTS and �
o
CS tend to 1 as products become independent

(u3=u2 ! 0 ) and they both increase also as they tend to perfectly homogeneous (u3 ! u2).

In the constant elasticity model we have that �oTS grows always with � (when positive)

because the local monopoly solution (the case � = 0) is ill-de�ned as explained. Figures

62In the constant elasticity case with non-quasilinear utility, from the resource constraint q0 = Y �ncq�nx,
utility at a symmetric equilibrium is V (q�; Y � nc(Bx�)q� � nx�) = n1=�q� [S(1 + �)� nc(Bx�)q� � nx�]�.
We can derive V 0 (�) accordingly (see online appendix B.4.2). We use the notation �oTS also for this case
despite the fact that we have V instead of TS.
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B5-6 and B15 in online appendix B illustrate the examples.

We have, therefore, that the e¤ect of the intensity of competition, as measured by the

degree of product di¤erentiation, on the optimal degree of pro�t internalization will typically

be non-monotone. Note that with product di¤erentiation we can increase the intensity of

competition keeping the number of �rms constant by increasing the substitutability of the

products. This allows to isolate the e¤ect of the degree of rivalry.

7.3 Two-stage competition

Let p�(x) be the n-vector of second stage Bertrand equilibrium prices for a given n-vector

of investment levels x: In a parallel way to the Cournot case we have now that the FOC for

investment for �rm i at a symmetric equilibrium is

@

@xi
�i(p

�(x);x) +  (x) = 0, where  (x) � (n� 1) @
@pj

�i(p
�(x);x)

@

@xi
p�j(x)

is the strategic e¤ect of investment. It is easy to see that @�i=@pj > 0 for � < 1, while

sign
�
@p�j=@xi

	
is potentially ambiguous even if prices are strategic complements (@pipj�i > 0,

j 6= i) since for � > 0; @2�i=@xj@pi is negative or positive depending on whether � is high

or low.63 For � low when a rival (�rm i) invests in cost reduction the cost of �rm j is

not reduced by much and the marginal return to the manager of �rm j, which includes the

marginal pro�ts of rivals, to raising price increases (i.e., @2�j=@xi@pj > 0 and the price best

reply of �rm j moves outwards). When � is high the opposite happens.64

In short, su¢ cient conditions for @p�j(x)=@xi < 0 are that � is high and prices are

strategic complements; then increasing xi decreases the prices of rivals because a larger xi

shifts the price best reply of �rm j inwards as @2�j=@xi@pj < 0 as well as shifting inwards

also the price best reply of �rm i since @2�i=@xi@pi < 0. The result is that the strategic e¤ect

is negative ( < 0 ) and we have puppy dog investment incentives. However, the conditions

are not necessary, both in the linear and CE cases we have in fact that @p�j=@xi < 0 for

� < 1 and any �.

We can write the strategic e¤ect as  = � (n� 1) c0(Bx)q�!(�)(~�(�)��) where !(�) >

0. In the linear and CE cases we have that ~�(�) < 0 and therefore  < 0; but in general we

may have ~�(�) > 0.

63We have that @2�i=@xj@pi = �c0 (Bx) f� [@Di=@pi + � (n� 1) @Dk=@pi] + (1� �)�@Dk=@pig.
64When � is low then we have @2�j=@xi@pj < 0 even for � not very high (indeed, for any � > 0 when

� = 0).
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Welfare. From the FOCs for price and investment we obtain:

W 0(�) = �
�
1

v�

@q�(�)

@�
+
h
(1� �)� � !(�)(~�(�)� �)

i
(n� 1) c0(Bx�)@x

�(�)

@�

�
nq�:

Recall that in Cournot when the strategic e¤ect is negative (i.e., (~�(�)��) < 0) , the sign of

the impact of � on welfare in each region (RI, RII and RIII) is the same in the simultaneous

and the two-stage model. This is the case also with Bertrand competition and � high (puppy

dog strategy) and also in the linear and constant elasticity models for any �.

In the linear model we obtain similar comparative statics results than in Cournot two-

stage: �oTS increases with � and n, and in the two-stage �
o
TS tends to be higher than in

the simultaneous model when spillovers are high. However, and unlike the Cournot model,

we do not observe cases in which �oCS > �oTS. The reason is that those cases may arise

in Cournot when the strategic e¤ect is positive; in the Bertrand linear model the strategic

e¤ect is always negative. Furthermore, we do not have in Bertrand a bang-bang solution

with the consumer surplus standard.65

8 R&D and output cooperation

R&D cooperation may extend to the product market. In this situation, even with no OOAs,

when �rms cooperate in R&D they may cooperate also in output and/or price. The intensity

of cooperation can be measured by the �sympathy coe¢ cient��; for example, a low � may

be the result of �rms� limited scope for collusion owing to a low discount factor. Note

also that this parameter has an empirical counterpart in the estimation of market power

because it corresponds to a constant elasticity of conjectural variation, which can be used to

estimate the degree of industry cooperation.66 The partial collusion scenario is relevant given

the long-standing suspicion that R&D cooperation facilitates coordination in the product

market. This outcome may re�ect the existence of ancillary restraints (or of other channels

through which cooperative R&D may lead to coordination in the product market)67 or the

65The bang-bang solution arises when H is independent of �, so �0 also is (as in AJ and KMZ), however
in the Betrand linear model H is strictly increasing in � (as in the CE model).
66Michel (2016) estimates the degree of pro�t internalization after ownership changes in di¤erentiated

product industries. He allows each �rm�s objective function to depend on other �rms�pro�ts by incorporating
the parameter �ij , which is the extent to which brand i accounts for brand j�s pro�ts when setting the optimal
brand-i price.
67As when, for example, an RJV stipulates downstream market division for any patents that may result

from the venture or when there are collateral agreements that impose cross-licensing of old patents (or a
per-unit output royalty for using new patents)� since these circumstances reduce the incentives of �rms
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existence of multimarket contacts.68 There is also growing evidence that R&D cooperation

facilitates product market cooperation from empirical studies (Duso et al. 2014; Goeree and

Helland 2010), from experiments (Suetens 2008),69 and from antitrust cases.70 There is also

recent evidence that price and product space collusion may go together (Sullivan 2016).

Our analysis therefore extends the traditional framework in two directions: no separa-

tion between coordination in R&D and output, whether because of overlapping ownership

or because R&D cooperation naturally extends to product market cooperation; and the

presence of intermediate degrees of cooperation in response to the strictness of competition

policy. Antitrust authorities a¤ect the parameter � by limiting cross-shareholdings; we can

also interpret � as a measure of the intensity with which collusion is scrutinized.71 From a

policy perspective, our results highlight the tension between a CS standard as proclaimed

by many competition authorities and the fact that R&D cooperation is widely allowed (and

even encouraged) by those same public authorities. Whenever cooperation in R&D extends

to competition in the product market, policy must in general be much stricter if the aim is

to increase consumer surplus.

9 Concluding remarks

In the context of a general symmetric oligopoly model with cost-reducing R&D investment,

spillovers, and symmetric partial ownership interests, we have identi�ed tight conditions

under which overlapping ownership is welfare enhancing. We �nd that the socially optimal

degree of overlapping ownership is positively associated with the number of �rms, with the

elasticity of demand and of the innovation function, and with the extent of spillovers. Yet

if the objective is to maximize consumer surplus then (i) the scope for partial ownership

to increase their output (Grossman and Shapiro 1986; Brodley 1990). The various channels through which
cooperative R&D may facilitate coordination in the product market are analyzed by Martin (1995), Greenlee
and Cassiman (1999), Cabral (2000), Lambertini et al. (2002), and Miyagiwa (2009).
68See the related evidence in Parker and Röller (1997) for mobile telephony and in Vonortas (2000) for

US RJVs.
69Suetens (2008) uses a two-stage duopoly model to con�rm that cooperation in reducing R&D costs

facilitates price collusion. Agents engage in cooperative R&D projects more than once, and they interact
repeatedly in the product market. For both small and large spillovers this author �nds that cooperativeness
in the pricing stage is generally higher when subjects can make binding R&D agreements than in the baseline
treatments without the possibility of such agreements.
70Goeree and Helland (2010) gather a number of cases in the petroleum industry, the computer industry,

the market for semiconductor memory, and the telecommunications sector.
71Besanko and Spulber (1989) show that, if collusive behavior is unobservable and if production costs

are private information, then the antitrust authority may optimally induce some intermediate degree of
collusion among �rms.
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interests is greatly reduced and (ii) �rm entry need not allow, at the welfare optimum, a

higher degree of overlapping ownership.

The competition-reducing e¤ect of overlapping ownership may justify policy intervention,

as underscored by the empirical work of Azar et al. (2015, 2016). However, some degree of

overlapping ownership may actually be welfare enhancing, and may even increase consumer

surplus, for an industry that exhibits su¢ ciently large R&D spillovers. In the extreme, it

may be socially optimal to form a cartelized RJV when the curvature of the innovation

function is not too large. This paper stipulates precise conditions that can be checked to

see� in industries with signi�cant R&D spillovers� whether overlapping ownership is (or is

not) still improving social welfare. The extent of welfare enhancing overlapping ownership

may be fostered by its feedback e¤ect on the degree of spillovers. Indeed, there is evidence

that OOAs lead to improved technological integration (see He and Huang (2017)).

We extend the �simultaneous action�(static) model of R&D investment to a strategic

commitment (two-stage) model and �nd that our results are (with some caveats) robust

to this extension. It turns out that, when spillovers are above a given threshold, �rms

invest less in R&D and produce less in the two-stage than in the static model; hence the

strategic e¤ect of investment becomes negative. In this case, the social gains� from a higher

degree of overlapping ownership that induces �rms to invest and approach more nearly the

socially optimal production levels� are even greater. We also characterize how these gains

are a¤ected by the number of �rms, the extent of overlapping ownership, and the curvature

of the inverse demand function. However, for a low level of spillovers, the strategic e¤ect

is positive and there are incentives to overinvest. Then it need no longer be true that the

consumer surplus standard calls for reduced overlapping ownership in relation to the total

surplus standpoint.

The results obtained with Cournot competition are robust to a Bertrand model with

di¤erentiated products. An interesting result is that in the latter model the socially optimal

level of overlapping ownership has a U-shaped relationship with respect the degree of prod-

uct di¤erentiation. Furthermore, with Bertrand the strategic e¤ect typically plays towards

underinvestment even for moderate levels of spillovers.

Our results have antitrust implications. To start with, conditions under which over-

lapping ownership improves welfare by fostering R&D are restrictive since positive welfare

e¤ects of OAAs need an industry with a high level of spillovers and not too concentrated.

The conditions are typically even more restrictive under a consumer surplus standard. This
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fact may lead to a potential tension for competition policy since authorities adhere to a

consumer surplus standard while they allow high degrees of OOAs and R&D cooperation.72

Antitrust scrutiny of OOAs should increase in industries with high concentration since

the spillover thresholds below which OOAs are welfare-decreasing are increasing in concen-

tration (as measured by the HHI) and with low levels of spillovers (typically industries with

low levels of R&D or, alternatively, with tight patent protection). The documented increase

in concentration in the US in the recent decades and the positive statistical relationship

between concentration and patents found in recent data (Grullon et al. 2017) may suggest

a potential decrease in spillovers and need to tighten antitrust policy.73 In contrast, more

OOAs can be allowed when R&D has commitment value and spillovers are high (since then

incentives to underinvest are very high).

Finally, the scrutiny of horizontal shareholdings should distinguish according to their

type. This is so because the same extent of shareholding will lead to di¤erent degrees of

internalization of rivals�pro�ts. If the regulator wants to establish a cap on the degree of

internalization (the lambda in our model) this will imply a more strict cap on shareholdings

with proportional control (i.e. with control in proportion the shares) than those with silent

�nancial interests or those which are cross-shareholdings among �rms.

Several extensions of the model are worth pursuing. Among them, considering asym-

metric �rms and ownership patterns, endogenizing both market and ownership structure,

and introducing dynamics.

10 Appendix

10.1 Overlapping ownership

10.1.1 Common ownership

Consider an industry with n �rms and I � n investors; we let i and j index (respectively)

investors and �rms. The share of �rm j owned by investor i is �ij, and the parameter � ij

captures the extent of i�s control over �rm j. The total (portfolio) pro�t of investor i is

72The antitrust implications apply also to the case that cooperation in R&D extends to cooperation in
output. Then an antitrust policy is strict to the extent that it is increasingly activated as cooperation in
R&D extends to cooperation in output, in parallel to limit minority shareholdings when there are OOAs.
73In this case patent policy should be accompanied with stricter competition policy. This is similar to

Spulber (2013) but in a very di¤erent model.
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Table 4: Summary of Basic Expressions at the Symmetric Equilibrium of the Simultaneous
Game

Second-Order Conditions

@qiqi�i = (@2�i=@q
2
i )jq�;x� = f 0(Q�)(2 + ��=n) < 0

@xixi�i = (@2�i=@x
2
i )jq�;x� = �(c00(Bx�)~�q� + �00(x�)) < 0

(@qiqi�i) (@xixi�i)� (@xiqi�i)
2 = f 0(Q�)(2 + ��=n)[c00(Bx�)(Q�=n)~�+ �00(x�)]� c0(Bx�)2 > 0

Cross-Derivatives

@qiqj�i = (@2�i=@qi@qj)jq�;x� = f 0(Q�)(1 + �+ ��=n) < (>)0 for � > (<)� (1 + �)n=�

@xixj�i = (@2�i=@xi@xj)jq�;x� = �c00(Bx�)�q�f1 + �[1 + (n� 2)�]g < 0 for �c00 > 0

@xiqi�i = (@2�i=@xi@qi)jq�;x� = �c0(Bx�) > 0

@�qi�i = (@2�i=@�@qi)jq�;x� = f 0(Q�)(n� 1)q� < 0

@�xi�i = (@2�i=@�@xi)jq�;x� = ��(n� 1)c0(Bx�)q� > 0 for � > 0

Regularity Conditions

�q = @qiqi�i + @qiqj�i(n� 1) = f 0(Q�) [n+ �(� + 1)] < 0

�x = @xixi�i + @xixj�i(n� 1) = �(c00(Bx�)B�q� + �00(x�)) < 0

� = �q�x � [@xiqi�i + � (n� 1) @xiqi�i] [@xiqi�i + � (n� 1) �@xiqi�i] = �q�x � (@xiqi�i)
2 �B

with B = 1 + �(n� 1), � = 1 + �(n� 1), � = 1 + �(n� 1)� and ~� = 1 + �(n� 1)�2.

Remark: �q < 0, �� > �(� + n), whereas @qiqi�i < 0, �� > �2n, thus �q < 0 implies that @qiqi�i < 0,

and to have �x < 0 we need that c00 > 0 or �00 > 0, and therefore @xixi�i < 0.

The signs of the expressions follow under our assumptions.

�i =
P

k �ik�k, where �k are the pro�ts of portfolio �rm k. The manager of �rm j takes into

account shareholders�incentives (through the control weights � ij) and maximizes a weighted

average of the shareholders�portfolio pro�ts:

IX
i=1

� ij�
i =

 
IX
i=1

� ij�ij

!
�j +

IX
i=1

� ij

nX
k 6=j

�ik�k:

It is immediate dividing by
PI

i=1 � ij�ij that the objective of the manager can be rewritten

as

�j = �j +

nX
k 6=j

�jk�k, where �jk �
PI

i=1 � ij�ikPI
i=1 � ij�ij

:

The parameter �jk is the relative weight that the manager of �rm j places on the pro�t of

�rm k in relation to the own pro�t (of �rm j ) and re�ects the control of �rm j by investors

with �nancial interests in �rms j and k. For the manager of �rm j to put weight on the
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interest of investor i we need � ij�ik > 0: investor i has to have a stake in �rm k (�ik > 0)

and some control over �rm j (� ij > 0). The weight �jk is larger the more �rm j is controlled

(high � ij) by investors with high stakes in �rm k (high �ik) and the less concentrated the

ownership and control of �rm j (low denominator
PI

i=1 � ij�ij). The numerator
PI

i=1 � ij�ik

is a measure of the ownership concentration and control of �rm k. As the ratio �jk increases

the in�uence of the common owners of �rm k over the manager of �rm j increases.

We next discuss the cases of silent �nancial interests and proportional control. In both

cases we assume that each �rm has a reference shareholder and each investor acquires a

share � of the �rms which are not under his control. The reference shareholder keeps an

interest 1� (I � 1)� in his �rm and we assume that �I < 1 so that 1� (I � 1)� > �.

Silent Financial Interest (SFI). In this case, each owner (i.e., the majority or dominant

shareholder) i retains full control of the acquiring �rm and is entitled to a share � of

the acquired �rms�pro�ts� but exerts no in�uence over the latter�s decisions. Then �SFI =

�= [1� (I � 1)�] is just the ratio of the share on an acquired �rm k (�ik = � in k, numerator

of �jk) over the share in the own �rm j (� ij�ij = 1� (I � 1)�, denominator of �jk).74 The

result is that �jk is increasing in the number of investors I since when I increases investor

i has less of a �nancial interest in his own �rm (and when � increases then on a double

account �jk increases). The driving force is that �jk increases as the size of the interest of

undiversi�ed shareholders diminishes. The upper bound of cross-ownership is � = 1=I, in

which case �SFI = 1.

Proportional Control (PC). Under proportional control, the �rm�s manager accounts

for shareholders�own-�rm interests in other �rms in proportion to their respective stakes

� ij = �ij. In this case we have that �jk =
�PI

i=1 �ij�ik

�
=
�PI

i=1 �ij
2
�
; where the de-

nominator is the HHI on ownership shares of �rm j and under symmetry �PC equals

f2[1� (I � 1)�]�+ (I � 2)�2g = f[1� (I � 1)�]2 + (I � 1)�2g.75 As with SFI, here �PC = 1

when � = 1=I. For � < 1=I, then �PC is increasing in both I and �. The e¤ects are more

complex with proportional control but the relative weight of the pro�t of k over j ends up

being monotone in the number of investors I and �. Both the numerator and denominator

74If i owns and controls j, then (i) �ij = 1 and �ik = 0 for k 6= j; �ij = 1 � (I � 1)� and �ik = � for
k 6= j, and the manager of �rm j maximizes

P
k �ik�k.

75Suppose that each investor acquires a share � of those other �rms. To compute �jk for a given k 6= j,
note that if i is the majority shareholder of j then �ij = 1 � (I � 1)� and �ik = �; if i0 is the majority
shareholder of k, then �i0j = � and i

0 receives an own-�rm pro�t share of �i0k = 1� (I � 1)�. Finally, there
are I � 2 investors who are minority shareholders of j and k; for these investors, the product of their pro�t
shares (and control) is equal to �2. This explains the numerator of �jk. The denominator follows similarly
and we obtain the expression for �PC :
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of �PC decrease with I but the denominator decreases more indicating that the ownership

concentration of the �rm�s manager decreases by more than the one of other �rms when I

increases, inducing the manager to put a lower weight on the pro�ts of other �rms. The

driving force again is the decline in the interest of the undiversi�ed stake of reference in-

vestors 1� (I � 1)� as I or � increase.

10.1.2 Cross-ownership

We assume here that each of the n �rms may acquire their rivals�stock in the form of passive

investments with no control rights. The pro�t of �rm j is given by �j = �j +
P

k 6=j �jk�k,

where �jk is the �rm j�s ownership stake in �rm k. One can derive the pro�t for each

�rm by denoting � = (�1; :::; �n)
0 and � = (�1; :::; �n)

0, and solving the matrix equation:

� = � + A�, where A is the n � n matrix with the ownership stakes with 0�s in the

diagonal and �jk o¤-diagonal. Thus, � = ��, where � = (I � A)�1 is the inverse of

the Leontief matrix; its coe¢ cients �jk represent the e¤ective or imputed stake in �rm k�s

pro�ts received by a "real" equity holder with a 1% direct stake in �rm j. We examine the

symmetric case: �jk = �kj = � for all j 6= k, and �jj = 0 for all j. The formula for the

coe¢ cients of matrix � when stakes are symmetric is, for � < 1=(n�1), �jj = 1�(n�2)�
[1�(n�1)�](�+1)

and �jk = �
[1�(n�1)�](�+1) for all j and all j 6= k. 76 Hence, the pro�t of �rm j with symmetric

stakes is given by

�j =
1� (n� 2)�

[1� (n� 1)�] (�+ 1)�j +
�

[1� (n� 1)�] (�+ 1)
X
k 6=j

�k:

Maximizing the above expression is equivalent to maximizing �j + �
P

k 6=j �k, where � =

�CO � �= [1� (n� 2)�].

10.2 Simultaneous model

Proof of Lemma 1. Using equation (6) and Table 4 we obtain

@x�

@�
=
c0(Bx�)f 0(Q�)(n� 1)q�

�
f� [�(1 + �) + n]� �g :

76See Vives, 1999, pp. 145-147 for a solution of a formally identical problem. Gilo et al. (2006, Lemma
1, p.85) also show that �jj � 1 for all j, and 0 � �jk < �jj for all j and all j 6= k.
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Since � > 0 and �q < 0 (so �(1 + �) + n > 0):

sign

�
@x�

@�

�
= sign f� [� (1 + �) + n]� �g

= sign

�
� � �

� (1 + �) + n

�
= sign

n
� � P 0(c)

�

n

o
;

where P 0(c) = n=[�(1 + �) + n]. Finally, by substituting

sign f� [� (1 + �) + n]� �g = sign f�(1 + n+ ��)� 1g :�

Proof of Corollary 1. From Lemma 1 we have that if � � �(1+n)=�, so 1+n+�� � 0,

then @x�=@� < 0, which, using equation (7), in turn implies that @q�=@� < 0: for all � only

RI exists. If � > �(n+1)=�, then in addition to RI, region RII exists only if � > �n=� also

holds. The reason is that when 1 + n + �� > 0, then, from Lemma 1, @x�=@� > 0 requires

that � > 1=(1+n+ ��). However, 1=(1+n+ ��) < 1 only if � > �n=�, in which case there

exists some region of feasible spillover values for which @x�=@� > 0. Note that for a given n,

the condition � > �n=� is stricter than the condition � > �(n+1)=�. Thus, for � � �n=�

only RI exists, and since �n=� increases with �, the result holds for any � if � � �n.�

� Figures 7a and 7b here �

Proof of Lemma 2. If we totally di¤erentiate the two-�rst order conditions and solve

for @q�=@�, we obtain

@q�

@�
=
(n� 1)(Q�=n)

�
�c0(Bx�)2

�
B +

f 0(Q�)

�c0(Bx�)2
[c00(Bx�)(Q�=n)B� + �00(x�)]

�
:

Let H � � (@�qi�i=@�xi�i) (�x=@xiqi�i) = � (f 0(Q�)=c0(Bx�)2) [c00(Bx�)(Q�=n)B� + �00(x�)],

evaluated at the equilibrium (Q�; x�). From the requirement that either c00 > 0 or �00 > 0

(or both) we obtain that lim�!0H=� =1. H is continuous in � as long as (Q� (�) ; x� (�))

are since all the functions involved in the de�nition of H are continuous and c0 < 0. We

have that (Q� (�) ; x� (�)) is in fact di¤erentiable given our assumptions (see the proof of

Proposition 3). The above expression can be rewritten as

@q�

@�
=
(n� 1)(Q�=n)

�
� (c0(Bx�))

2

�
B � H

�

�
; (20)
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thus sign f@q�=@�g = sign f�B �Hg :�

Proof of Corollary 2. Under A.4 and Lemma 2, @q�=@� > 0 (so RIII exists) if � > �0.

We now show that the condition n > H(1) guarantees that �0 < 1. First, note that

lim�!0H=� = 1 (when c00 > 0 and/or �00 > 0), while B = 1 at � = 0. Since H(�)=� is

downward sloping, by continuity there exists only one value for �(= �0) at whichH(�) = �B.

If the condition H(�) < �B holds at � = 1 (which is equivalent to the condition n > H(1)),

then necessarily H intersects B at some � less than 1, thus �0 < 1.�

Proof of Proposition 3. By totally di¤erentiating the two FOCs with respect to �,

we obtain
@q�

@�
=
1

�
[(@�xi�i) (@xiqi�i)B � (@�qi�i)�x] (21)

@x�

@�
=
1

�
[(@�qi�i) (@xiqi�i) � � (@�xi�i)�q]: (22)

Since @xiqi�i > 0 and @�qi�i > 0, � > 0; �x < 0 and �q < 0, the sign of the impact of � on

output and R&D in equilibrium depends on the sign of @�xi�i. It can be shown that

@�xi�i = �c0(Bx�)
(n� 1)q�

B
�

�
�B

�
� �(Bx�)

�
(23)

and the result follows.�

Proof of Proposition 4. To prove Proposition 4 a few preliminary lemmata (assuming

A.1-A.4) are useful.

LEMMA 5 Suppose that � > �2, then for given �, W 0(�) > 0 if � > �̂ (�) where �̂ is the

unique positive solution to the equation

H(�)

�
�B = [(n� �)=�] [(1 + n+ ��)� � 1]. (24)

Proof. We �rst derive the condition that determines �̂. By inserting @q�=@� and @x�=@�

(given in proofs of Lemmata 1 and 2) into (9) we obtain:

W 0(�) = ��f 0(Q�)(n� 1)q
�

�
c0(Bx�)2�

�
B � H(�)

�

�
Q�

�(1� �)�(n� 1)c0(Bx�)(n� 1)q
�

�
f 0(Q�)c0(Bx�) f� [�(1 + �) + n]� �gQ�;

48



which can be rewritten as:

W 0(�) = #w

�
�

�
B � H(�)

�

�
+ (1� �)(n� 1) f� [�(1 + �) + n]� �g

�
;

where #w � [(n�1)q�=�]c0(Bx�)2(�f 0(Q�))�Q� is positive. Note that (1��)(n�1) = n��,

thus for � > 0, W 0(�) > 0 if

H(�)

�
�B <

n� �
�

[(1 + n+ ��)� � 1] : (25)

Note that lim�!0H=� =1 and (by Assumption A.4) the left-hand side of (25) is decreasing

in �. The right-hand side of (25) is increasing in � (since 1 + n + �� > 0 holds when RII

and RIII exist) and �nite at � = 0. Thus, there exists a unique positive threshold �̂ that

solves the equation (24), and for any � > �̂ condition (25) holds, that is, W 0(�) > 0.�

LEMMA 6 We have that �̂(�) < �0(�) for all �, which implies that �� � �̂(0) < �0(0).

Furthermore, �� < 1 if

n+ (n� 1)(� + n)�H(1) > 0: (26)

Proof. We �rst show that �0(�) > �̂(�) for any �, and as a result �0(0) > �� � �̂(0).

Suppose that for a given �, �̂ > �0, then from Lemma 2 we have that for � 2 (�0; �̂) it

holds that @q�=@� > 0. Thus, from equation (7) it also holds that @x�=@� > 0, which

implies from equation (9) that W 0(�) > 0. However, from equation (24) we have that

W 0(�) < 0 for � < �̂, a contradiction. Suppose now that �̂ = �0, then we can pick � such

that � = �̂ = �0, and as a result H � �Bj�=�0 = 0, thus from equation (24) we have that

�̂ = �0 = 1=(1 + n+ ��), which implies that @x�=@� = 0 (see proof of Lemma 1), and from

equation (7) this in turn implies that @q�=@� < 0. However, at � = �0, �B � H = 0, so

@q�=@� = 0, a contradiction.

The proof of Lemma 5 shows that W 0(�) > 0 for some � if � > �̂ (�), where �̂ is the

unique positive solution to the equation (24). Furthermore, �̂ < 1 if condition (25) evaluated

at � = 1 holds since lim�!0H=� =1 and H=��B decreases with � (by Assumption A.4),

while the right-hand side of (25) increases with � (for � < 1) and takes �nite value at

� = 0. Therefore, by evaluating (25) also at � = 0 we obtain that condition (26) ensures

that �� < 1.�

We turn now to prove successively each of the statements of Proposition 4. Let � > �2:
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i) �oTS = �oCS = 0 if � � ��. First, we show that there does not exist � < �� such that

W 0(�) > 0 for some positive �. This follows trivially from the assumption thatW (�) is single

peaked: since for any � � ��, W 0(0) � 0, we have thatW 0(�) < 0 for all positive �, otherwise

there would exist another stationary point that is a (local) minimum, a contradiction. In

addition, if � � ��, then �oCS = 0: from Lemma 6 we know that �0(�) > �� = �̂(0) for all �.

For � � �� we have then that CS 0(�) < 0 for all �, thus �oCS = 0.

ii) �oTS > �oCS = 0 if � 2
�
��; �0 (0)

�
. Since �� = �̂(0), the result that �oTS > 0 for � > ��

follows immediately from Lemma 5 because then W 0(0) > 0: In addition, � < �0(0) yields

�oCS = 0: when H is weakly increasing in �, �0(�) also is, and consequently if � < �0(0),

then � < �0(�) for all �, i.e., @q�=@� < 0 for all �, thus �oCS = 0.

iii) We �rst show that �oTS > 0 and �
o
CS > 0 if � > �0 (0). From Lemma 6 it follows that

� > �0(0) > ��, which yields �oTS > 0. From Lemma 2 we know that if for some given �,

� > �0(�), then @q�=@� > 0. Hence if � > �0(0), we have that @q�=@� > 0 at � = 0, which

implies that CS 0(0) > 0, and therefore �oCS > 0:

Next we show that �oTS � �oCS when H is weakly increasing in �. Note that B > H=�

(since @q�=@� > 0) at � = 0. Since H is weakly increasing in �, for a given �, we may face

the following three cases: 1) for all �, B > H=�; 2) there exists an interval subset L of the

continuum of values of � in (0; 1] at which H=� = B but H=� never crosses B for � < 1; 3)

there exists an interval subset L of the continuum of values of � in (0; 1] at which H=� = B

but H=� crosses B for some � < 1. In these three cases �oTS � �oCS:

Case 1: Here, @q�=@� > 0 and, by (7), @x�=@� > 0 for all �, which from equation (9)

yields W 0(�) > 0 for all �; thus �oTS = �oCS = 1.

Cases 2 and 3: In these two cases, in the region of values for � where H=� = B we have

@q�=@� = 0 (or, equivalently, CS 0(�) = 0), while @x�=@� > 0, consequently W 0(�) > 0. It

follows that if H=� never crosses B (Case 2) or does it for some � > 1, then �oTS = 1, while

any � 2 L is optimal in terms of CS (even if L is a singleton) since @q�=@� > 0 for any �

lower than the lower bound of L, thus �oTS � �oCS; by the same token, if H=� > B for some

� < 1 (Case 3), then any � 2 L is optimal in terms of CS (even if L is a singleton) since

@q�=@� < 0 for � larger than the upper bound of L; �oTS is however larger or equal than the

upper bound of L since W 0(�) > 0 for lower values of �, as a result �oTS � �oCS.

The particular case where � = �0(0) can be dealt with similarly to obtain that �oTS �

�oCS � 0.

In all cases, �oTS � �oCS: in i) �
o
TS = �oCS = 0, in ii) �oTS > �oCS = 0, and in iii)
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�oTS � �oCS > 0.

Finally, we show that �oTS and �
o
CS are strictly increasing in � when �

o
TS and �

o
CS are

in (0; 1). Consider the �rst-order condition of the welfare maximizing problem, W 0(�) = 0

or ' (�; �) = 0. Given single-peakedness of W , signfd�oTS=d�g = signf@'=@�g. Because

' (�; �) = 0 or � (B �H(�)=�) = �(n� �) [� (1 + n+ ��)� 1], we can write

@'

@�
=

�
�
@

@�

�
B � H(�)

�

�
+ (n� �)(1 + n+ ��)

�
> 0

since H(�)=� is downward sloping, n � � � 0; and � > �2 implies that 1 + n + �� > 0.

Similarly, we can show, using the fact that H(�)=� is decreasing in �, the result for �oCS 2

(0; 1).�

10.3 Two-stage model

In the proof of Lemma 4 in Appendix A.1.3 we show:

�2S =
1� (!0(�)~�(�) + !(�)~�

0
(�))P 0(c)�1n+ !(�)(n� 1)~�(�)

(1 + n+ ��) + (n� 1)!(�)� P 0(c)�1n!0(�)
:

LEMMA 7 Under assumptions A.1.-A.4, in the two-stage model, there is a cut-o¤ spillover

value for spillovers (��2S < 1) above which allowing some overlapping ownership is socially

optimal (�oTS > 0) if

(1 + s0(0))n+ (1� s(0))(n� 1)((1 + s0(0))(1 + � + n)� [1 + (n� 1)s(0)]�H(1) > 0: (27)

Proof. See Appendix A.1.3.�
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Figures

Optimal degree of overlapping ownership (TS and CS standard)

Fig. 3a. Constant elasticity model.

(� = 0:1, " = 0:8, � = � = 1, n = 8)

Fig. 3b. Constant elasticity model.

(� = 0:1, " = 0:8, � = � = 1, � = 0:8)

Fig. 4a. AJ model.

(
 = 8:5, n = 6, b = 0:6.)

Fig. 4b. AJ model.

(
 = 7, � = 0:8, b = 0:6.)
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Fig. 5. Constant elasticity model.

(� = 0:1, " = 0:8, � = � = 1, n = 8.)

Fig 6. AJ model.

(
 = 7, n = 6, b = 0:6.)

Fig. 7a. n = 2. Fig. 7b. n = 3.

Fig. 7. Existence of regions RI and RII with second-order, stability and strategic com-
plements/substitutes output competition conditions.
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A Proofs and the three model specifications

A.1 General model: proofs

A.1.1 Overlapping ownership and λ

Comparative statics. The results for λSFI and λCO follow by inspection. Regarding the case

of proportional control, we have that

∂λPC

∂I
=

α2
[
α2I2 − 4αI + 3

]
(α2I2 − α2I − 2αI + 2α+ 1)2 ;

∂λPC

∂α
=

2 (1− αI)

(α2I2 − α2I − 2αI + 2α+ 1)2 .

Therefore, ∂λPC/∂I > 0 iff ρPC(α) = α2
(
α2I2 − 4αI + 3

)
> 0 for any I ≥ 2 and α < 1/I. By

differentiating with respect to α, we obtain ρ′PC = 4α
(
α2I2 − 3αI + 3/2

)
. Solving ρ′PC = 0 for

α we obtain the following three roots: α =
{

0,
(
3 + 1

√
3
)
/2I,

(
3− 1

√
3
)
/2I
}
. The second-order

derivative is ρ′′PC = 12α2I2 − 24αI + 6, which evaluated at each of the roots yields

ρ′′PC
∣∣
α=0

= 6 > 0, ρ′′PC
∣∣
α= 3+1

√
3

2I

= 16.39, ρ′′PC
∣∣
α= 3−1

√
3

2I

= −4.39.

That is, ρPC has a minimum at α = 0, a maximum at α =
(
3− 1

√
3
)
/2I and a minimum at α =(

3 + 1
√

3
)
/2I. Then, ρPC is strictly increasing and positive from α = 0 to α =

(
3− 1

√
3
)
/2I,

and strictly decreasing from α =
(
3− 1

√
3
)
/2I to α =

(
3 + 1

√
3
)
/2I. We only have to show

that ρPC crosses the horizontal axis at α ≥ 1/I. Indeed, by solving ρPC = 0 for α we have that

ρPC crosses the horizontal axis at α = 1/I and α = 3/I. Therefore, ρPC is strictly positive for

all α between 0 and 1/I.

Clearly, ∂λPC/∂α > 0 for α < 1/I.

Ranking. Let us compare λSFI and λPC ; after simplifying we obtain

λSFI − λPC =
α(1− αI)

− [1− α(I − 1)] [1 + I(I − 1)α2 − 2(I − 1)α]
.

Since λSFI and λPC requires that α < 1/I, we have λSFI < λPC iff ρSP (α) = 1 + I(I −

1)α2− 2(I − 1)α > 0. Note that ρSP (0) = 1 > 0, furthermore ρ′SP (α) = 2I(I − 1)α− 2(I − 1) =

2(I − 1)(Iα− 1) < 0. Since ρ′′SP (α) = 2(n− 1)I > 0, the global minimum is located at α = 1/I,

at which ρSP (1/I) = 1/I > 0. Thus, ρSP (α) > 0 and as a result λSFI < λPC .

Finally, for n = I

λSFI − λCO =
α2

[−1 + (I − 2)α] [−1 + (I − 1)α]
,
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thus λSFI − λCO > 0 for α < 1/I, hence λPC > λSFI > λCO.

A.1.2 Simultaneous model

Second-order and regularity conditions. To start with, note that

∆(Q∗, x∗) = −
[
c′′(Bx∗)Bτ(Q∗/n) + Γ′′(x∗)

] [
f ′(Q∗)(Λ(1 + δ) + n)

]
− (c′(Bx∗))2τB > 0. (28)

In particular, the above condition can be rewritten as [Λ(1 + δ) + n]H(β) − τB > 0. Second-

order conditions are: (i) ∂qiqiφi < 0, since ∂qiqiφi = 2f ′(Q) + Λ(Q/n)f ′′(Q) = f ′(Q)(2 + Λδ/n),

we have ∂qiqiφi < 0 if δ > −2n/Λ, which is implied by assumption ∆q < 0; (ii) ∂xixiφi < 0,

which is trivially satisfied by Assumptions A.2 and A.3; and (iii) ∂qiqiφi (∂xixiφi)−(∂qixiφi)
2 > 0,

which is equivalent to

c′(Bx∗)2 + f ′(Q∗)(2 + Λδ/n)
[
c′′(Bx∗)(Q∗/n)λ̃+ Γ′′(x∗)

]
< 0, (29)

where λ̃ = 1 + λ(n− 1)β2. Noting that ∂qiqjφi = f ′(Q∗)(1 + λ) + f ′′(Q∗)Λq∗ = f ′(Q∗)(1 + λ+

δΛ/n), we have that

∆q = ∂qiqiφi + ∂qiqjφi(n− 1) = f ′(Q∗) [n+ Λ(δ + 1)] < 0,

which is satisfied if δ > −(n + Λ)/Λ. Similarly, noting that ∂xixiφi = −c′′(Bx∗)λ̃q∗ − Γ′′(x∗)

and ∂xixjφi = −c′′(Bx∗)βq∗ {1 + λ [1 + (n− 2)β]}, it is straightforward to show that

∆x = ∂xixiφi + ∂xixjφi(n− 1) = −
[
c′′(Bx∗)Bτq∗ + Γ′′(x∗)

]
< 0,

which is satisfied by Assumptions A.2 and A.3.

Proof of Proposition 2. Profit per firm as a function of λ at equilibrium is given by

π∗(λ) = (f(Q∗)− c(Bx∗)) q∗ − Γ(x∗).

By differentiating π∗ with respect to λ, we obtain

π∗′(λ) = f ′(Q∗)n
∂q∗

∂λ
q∗ − c′(Bx∗)B∂x

∗

∂λ
q∗ + (f(Q∗)− c(Bx∗)) ∂q

∗

∂λ
− Γ′(x∗)

∂x∗

∂λ
.

Using that in equilibrium f(Q∗) − c(Bx∗) = −f ′(Q∗)Λq∗ and Γ′(x∗) = −c′(Bx∗)q∗τ , we can
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rewrite the above expression as

π∗′(λ) = f ′(Q∗)n
∂q∗

∂λ
q∗ − c′(Bx∗)B∂x

∗

∂λ
q∗ − f ′(Q∗)Λq∗∂q

∗

∂λ
+ c′(Bx∗)q∗τ

∂x∗

∂λ

= f ′(Q∗)(n− Λ)q∗
∂q∗

∂λ
+ c′(Bx∗)(τ −B)q∗

∂x∗

∂λ

= f ′(Q∗)(n− 1)(1− λ)q∗
∂q∗

∂λ
− c′(Bx∗)β(n− 1)(1− λ)q∗

∂x∗

∂λ
,

or

π∗′(λ) = (n− 1)(1− λ)q∗
(
f ′(Q∗)

∂q∗

∂λ
− βc′(Bx∗)∂x

∗

∂λ

)
.

In RII, we have that ∂x∗/∂λ > 0 and ∂q∗/∂λ < 0. Hence from the above expression it is clear

that π∗′(λ) > 0. Note also that when β = 0, the equilibrium is in RI, and therefore π∗′(λ) > 0

since ∂q∗/∂λ < 0. To determine sign{π∗′(λ)} in RI and RIII for β > 0, we replace ∂q∗/∂λ and

∂x∗/∂λ with the expressions given in Table 4 in the appendix to the paper:

π∗′(λ) = (n− 1)(1− λ)q∗
(
f ′(Q∗)

(n− 1)q∗

∆
c′(Bx∗)2β

(
B − H(β)

β

)
−βc′(Bx∗)(n− 1)q∗

∆
f ′(Q∗)c′(Bx∗) {β [Λ(1 + δ) + n]− τ}

)
.

After some manipulations we obtain:

π∗′(λ) = ϑπ

{
β [Λ(1 + δ) + n]− τ +

H(β)

β
−B

}
,

where ϑπ ≡ (n− 1)(1− λ)q∗ [(n− 1)q∗/∆] c′(Bx∗)2β(−f ′(Q∗)) is positive. Therefore,

sign
{
π∗′(λ)

}
= sign

{
(n+ 1 + δΛ)β − 1 +

H(β)

β
−B

}
, (30)

so it follows that π∗′(λ) > 0 if

1− (n+ 1 + δΛ)β <
H(β)

β
−B, (31)

or, equivalently, if

2(1− β)− δΛβ < H(β)

β
. (32)

From Table 4 and using that in equilibrium τq∗ = −Γ′(x∗)/c′(Bx∗), the regularity condition

can be written as

−
(
−c′′(Bx∗)B Γ′(x∗)

c′(Bx∗)
+ Γ′′(x∗)

)
f ′(Q∗)

c′(Bx∗)2
[Λ (1 + δ) + n]− τB > 0.
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Noting that

H(β) =
−f ′(Q∗)
c′(Bx∗)2

(
−c
′′(Bx∗)

c′(Bx∗)
BΓ′(x∗) + Γ′′(x∗)

)
,

we can rewrite the regularity condition in terms of H as follows: [Λ(1 + δ) + n]H(β)− τB > 0,

with Λ(1 + δ) + n > 0 since ∆q < 0. Thus, if the equilibrium is regular:

H(β)

β
>

τB

[Λ(1 + δ) + n]β
.

Then, we only have to show that: τB/ {[Λ(1 + δ) + n]β} > 2(1 − β) − δΛβ, or, equivalently,

that

g̃(β) ≡ τB > h̃(β) ≡ [2(1− β)− Λδβ][Λ(1 + δ) + n]β

holds. Note that g̃(0) = 1, g̃′(β) > 0, g̃′′(β) > 0 for β > 0 and g̃′′(0) = 0. On the other hand,

h̃(0) = 0 and

h̃′(β) = 2[Λ(1 + δ) + n][1− (2 + Λδ)β].

Furthermore, it can be shown that solving the equation g̃(β) = h̃(β) for β yields the following

two roots:

β1 =
1

Λδ + n+ 1
and β2 =

1

Λ(δ + 1) + 1
.

Consider RI. If the smallest (positive) root in this region is larger or equal than the spillover

threshold that determines RI, then g̃(β) > h̃(β) in RI, and consequently, π∗′(λ) > 0. First, note

that when Λδ + n + 1 > 0 holds, β1 is indeed the threshold value that determines RI, i.e. for

β < β1, ∂x
∗/∂λ < 0 (if Λδ+ n+ 1 < 0, then ∂x∗/∂λ < 0 for all λ). Depending on the values of

λ, δ and n, one of the following cases may apply:

• If 2 + Λδ > 0, i.e., δ > −2/Λ, then Λδ + n + 1 > 0 and Λ(δ + 1) + 1 > 0: β1 > 0 and

β2 > 0. Furthermore, β1 < β2 (for λ < 1) and h̃′′(β) < 0. Therefore, g̃(β) > h̃(β) for

0 < β < β1.

• If 2 + Λδ < 0 and Λ(δ + 1) + 1 > 0, i.e., −(1 + Λ)/Λ < δ < −2/Λ (so Λδ + n + 1 > 0

also holds), then β1 > 0, β2 > 0, β1 < β2 (for λ < 1) and h̃′′(β) > 0: g̃(β) > h̃(β) for

0 < β < β1.

• If Λ(δ + 1) + 1 < 0 and Λδ + n+ 1 > 0, i.e., −(n+ 1)/Λ < δ < −(1 + Λ)/Λ, then β1 > 0,

β2 < 0 and h̃′′(β) > 0: g̃(β) > h̃(β) for 0 < β < β1.

• If Λδ + n + 1 < 0, i.e., δ < −(n + 1)/Λ, then β1 < 0, β2 < 0, β1 > β2 (for λ < 1) and

h̃′′(β) > 0: g̃(β) > h̃(β) for all β.
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• If β = β1, so β = 1/(1+n+Λδ), then ∂x∗/∂λ = 0, so sign{π∗′(λ)} = sign{f ′(Q∗)∂q∗/∂λ},

which is positive in RI since in this region: ∂q∗/∂λ < 0.

Consider RIII. Note that RIII may exist only if δ > −n/Λ, in which case δ > −(n + 1)/Λ,

so β1 > 0. Furthermore, β′ ≥ β1.
1 Next we show that for any β > β′, g̃(β) > h̃(β), and

consequently, π∗′(λ) > 0. Again, depending on the values of λ, δ and n, we may face one of the

following cases:

• If δ > −2/Λ, then β1 > 0, β2 > 0, β1 < β2 (for λ < 1) and h̃′′(β) < 0. Hence, g̃(β) > h̃(β)

for 0 < β < β1, g̃(β) < h̃(β) for β1 < β < β2, and g̃(β) > h̃(β) for β > β2. Thus, we only

have to show that β′ > β2, so that g̃(β) > h̃(β) for any β ≥ β′. Note that if π′(λ) > 0

for β = β′, then necessarily β′ > β2 since β
′ > β1 and π

′(λ) < 0 for β ∈ (β1, β2). Since

condition (31) holds at β = β′: H(β′)/β′ −
[
1 + β′(n− 1)

]
= 0 > 1 − (n + 1 + δΛ)β, we

thus have β′ > β2, and as a result g̃(β) > h̃(β) for any β > β′.

• If δ < −2/Λ, when −n/Λ > −(Λ + 1)/Λ (i.e., Λ > n − 1), the feasible range is −n/Λ <

δ < −2/Λ, where β1 > 0, β2 > 0, β1 < β2 (for λ < 1) and h̃′′(β) > 0. As in the previous

case, we can conclude that β′ > β2: for any β > β′, g̃(β) > h̃(β).

• If δ < −2/Λ but −n/Λ < −(Λ + 1)/Λ, we can distinguish between two cases: (i) when

−(Λ + 1)/Λ < δ < −2/Λ, then again we have β1 > 0, β2 > 0, β1 < β2 (for λ < 1) and

h̃′′(β) > 0, so β′ > β2: for any β > β′, g̃(β) > h̃(β); (ii) when −n/Λ < δ < −(Λ + 1)/Λ,

in which case RIII does not exist. To see this note that in this case β1 > 0, β2 < 0, and

h̃′′(β) > 0: g̃(β) > h̃(β) only for β < β1. If β
′ < 1, then condition (31) holds at β′, i.e.,

g̃(β) > h̃(β) for β ≥ β′. Therefore, β′ < β1, a contradiction.�

Proof of Proposition 5. If δ > −(1 + n)/n, then 1 + n + δΛ > 0 for all λ. From

Lemma 1 we know that when β ≤ 1/(1 + n + δΛ): ∂x∗/∂λ ≤ 0. From Lemma 5 we have that

W ′(λ) > 0 if β > β̂ (λ) where β̂ is the unique positive solution to the equation (24). Necessarily,

β̂ > 1/(1 + n+ δΛ), otherwise for any β ∈ (β̂, 1/(1 + n+ δΛ)], we have that ∂x∗/∂λ ≤ 0, which

from equation (7) implies that ∂q∗/∂λ < 0, which using equation (9) yields W ′(λ) < 0, a

contradiction. Since β̂(λ) > 1/(1 + n + δΛ) for any λ, then β̂(0) = β̄ > β. From Lemma 6 we

also know that β̄ < β′(0). Thus, the relationship β < β̄ < β′(0) is established. Next we prove

each of the statements. (i) When δ > −(1 + n)/n not only RI but also RII may exist since

δ > −n. If −(1+n)/n < δ < 0, then inf{1/(1+n+Λδ) : λ ∈ [0, 1]} = 1/(1+n+δ) > 0, whereas

1Suppose that β′ < β1, then from Lemma 2 we have that ∂q∗/∂λ > 0 for β > β′. However, from Lemma 1
we have that ∂x∗/∂λ < 0 for β < β1. Furthermore, if ∂x

∗/∂λ < 0, then ∂q∗/∂λ < 0. Thus, ∂q∗/∂λ < 0 for
β′ < β < β1, a contradiction.
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if δ ≥ 0, inf{1/(1 + n + Λδ) : λ ∈ [0, 1]} = 1/ [1 + n(1 + δ)] > 0. In both cases, if β ≤ β, it

follows from Proposition 1 that only RI can exist. (ii) Lemma 5 ensures that for some given λ,

if β > β̂(λ), then W ′(λ) > 0. As a result, if β > β̄ = β̂(0), then W ′(0) > 0, thus λoTS > 0; (iii)

From Lemma 2 we have that if β > β′(0), then ∂q∗/∂λ|λ=0 > 0, which implies that CS′(0) > 0:

λoCS > 0.�

A.1.3 Two-stage model

Threshold β̃(λ). Let zi be the action of firm i (qi in Cournot) and let z∗ be the n-vector of

second stage equilibrium actions, then the first-order condition in the second stage is

∂

∂zi
φi(·) = 0, (33)

whereas in the first stage is

∂

∂xi
φi(z

∗(x),x, λ) +
∑
j 6=i

∂

∂zj
φi(z

∗(x),x, λ)
∂

∂xi
z∗j (x) = 0, (34)

where x is the n-vector of investment levels. The equilibrium in the two-stage model is thus

characterized by the system of equations (33) and (34).

To obtain β̃(λ), we first need to obtain the expressions for ∂z∗i (x)/∂xi and ∂z∗j (x)/∂xi: we

differentiate the first-order condition (33) with respect to xi and xh (h 6= i), and evaluate both

derivatives in the symmetric equilibrium, then

∂ziziφi(x)
∂

∂xi
z∗i (x) + (n− 1)∂zizjφi(x)

∂

∂xi
z∗j (x) + ∂xiziφi(x) = 0 (35)

and

∂zizjφi(x)
∂

∂xi
z∗i (x) +

[
∂ziziφi(x) + (n− 2)∂zizjφi(x)

] ∂

∂xi
z∗j (x) + ∂xhziφi(x) = 0. (36)

Solving (35) and (36) for ∂z∗i (x)/∂xi and ∂z∗j (x)/∂xi and rearranging terms, we obtain:

∂

∂xi
z∗i (x) =

1

Ω

[
(−∂xiziφi)

(
∂ziziφi − ∂zizjφi

)
+ (n− 1) ∂zizjφi (∂xhziφi − ∂xiziφi)

]
and

∂

∂xi
z∗j (x) =

1

Ω

(
∂xiziφi∂zizjφi − ∂xhziφi∂ziziφi

)
, (37)

7



where

Ω ≡
(
∂ziziφi − ∂zizjφi

) [
∂ziziφi + (n− 1) ∂zizjφi

]
. (38)

Consider Cournot competition, zi = qi. Then, we can rewrite (37) as follows:

∂

∂xi
q∗j (x) =

−c′(Bx)

Ω
∂qiqiφi

(
β̃(λ)− β

)
, (39)

where

β̃(λ) =
∂qiqjφi
∂qiqiφi

=
n(1 + λ) + Λδ

2n+ Λδ

with 0 < β̃(λ) ≤ 1.

Proof of Lemma 3. We have that

β̃(λ) =
n(1 + λ) + Λδ

2n+ Λδ
.

By differentiating β̃ with respect to n we obtain:

∂β̃

∂n
= − δ (1− λ)2

(2n+ δΛ)2 .

Thus, for λ < 1 and convex demand (δ < 0), ∂β̃/∂n > 0, if demand is concave (δ > 0),

∂β̃/∂n < 0. Let us now differentiate β̃ with respect to λ:

∂β̃

∂λ
=

n2(δ + 2)

(2n+ δΛ)2 ,

then, ∂β̃/∂λ > 0 if δ > −2. Finally, we differentiate β̃ with respect to δ:

∂β̃

∂δ
=

Λn (1− λ)

(2n+ δΛ)2 .

Thus, ∂β̃/∂δ > 0 if λ < 1.�

Proof of Lemma 4. Using (13), by totally differentiating the system formed by (11; 12)

in a symmetric equilibrium, and solving for ∂q∗/∂λ and ∂x∗/∂λ, we obtain

∂q∗

∂λ
=

1

∆̃
{[∂λxiφi + (n− 1)ψλ] (∂xiqiφi)B − ∂λqiφi [∆x + ψx(n− 1)]} (40)

∂x∗

∂λ
=

1

∆̃

{
∂λqiφi

[
∂xiqiφiτ + (n− 1)ψq

]
− [∂λxiφi + (n− 1)ψλ] ∆q

}
, (41)
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where ψz ≡ ∂ψ/∂z with z = q, x, λ, and

∆̃(Q∗, x∗) = ∆q [∆x + ψx(n− 1)]− ∂xiqiφi
[
∂xiqiφiτ + ψq(n− 1)

]
B,

which is assumed to be strictly positive.2 By rewriting equation (41) as follows

∂x∗

∂λ
= ϑf ′(Q∗)c′(Bx∗)

{
(β + s′(λ)) [Λ(1 + δ) + n]− [τ + (n− 1)s(λ)]

}
, (42)

where ϑ ≡ (n − 1)(Q∗/n)/∆̃ and s(λ) = ω(λ)(β̃(λ) − β), we get that sign {∂x∗/∂λ} is given

by (15). Let us now turn to the impact of λ on output in equilibrium. Equation (40) can be

rewritten as follows

∂q∗

∂λ
= ϑ

(
(β + s′(λ))c′(Bx∗)2B + f ′(Q∗)

{
c′′(Bx∗)(Q∗/n)B [τ + (n− 1)s(λ)] + Γ′′(x∗)

})
.

(43)

By inserting the first-order necessary condition (12) evaluated in the symmetric equilibrium

into the above expression, after some manipulations we get that sign {∂q∗/∂λ} is given by

(16). Finally, note that the first-order condition with respect to output is identical to the one

associated to the static case. Therefore, by totally differentiating the FOC with respect to

output and solving for ∂q∗/∂λ, we obtain again equation (7), which implies that if ∂x∗/∂λ ≤ 0,

then ∂q∗/∂λ < 0. From (15), we obtain that ∂x∗/∂λ > 0 if and only if

β > β2S ≡ 1− (ω′(λ)β̃(λ) + ω(λ)β̃
′
(λ))P ′(c)−1n+ ω(λ)(n− 1)β̃(λ)

(1 + n+ Λδ) + (n− 1)ω(λ)− P ′(c)−1nω′(λ)
.�

Proof of Lemma 7. By differentiating W (λ) we have

W ′(λ) = [f(Q∗)− c(Bx∗)]n∂q
∗

∂λ
− c′(Bx∗)BQ∗∂x

∗

∂λ
− nΓ′(x∗)

∂x∗

∂λ
.

Using the first-order conditions, f(Q∗) − c(Bx∗) = −f ′(Q∗)Q∗Λ/n and (14) in the above ex-

pression, and simplifying, we obtain:

W ′(λ) =

{
−Λf ′(Q∗)

∂q∗

∂λ
− [(1− λ)β − s(λ)] (n− 1)c′(Bx∗)

∂x∗

∂λ

}
Q∗. (44)

2We show in Section A.2.2 that ∆̃(Q∗, x∗) > 0 is also a necessary condition for having a positive output at
equilibrium in AJ.
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If we insert (42) and (43) into (44), after some manipulations we get

W ′(λ) = ϑwQ
∗(−f ′(Q∗))

[
Λ
(
c′(Bx∗)2(β + s′(λ))B (45)

+f ′(Q∗)
{
c′′(Bx∗)(Q∗/n)B [τ + (n− 1)s(λ)] + Γ′′(x∗)

})
+c′(Bx∗)2 [(1− λ)β − s(λ)] (n− 1)

{
(β + s′(λ)) [Λ(1 + δ) + n]

− [τ + (n− 1)s(λ)]}] ,

where ϑw ≡ (n− 1)(Q∗/n)/∆̃. Then W ′(0)|β=1 > 0 if and only if

0 < (c′(nx∗))2
(

(1 + s′(0)
∣∣
β=1

)n+ (1− s(0)|β=1)(n− 1)
{

(1 + s′(0)
∣∣
β=1

)(1 + δ + n) (46)

−
[
1 + (n− 1) s(0)|β=1

]})
+ f ′(Q∗)

{
c′′(nx∗)Q∗

[
1 + (n− 1) s(0)|β=1

]
+ Γ′′(x∗)

}
.

From equation (14) we have that in equilibrium and for λ = 0 and β = 1:

Q∗|λ=0,β=1 = − nΓ′(x∗)

c′(nx∗)
[
1 + (n− 1) s(0)|β=1

] .
Substituting Q∗|λ=0,β=1 into (46) and using the definitions for χ(Bx∗) and ξ(Q∗, x∗), we obtain

the condition for the two-period model:

(1+s′(0)
∣∣
β=1

)n+(1−s(0)|β=1)(n−1)
{

(1 + s′(0)
∣∣
β=1

)(1 + δ + n)−
[
1 + (n− 1) s(0)|β=1

]}
−H(1) > 0,

where

s(0) =
(2n+ δ)[(n+ δ)/(2n+ δ)− β]

n(n+ 1 + δ)

and

s′(0) = −
[
2n2 + δ(2n+ 1) + δ2

]
(n− 1)β − δ2(n− 1)− δ(2n2 − 1)− n(n2 + 1)

(n+ 1 + δ)2n
.

Thus, s′(0)|β=1 = [1 + δ − n(n− 2)] /(n + 1 + δ)2. Note that by setting s = s′ = 0, we obtain

the condition for the simultaneous case, that is, condition (26).�

A.2 Model specifications

In this section we characterize each of the model specifications considered in the paper: first in

the simultaneous and then in the two-stage model. We describe briefly first the main assump-

tions of each model specification.

As shown in Amir (2000) the AJ and the KMZ model specifications are not equivalent for
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Table 2: Model Specifications

AJ KMZ CE

Demand f(Q) = a− bQ f(Q) = a− bQ f(Q) = σQ−ε, 0 < ε < 1
δ = 0; a, b > 0 δ = 0; a, b > 0 δ = −(1 + ε); a = 0, b = −σ < 0

c(·) c̄− xi − β
∑

j 6=i xj c̄− [(2/γ)(xi + β
∑

j 6=i xj)]
1/2 κ(xi + β

∑
j 6=i xj)

−α

Γ(x) (γ/2)x2 x x

large spillover values (the critical value depends on the innovation function and on the number

of firms). The difference between the two models lies on the innovation function and the

autonomous R&D expenditures. Under the KMZ specification, the effective R&D investment

for each firm is the sum of its own expenditure xi and a fixed fraction (β) of the sum of the

expenditures of the rest of firms, i.e., Xi = xi + β
∑

j 6=i xj . Instead, under the AJ specification,

Xi is the effective cost reduction for each firm, so c(·) is a linear function. Thus, in AJ decision

variables are unit-cost reductions, whereas in KMZ decision variables are the autonomous R&D

expenditures. In particular, in KMZ the unit cost of firm i is c̄− h(xi + β
∑

j 6=i xj), where for

given xi ≥ 0 (i = 1, ..., n) the effective cost reductions to firm i, h(·), is a twice differentiable

and concave function with h(0) = 0, h(·) ≤ c̄, and (∂/∂xi)h(·) > 0. As in Amir (2000), to

allow for a direct comparison between AJ and KMZ, we consider a particular case of the KMZ

model: h = [(2/γ)(xi + β
∑

j 6=i xj)]
1/2 with γ > 0. The CE model considers constant elasticity

demand and costs with α, κ > 0 (see Table 2); α is the unit cost of production (or innovation

function) elasticity with respect to the investment in R&D (and no spillover effects). Note that

the assumption ε < 1 implies that δ > −2, and consequently quantities are strategic substitutes.

Finally, Γ(x) is quadratic in AJ but linear in KMZ and CE.

A.2.1 Simultaneous model

We first discuss comparative statics on equilibrium values given in Table A1, and then derive

Table A2, which provides the second-order and regularity conditions for the three model spec-

ifications (we also explore the feasible region for the constant elasticity model in Lemma A1).

Second, we establish Lemma A2, which determines sign{∂q∗/∂λ} and sign{∂x∗/∂λ} for each

model specification. Third, we derive the spillover threshold value β̄ and β′(0) in the examples

(Table A3). After that, we conduct a comparative statics analysis on β̄. Finally, we examine

welfare in AJ and KMZ, obtain the optimal degree of overlapping ownership in each case (Table

A4) and state Proposition A1.

Comparative statics on equilibrium values. It is worth noting that in AJ and KMZ

the R&D expenditure x∗ and output q∗ per firm increase with the size of the market (a) and

11



Table A1: Equilibrium Values

AJ KMZ CE

q∗ γ(a−c̄)
γb(Λ+n)−Bτ

γ(a−c̄)
γb(Λ+n)−τ

1
ακτ

[
σ (τα/n)ε κε−1 (1− εΛ/n)

](1+α)/[ε−α(1−ε)]

x∗ τ(a−c̄)
γb(Λ+n)−Bτ

γτ2(a−c̄)2
2B[γb(Λ+n)−τ ]2

1
B

[
σ (τα/n)ε κε−1 (1− εΛ/n)

]1/[ε−α(1−ε)]

Table A2: Second-Order Conditions and Regularity Condition

AJ KMZ CE

S.O.C γb > 1/2 γb > τ/(2λ̃) n > Λ(1+ε)
2 and ε(1+α)

α > n(n−εΛ)

λ̃(2n+Λδ)

Regularity Condition γb > τB/(Λ + n) γb > τ/(Λ + n) ε− α(1− ε) > 0

with λ̃ ≡ 1 + λ(n− 1)β2.

Table A3: Spillover Thresholds β̄ and β′(0)

β̄ β′(0)

AJ
(n− 2) +

√
(n− 2)2 + 4bγ(n+ 2)(n− 1)

2(n+ 2)(n− 1)
[−1 +

√
1 + 4bγ(n− 1)]/[2(n− 1)]

KMZ
(n− 2) + bγ(n− 1) +

√
(n− 2)2 + bγ(n− 1) [bγ(n− 1) + 6n+ 4]

2(n+ 2)(n− 1)
γb

CE is the value above which:
(n− ε)αβ {B + (n− 1) [β(n− ε)− 1]} − ε(α+ 1)B > 0 ε(α+ 1)/[α(n− ε)]

12



decrease with the level of ineffi ciency of the technology employed, c̄, the slope of inverse demand,

b, and the parameter γ (which is the parameter of the slope of the marginal R&D costs in AJ).

In the CE model x∗ and q∗ also increase with the size of the market, σ. In addition, the costlier

the technology employed, κ, the lower is total output, Q∗. However, x∗ decreases (respectively,

increases) with κ if demand is elastic (inelastic). The last two results hold for any value of λ

and β.3

Derivation of Table A2. In AJ and KMZ it is immediate that ∂qiqiφi = −2b < 0.

Furthermore, in AJ: condition ∂qiqiφi (∂xixiφi)− (∂qixiφi)
2 > 0, given by (29), can be written as

2bγ − 1 > 0, since c′′(·) = 0 and Γ′′(x) = γ, so ∂xixiφi = −γ and ∂qixiφi = −c′(·) = 1. In KMZ,

(29) can be written as

[
1

γ2

(
2

γ
(Bx∗)

)−1
]
− 2b

[
1

γ2

(
2

γ
(Bx∗)

)−3/2
]
q∗λ̃ < 0. (47)

From first-order condition (3) we have that in equilibrium

q∗ =
Γ′(x∗)

−c′(Bx∗)τ =
1

(1/γ) [(2(Bx∗)/γ]−1/2 τ
. (48)

Inserting the above equation into condition (47), after some manipulations, it reduces to 1 −

2bγλ̃/τ < 0. (Note that if γb > τ/2 holds, then the condition γb > τ/(2λ̃) is satisfied.) In AJ

and from (28), it is immediate that ∆ = γb(Λ + n) − τB since c′′(·) = δ = 0, f ′(Q) = −b and

Γ′(x) = γx. In KMZ we have:

∆ = −
[

1

γ2

(
2

γ
Bx∗

)−3/2

Bτ
1

(1/γ)(2Bx∗/γ)−1/2τ

]
[−b (Λ + n)]− 1

γ2

(
2

γ
Bx∗

)−1

τB.

Inserting (48) into the above equation, after some manipulations, we obtain

∆ =
1

γ

(
2

γ
Bx∗

)−1 [
Bb(Λ + n)− τB

γ

]
.

Therefore, in KMZ ∆ > 0 if γb > τ/(Λ + n). Regarding the constant elasticity model we have:

LEMMA A1 (Constant elasticity model) At the equilibrium, for a given n ≥ 2 and λ ≥ 0,

second-order conditions together with the condition of non-negative profits require that

(i) max{εΛ,Λ(1 + ε)/2} < n ≤ εΛ(B + ατ)/(ατ),

(ii) ε(1 + α)/α > n(n− εΛ)/
[
λ̃(2n+ Λδ)

]
, with λ̃ ≡ 1 + λ(n− 1)β2.

Furthermore, the equilibrium is regular if and only if (1 + α)/α > 1/ε.

3The same result is obtained in Dasgupta and Stiglitz (1980) for λ = β = 0 and free entry.
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Proof. From the first-order condition (2) we need that

n > εΛ, (49)

otherwise the system (2; 3) will not have a solution. Since δ = −(1+ε), ∆q < 0 if condition (49)

holds (see Table 4). This condition also guarantees that Q∗ and x∗ are both positive. Notice

that ∂qiqiφi < 0 if (f ′(Q∗)/n)(2n+ Λδ) < 0, then ∂qiqiφi < 0 if

n > Λ(1 + ε)/2. (50)

Since Λ ∈ [1, n], we have that the latter condition is always satisfied for ε < 1. By construction

∂xixiφi < 0. Furthermore, second-order condition ∂qiqiφi (∂xixiφi) − (∂qixiφi)
2 > 0, which is

given by (29), reduces to

−εσ
n
Q∗−(ε+1)(2n+ Λδ)

[
α(α+ 1)κ(Bx∗)−(α+2)(Q∗/n)λ̃

]
+ (ακ)2(Bx∗)−2(α+1) < 0. (51)

From the first-order condition (2) we have that at the symmetric equilibrium

Q∗ = [σ(n− εΛ)/(nκ)]1/ε (Bx∗)α/ε. (52)

By substituting (52) into (51), after some manipulations, we obtain

(Bx∗)−2(α+1)ακ2
{
− [ε/(n− εΛ)] (2n+ Λδ)(α+ 1)λ̃/n+ α

}
< 0.

The above condition is satisfied if ε(α+1)/α > n(n−εΛ)/[(2n+Λδ)λ̃], which proves statement

(ii) of the Proposition.

From (28) we have that ∆ > 0 if

0 < −α(α+ 1)κ(Bx∗)−(α+2)(Q∗/n)τB
[
ε(1 + ε)σQ∗−(ε+2)ΛQ∗ − εσQ∗−(ε+1)(Λ + n)

]
−(ακ)2(Bx∗)−2(α+1)τB,

or,

0 < Q∗−(ε+1)
[
−α(α+ 1)κ(Bx∗)−(α+2)(Q∗/n)τB

]
[ε(1 + ε)σΛ− εσ(Λ + n)]

−(ακ)2(Bx∗)−2(α+1)τB.
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Substituting (52) into the above expression, we obtain

0 < −
[
σ(n− εΛ)

nκ

]−(ε+1)/ε

(Bx∗)−(ε+1)α/εα(α+ 1)κ(Bx∗)−(α+2)

[
σ(n− εΛ)

nκ

]1/ε

(Bx∗)α/ε

τB

n
[ε(1 + ε)σΛ− εσ(Λ + n)]− (ακ)2(Bx∗)−2(α+1)τB,

rearranging terms yields

0 < (Bx∗)−2(α+1)

[
nκ

σ(n− εΛ)

(
−α(α+ 1)

κτB

n

)(
−εσn+ ε2σΛ

)
− (ακ)2τB

]
,

or, equivalently,

0 < (Bx∗)−2(α+1)ακ2τB [ε(α+ 1)− α] .

Therefore, ∆ > 0 holds if (1 + α)/α > 1/ε, or, equivalently, if ε− α(1− ε) > 0.

We turn now to deriving the condition under which profits in equilibrium are nonnegative. At

the symmetric equilibrium, each firm’s profit is given by π(Q∗/n, x∗) = [f(Q∗)− c(Bx∗)] (Q∗/n)−

x∗. Then, π(Q∗/n, x∗) ≥ 0 if π̄ ≡ [f(Q∗)− c(Bx∗)]Q∗/(x∗n) ≥ 1. Write

ϑCE ≡ σ
(τα
n

)ε
κε−1

(
n− εΛ
n

)
.

Then Q∗ = [n/(ακτ)] ϑCE
(1+α)/[ε−α(1−ε)], x∗ = (1/B) ϑCE

1/[ε−α(1−ε)], and condition π̄ ≥ 1 can

be expressed as

[
σ(

n

ακτ
)−ε ϑCE

−ε(1+α)/[ε−α(1−ε)] − κ ϑCE −α/[ε−α(1−ε)]
] 1

ακτ
ϑCE

α/[ε−α(1−ε)]B ≥ 1.

Rearranging terms, and replacing ϑCE into the above expression, we get [εΛ/(n− εΛ)] [B/(ατ)] ≥

1. It follows that π̄ ≥ 1 if (
εΛ

ατ

)
(B + ατ) ≥ n. (53)

Combining conditions (49), (50) and (53) yields statement (i).�
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Fig. A1. Feasible region for the CE

model with n = 7.

Feasible region for the constant elasticity model with λ = 0. From Lemma A1

we have that ∆ > 0 if (1 + α)/α > 1/ε. When λ = 0, the LHS of condition (i) is trivially

satisfied for any n ≥ 2, moreover the RHS of condition (i) can be rewritten as follows n ≤

ρCE(β) = ε(1+α−β)/(α−εβ). Since ρ′CE > 0 (as we are also imposing that ∆ > 0), condition

n ≤ ρCE(β) will hold for all β if n ≤ ε(1 + α)/α. Last, condition (ii) with λ = 0 writes as

ε(1 + α)/α > n(n − ε)/ [2n− (1 + ε)]. Therefore, at λ = 0 we only have to consider the RHS

of condition (i) and condition (ii). These two conditions are depicted in Fig. A1 for n = 7; the

grey area are combinations (α, ε) for which the two conditions are satisfied (these combinations

of parameters also satisfy the two conditions for n ≤ 7).

Determination of sign{∂q∗/∂λ} and sign{∂x∗/∂λ} in AJ, KMZ and CE. Note that

∂q∗/∂λ can be written in the following manner

∂q∗

∂λ
=

(n− 1)(Q∗/n)

∆

{(
c′(Bx∗)

)2
βB + f ′(Q∗)

[
c′′(Bx∗)(Q∗/n)Bτ + Γ′′(x∗)

]}
, (54)

then after some calculations, it is simple to verify that in the simultaneous model:

LEMMA A2 We have (i) In AJ: sign

{
∂q∗

∂λ

}
= sign{β(1 +β(n− 1))− bγ} and sign

{
∂x∗

∂λ

}
=

sign{β(n + 1) − 1}; (ii) In KMZ: sign

{
∂q∗

∂λ

}
= sign{β − γb} and sign

{
∂x∗

∂λ

}
= sign{β(n +

1)−1}; (iii) In the CE model: sign

{
∂q∗

∂λ

}
= sign{β [α(n− εΛ)− λ(n− 1)ε(α+ 1)]−ε(α+1)}
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and sign

{
∂x∗

∂λ

}
= sign{β [(n− ε)− λ(n− 1)(1 + ε)]− 1}.

Derivation of β̄ (Table A3). Note that ∂x∗/∂λ can be written as

∂x∗

∂λ
=

(n− 1)(Q∗/n)f ′(Q∗)c′(Bx∗)

∆
[β(Λ(1 + δ) + n)− τ ] (55)

If we insert equations (54) and (55) into equation (10), after some manipulations we obtain

W ′(λ) =
[
(n− 1)(Q∗)2/(n∆)

]
(−f ′(Q∗))z, where

z = Λ{
(
c′(Bx∗)

)2
βB + f ′(Q∗)[c′′(Bx∗)(Q∗/n)Bτ + Γ′′(x∗)]}

+
(
c′(Bx∗)

)2
(1− λ)β(n− 1) {β [Λ(1 + δ) + n]− τ} .

By noting that in AJ: f ′ = −b, δ = 0, c′ = −1, c′′ = 0 and Γ′′ = γ, it then follows that

zAJ = z|λ=0 = βB − bγ + β(n− 1) [β(1 + n)− 1]

= (n− 1)(n+ 2)β2 − (n− 2)β − bγ.

By solving zAJ = 0 for β we obtain the expression for β̄AJ . Notice that β̄AJ < 1 if

(n− 2) +
√

(n− 2)2 + 4bγ(n+ 2)(n− 1) < 2(n+ 2)(n− 1),

or

(n− 2)2 + 4bγ(n+ 2)(n− 1) < [2(n+ 2)(n− 1)− (n− 2)]2 ,

which can be rewritten as 4bγ(n+ 2)(n− 1) < 4n2(n+ 2)(n− 1). Thus, β̄AJ < 1 if bγ < n2. In

KMZ we have c = c̄−
√

(2/γ)(xi + β
∑

j 6=i xj), f
′ = −b, δ = 0 and Γ′′ = 0, then

zKMZ = z|λ=0 =
β

2γx∗
+

−bq∗B
γ2 (2Bx∗/γ)3/2

+
β(n− 1) [β(1 + n)− 1]

2γBx∗

=
1

B

(
−bq∗B1/2

γ2 (2x∗/γ)3/2
+

β

2γx∗
{B + (n− 1) [β(1 + n)− 1]}

)
.

By replacing q∗ and x∗ into the above expression, after some calculations we get

zKMZ =
[bγ(1 + n)− 1]2

γ(a− c̄)2

(
−bB +

β

γ
{B + (n− 1) [β(1 + n)− 1]}

)
.
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It is then immediate that: zKMZ > 0 ⇔ β > β̄
KMZ . Notice that β̄KMZ

< 1 if

{
(n− 2)2 + bγ(n− 1) [bγ(n− 1) + 2(3n+ 2)]

}1/2
< 2(n+ 2)(n− 1)− n+ 2− bγ(n− 1),

which can be rewritten as 4n(n + 2)(n − 1)(−n + bγ) < 0. In the constant elasticity model

f = σQ−ε, c = κ(xi + β
∑

j 6=i xj)
−α and Γ(x) = x, then

zCE = z|λ=0 = (ακ)2(Bx∗)−2(α+1)βB − εσ(Q∗)−ε−1α(α+ 1)κ(Bx∗)−(α+2)q∗B

+(ακ)2(Bx∗)−2(α+1)β(n− 1) [β(−ε+ n)− 1] .

By replacing q∗ and x∗ into the above expression, we obtain

zCE = α2κ2z−2(1+α)βB − εσ [n/(ακ)]−(1+ε) z−(1+α)(1+ε)(α+ 1)z−(α+2)zα+1B (56)

+α2κ2z−2(1+α)β(n− 1) [β(−ε+ n)− 1] ,

where

z ≡
[
σ
(τα
n

)ε
κε−1 (1− ε/n)

]1/[ε−α(1−ε)]
.

By noting that z−(α+1)(1+ε)−(α+2)+(α+1) = z−ε+α(1−ε)z−2(1+α) we can re-write equation (56) as

follows

zCE = z−2(1+α)ακ2 {αβB + αβ(n− 1) [β(−ε+ n)− 1]− ε(α+ 1)B/(n− ε)} .

Hence zCE > 0 if and only if

(n− ε)αβ {B + (n− 1) [β(n− ε)− 1]} − ε(α+ 1)B > 0.�
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Threshold value β̄

Fig. A2a. AJ model. Fig. A2b. KMZ model.

Figure A3a. CE model. Figure A3b. CE model.

Comparative statics on β̄. Fig. A2a (respectively Fig. A2b) shows the value for β̄ under

the AJ (KMZ) model specification as a function of the number of firms and for different values

of γb. As the figure makes clear, β̄AJ and β̄KMZ decrease with n: when there are more firms in

the market, there is more need for overlapping ownership in order to internalize the additional

externalities. We also have that β̄AJ and β̄KMZ decrease with γb, although β̄ is lower than 1

for lower values of γb in the KMZ model than in the AJ model.

Fig. A3a and Fig. A3b depict β̄CE as a function of n and for different values for α and

ε. A glance at these figures shows that β̄CE decreases again with n (for given ε and α). In
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Table A4: Optimal Degree of Cross-ownership in AJ and KMZ

λoTS

AJ min
{

max
{

0, [(n+2)(n−1)β−(n−2)]β−bγ
(n−1)[2(β−1)β+bγ]

}
, 1
}

KMZ min
{

max
{

0, [(n+2)(n−1)β−bγ(n−1)−(n−2)]β−bγ
(n−1){[2β+bγ(n−1)−2]β+bγ}

}
, 1
}

addition, Fig. A3a tells us that for given n and ε, β̄CE decreases with the elasticity of the

innovation function, α, whereas Fig. A3b shows that for given n and α, β̄CE increases with ε,

so it decreases with the elasticity of demand. We also have that for the (feasible) combination

of parameters (α, ε) considered here, β̄CE ≥ 1 when there are two or three firms in the market.

Optimal degree of overlapping ownership (TS and CS standard)

Fig. A4a. CE model.

(α = 0.1, σ = κ = 1, n = 8, β = 0.8)

Fig. A4b. CE model.

(ε = 0.8, σ = κ = 1, n = 8, β = 0.8)

Fig. A4a and A4b show that the greater is the elasticity of demand, ε−1, or the elasticity

of the innovation function, α, the greater should be the degree of overlapping ownership if the

social planner seeks to maximize total surplus; however, if the objective is to maximize consumer

surplus, then for the same parameter range, λoCS = 0.

Welfare in AJ and KMZ. Here, we show that welfare is a single-peaked function in AJ

and KMZ; we also derive λoTS under these two model specifications (Table A4).
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Case AJ: By inserting equilibrium values into the welfare function we get

W =
1

2
nγ(a− c̄)2 (2Λ + n)γb− τ2

[(Λ + n)γb−Bτ ]2
.

If we differentiate W with respect to λ we obtain:

dW

dλ
= −(n− 1)(a− c̄)γb {Λγb+ β [2λ (B − n) + n− 2− β(n+ 2)(n− 1)]}

[(Λ + n) bγ −Bτ ]2
Q.

Note that solving dW/dλ = 0 for λ yields a unique stationary point, given by λ̂AJ . By taking

the second-order derivative with respect to λ, evaluating it at λ = λ̂AJ , and simplifying, we

obtain
d2W

dλ2

∣∣∣∣
λ=λ̂AJ

= − (n− 1)2(a− c̄)γb [2 (β − 1)β + γb]3[
−(n+ 2)(n− 1)2β4 − 6(n− 1)β3 + Z1 + 2Z2 − Z3

]2Q,
where Z1 ≡

[(
n2 + 4n− 1

)
γb+ 3 (n− 2)

]
β2, Z2 ≡ 2 [γb(1− 2n) + 1]β and Z3 ≡ γb(1 − γbn).

The second-order condition requires that γb > 1/2 (see Table A2), then 2(β − 1)β + γb > 0 for

any β ∈ [0, 1], and as a result: d2W/dλ2
∣∣
λ=λ̂AJ

< 0. Since λ̂AJ is the unique stationary point

of W , it follows that λ̂AJ is a global maximum. This is the desired λoTS.

Case KMZ: By inserting equilibrium values into the welfare function we get

W =
1

2
nγ(a− c̄)2 (2Λ + n)Bγb− τ2

[(Λ + n)γb− τ ]2B
.

By differentiating W with respect to λ we obtain:

dW

dλ
= −(n− 1)(a− c̄)γb {ΛBγb+ β [2λ (B − n) + n− 2− β(n+ 2)(n− 1)]}

B [(Λ + n) bγ − τ ]2
Q,

and by solving dW/dλ = 0 for λ we get a unique stationary point, given by λ̂KMZ . The

second-order derivative with respect to λ evaluated at λ = λ̂KMZ yields

d2W

dλ2

∣∣∣∣
λ=λ̂KMZ

=
γb(n− 1)2(a− c̄)
B [(Λ + n)γb− τ ]3

ZKMZQ,

where ZKMZ ≡ − [βn+ (1− β)]n(γb)2+
[
4β(1− β)n+ (1− β)2 − β2n2

]
γb+βB [β(n+ 2)− 2].

The regulatory condition requires that γb > τ/(Λ+n) (see Table A2), thus d2W/dλ2
∣∣
λ=λ̂KMZ

<

0 whenever ZKMZ < 0. Since λ̂KMZ is the unique stationary point of W , it follows that λ̂KMZ

is a global maximum whenever ZKMZ < 0. This is the desired λoTS. It is straightforward to show

that the regularity condition is stricter than the second-order condition under the KMZ model

specification (see Table A2). In addition, the regularity condition becomes stricter as λ and n
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increase. For λ = 1, the maximum value of the right-hand side of the regularity condition is
√
n(n− 1)/ [4(n−

√
n)], which for example equals 0.60 for n = 2 and 0.68 for n = 3. Numerical

simulations show that assuming γb > 0.62 guarantees that ZKMZ < 0 holds for any n; thus,

ZKMZ < 0 is a mild condition: it is slightly stricter than the regularity condition in duopoly

but softer for oligopoly of three or more firms.�

PROPOSITION A1 A Research Joint Venture with no overlapping ownership (λ = 0 and

β = 1) is socially optimal in AJ when γb ≥ n2, in KMZ when γb ≥ n, and in CE (provided

that W (λ) is single peaked) when α ≥ εn/[(n− 1)ε2 + (−1 + n− 2n2)ε+ n(n2 + 1− n)].

Proof. When W (λ) is single peaked, β̄ is the minimum threshold above which allowing

some positive λ is welfare enhancing (Proposition 4). Consequently, λoTS = 0 for any β ∈ [0, 1]

if β̄ ≥ 1. From Table A3 we have that β̄AJ ≥ 1 if γb ≥ n2 and β̄KMZ ≥ 1 if γb ≥ n;

in both cases W (λ) is single peaked (see above). Also, from Table A3 we obtain β̄CE , and

solving β̄CE = 1 for α, yields the threshold value in terms of n and ε: β̄CE ≥ 1 if α ≥

εn/[(n − 1)ε2 + (−1 + n − 2n2)ε + n(n2 + 1 − n)]. Next we show that for λ = 0, W ′(β) > 0

under AJ, KMZ and CE model specifications, and therefore it is socially optimal to set β = 1

in the three cases. We can write

∂W

∂β
= (f(Q∗)n− nc(Bx∗)) ∂q

∗

∂β
− nc′(Bx∗)(n− 1)x∗q∗ − nc′(Bx∗)B∂x

∗

∂β
q∗ (57)

−nΓ′(x∗)
∂x∗

∂β

=

[
−Λf ′(Q∗)

∂q∗

∂β
− (1− λ)β(n− 1)c′(Bx∗)

∂x∗

∂β
− c′(Bx∗)(n− 1)x∗

]
Q∗.

In AJ and for λ = 0, ∂q∗/∂β > 0 and ∂x∗/∂β > 0 (see Table A1), thus from (57) it is clear

that ∂W/∂β > 0. In KMZ and for λ = 0, ∂q∗/∂β = 0 and ∂x∗/∂β < 0. Higher R&D spillovers

reduce R&D expenditures but also the unit cost of production of all firms. The latter dominates

the former:
∂W

∂β

∣∣∣∣
λ=0

=
1

2

n(a− c̄)2γ(n− 1)

[bγ(n+ 1)− 1]2B2
> 0.

In CE and for λ = 0, ∂q∗/∂β = 0 and ∂x∗/∂β < 0. As in KMZ, welfare is increasing in β:

∂W

∂β

∣∣∣∣
λ=0

=
n
[
σ
(
α
n

)ε
κε−1

(
1− ε

n

)] 1
ε−α(1−ε) (n− 1)

B2
> 0.�
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Snapshot of the Application

Fig. A5. AJ model. (a = 700, c̄ = 500, γ = 8.5, β = 0.5, b = 0.6)
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Optimal degree of overlapping ownership (TS and CS standard)

Fig. A6a. KMZ model.

(γ = 3, n = 6, b = 0.3)

Fig. A6b. KMZ model.

(γ = 3, β = 0.8, b = 0.3)

Table A5: Effect of Parameters on λoTS and λ
o
CS

λoTS λoCS
AJ KMZ CE AJ KMZ CE

Number of firms (n) + + + 〈+〉 0 (+)
Elasticity of demand (b−1, ε−1) + + + 〈+〉 〈+〉 [+]
Elasticity of innovation function (γ−1, α) + + 〈+〉 〈+〉 [+]
Degree of spillover (β) + + + (+) (+)∗ [+]

Key: 〈+〉, the parameter enlarges the region where λoCS = 1; (+), the effect is positive only if both β and n

are suffi ciently large (otherwise there is no effect); (+)∗, the effect is positive only if the parameter is suffi ciently

large and γb is suffi ciently small (otherwise there is no effect); [+], the effect is positive when n is suffi ciently

large (otherwise there is no effect).

A.2.2 Two-stage model

Next we present equilibrium values of output and R&D together with sign{∂q∗/∂λ} and sign{∂x∗/∂λ}

for each model specification. Finally, we conduct a comparative statics analysis on β̄, and on

λoTS and λ
o
CS.

Equilibrium values and sign {∂q∗/∂λ} and sign {∂x∗/∂λ}. We consider each case in

turn.
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Case AJ: First-order necessary conditions (10; 14) yields

−bΛq∗ + a− bnq∗ − c̄+Bx∗ = 0

[
τ +

Λ

n+ Λ
(n− 1) (1 + λ− 2β)

]
q∗ − γx∗ = 0.

Solving the system for equilibrium values gives

q∗ =
γ(a− c̄)

∆̃
and x∗ =

[
(n− 1)( Λ

n+Λ)(1 + λ− 2β) + τ
]

(a− c̄)

∆̃

where

∆̃ =
γb(Λ + n)2 −B [(n− 1)Λ(1 + λ− 2β) + (n+ Λ)τ ]

Λ + n
.

In this case, as in the simultaneous model, H(β) = bγ, then using (16) we obtain

sign

{
∂q∗

∂λ

}
= sign

{
(Bβ − bγ) (n+ Λ) +B

[
1 + λ− 2β

n+ Λ
(n− 1)n+ Λ

]}

and using (15) we get

sign

{
∂x∗

∂λ

}
= sign{β [Λ + n+ (n− 1)(ω(λ)− λ)] (58)

+

[
1 + λ− 2β

n+ Λ
(n− 1)n+ Λ

]
− 1− (n− 1)ω(λ)β̃(λ)},

where we have used that

[
ω′(λ)(β̃(λ)− β) + ω(λ)β̃

′
(λ)
]

(Λ + n) =
1 + λ− 2β

n+ Λ
(n− 1)n+ Λ.

Case KMZ: The output and R&D values in equilibrium are given by (10; 14):

−bΛq∗ + a− bnq∗ − c̄+

[(
2

γ

)
Bx∗

]1/2

= 0

1

γ

[(
2

γ

)
Bx∗

]−1/2 [
τ + (n− 1)

Λ

n+ Λ
(1 + λ− 2β)

]
q∗ − 1 = 0.

Solving the system for equilibrium values gives

q∗ =
γ(a− c̄)

γb(Λ + n)− µ and x
∗ =

1

2

(a− c̄)2ϑ2
KMZγ

B [bγ(Λ + n)− µ]2
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with

ϑKMZ ≡ τ + s(λ)(n− 1) = (n− 1)
Λ

n+ Λ
(1 + λ− 2β) + τ ,

where s(λ) = ω(λ)(β̃(λ)− β).

In this case, as in the simultaneous model, H(β) = bγB, then from (16) we have

sign

{
∂q∗

∂λ

}
= sign

{
(β − bγ)(n+ Λ) +

[
1 + λ− 2β

n+ Λ
(n− 1)n+ Λ

]}

and sign{∂x∗∂λ } is again given by (58).

Case CE: The output and R&D values in equilibrium are obtained from (10; 14):

σQ∗−ε
(

1− εΛ

n

)
− κ(Bx∗)−α = 0

α(Bx∗)−α−1
[
τ + (n− 1)ω(λ)(β̃(λ)− β)

] Q∗
n

= 1.

Solving the system for Q∗ and x∗, after some manipulations, we get

Q∗ =
n

ακ [(n− 1)s(λ) + τ ]

(
σ

{
[(n− 1)s(λ) + τ ]α

n

}ε
κε−1

(
1− εΛ

n

))(1+α)/[ε−α(1−ε)]

and

x∗ =
1

B

(
σ

{
[(n− 1)s(λ) + τ ]α

n

}ε
κε−1

(
1− εΛ

n

))1/[ε−α(1−ε)]
,

where s(λ) = ω(λ)(β̃(λ)− β) with

ω(λ) =
Λ [2n− Λ(1 + ε)]

n(n− εΛ)
and β̃(λ) =

n(1 + λ)− Λ(1 + ε)

2n− Λ(1 + ε)
.

It can be shown that in the constant elasticity model:

H(β) = B

(
α+ 1

α

)
ε

n− εΛ [(n− 1)s(λ) + τ ] .

Hence, we have

sign

{
∂q∗

∂λ

}
= sign

{[
β + s′(λ)

]
− α+ 1

α

ε

n− εΛ [(n− 1)s(λ) + τ ]

}
.

And, one can obtain sign{∂x∗/∂λ} by inserting values into (15) with δ = −(1 + ε).
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Threshold value β̄

Fig. A7a. AJ model. Fig. A7b. KMZ model.

Fig. A8a. CE model. Fig. A8b. CE model.

Comparative statics on β̄. Fig. A7a and A7b depict, respectively, the threshold β̄2S

under the AJ and KMZ model specifications. Fig. A7b reveals that in KMZ, β̄2S tends to be

above 1 if we consider the same values as in AJ. In particular, only if γb is low enough, we have

that β̄2S
< 1 (this result is in line with the simultaneous model). Also, we observe that under

the AJ and KMZ model specifications, β̄2S decreases with the number of firms and increases

with γb. Figures A8a (respectively A8b) depict the threshold β̄2S for the CE model and for a

given ε (α) and different values of n and α (ε). As in the simultaneous model, the threshold

value decreases with n, the elasticity of the innovation function, α, and the elasticity of demand
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ε−1.

Comparative statics on λoTS and λoCS. Fig. A9 is a snapshot of the application and

plots welfare, consumer surplus, profit, price, cost, q∗ and x∗ as functions of λ (for β = 0.65

and n = 6). Fig. A10a, A10b and A10c show, respectively, optimal lambdas in AJ, KMZ and

CE as functions of the number of firms. We see that under the three model specifications, λoTS

increases with n when n is suffi ciently large, whereas λoCS only increases with n (and when n is

suffi ciently large) in AJ. Finally, Fig. A11 parallels Fig. 5 (for CE) and Fig. 6 (for AJ), and

shows optimal lambdas for KMZ as a function of β in the simultaneous and two-stage model.

Snapshot of the Application

Fig. A9. AJ model. (a = 700, c̄ = 500, γ = 7, n = 6, b = 0.6)
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Optimal degree of overlapping ownership (TS and CS standard)

Fig. A10a. AJ model.

(a = 700, c̄ = 500, γ = 7, β = 0.8,

b = 0.6)

Fig. A10b. KMZ model.

(a = 700, c̄ = 500, γ = 5, β = 0.8,

b = 0.3)

Fig. A10c. Constant elasticity model.

( α = 0.1, ε = 0.8, σ = κ = 1, β = 0.8)
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Optimal degree of overlapping ownership (TS and CS standard)

Fig. A11. KMZ model.

(a = 700, c̄ = 500, γ = 5.5, n = 2,

b = 0.2)

B Bertrand competition with differentiated products

B.1 Framework and equilibrium

In this Section we establish the framework and solve for the interior equilibrium of the model

by deriving the first-order conditions.

We consider an industry with n differentiated products, each produced by one firm. The

demand for good i is given by qi = Di(p) where p is the vector of prices. Goods are gross

substitutes, ∂Di/∂pj ≥ 0, j 6= i. Assumptions A.2, A.3 and A.4 (with H as defined below) are

maintained we replace Assumption A.1 by the following one:

Assumption 1B. For any product i, the function Di (·) is smooth whenever positive, down-

ward sloping, products are gross substitutes ∂Di/∂pj > 0, j 6= i, and the demand system D (·)

is symmetric with negative definite Jacobian.

Under Assumption 1B the demand system can be obtained from a representative consumer

with quasilinear utility and can be inverted to obtain inverse demands (see Vives, 1999, pp. 144-

148). Furthermore, it follows that the demand for a variety when all firms set the same price

(the Chamberlinian DD function) is downward sloping since the own-price effect dominates the

cross-price effects:

v ≡ ∂Di

∂pi
+ (n− 1)

∂Dj

∂pi
< 0, j 6= i.
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As a result, it follows that vλ ≡ ∂Di/∂pi + λ(n− 1)∂Dk/∂pi < 0. The innovation function

is defined as in Cournot. The firm i’s profit now writes as

πi =

(
pi − c

(
xi + β

∑
j 6=i

xj

))
Di(p)− Γ(xi)

and the objective function for the manager of firm i is again: φi = πi + λ
∑

k 6=i πk, thus

φi =

(
pi − c

(
xi + β

∑
j 6=i

xj

))
Di(p)−Γ(xi)+λ

∑
k 6=i

[(
pk − c

(
xk + β

∑
j 6=k

xj

))
Dk(p)− Γ(xk)

]
.

B.2 Simultaneous model

The first-order conditions for an interior symmetric equilibrium are

∂φi
∂pi

= Di(p) + (pi − ci)
∂Di(p)

∂pi
+ λ

∑
k 6=i

(pk − ck)
∂Dk(p)

∂pi
= 0, (59)

∂φi
∂xi

= −c′(·)Di(p)− Γ′(xi)− λ
∑
k 6=i

c′(·)βDk(p) = 0. (60)

The symmetric equilibrium is the pair (p∗, x∗), with q∗ = Di(p
∗) for all i, that solves the system

(59)-(60). The first-order condition for price in the symmetric equilibrium is

q∗ + (p∗ − c(Bx∗))∂Di(p
∗)

∂pi
+ λ(n− 1)(p∗ − c(Bx∗))∂Dk(p

∗)

∂pi
= 0.

Note that v < 0 ensures that p∗ − c(Bx∗) is strictly positive for all λ; the above condition can

be rewritten as

q∗ +
(p∗ − c(Bx∗))

p∗
∂Di(p

∗)

∂pi

p∗q∗

Di(p∗)
+ λ(n− 1)

(p∗ − c(Bx∗))
p∗

∂Dk(p
∗)

∂pi

p∗q∗

Dk(p∗)
= 0.

Using the notation: ηi = − (∂Di(p
∗)/∂pi) (p∗/Di(p

∗)) and ηik = (∂Dk(p
∗)/∂pi) (p∗/Dk(p

∗)),

k 6= i, we can write

1− p∗ − c(Bx∗)
p∗

ηi + λ(n− 1)
p∗ − c(Bx∗)

p∗
ηik = 0.

From the above condition and from (60), a symmetric (interior) equilibrium will satisfy the

following two conditions:
p∗ − c(Bx∗)

p∗
=

1

ηi − λ(n− 1)ηik
; (61)

−c′(Bx∗)q∗τ = Γ′(x∗). (62)
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Note that the latter condition is also obtained in Cournot oligopoly.

Finally, we assume the following parallel regularity conditions to the Cournot case:

∆p ≡ ∂pipiφi + (n− 1)∂pipjφi < 0 (63)

and

∆ ≡ ∆p∆x −
[
∂xipiφi + (n− 1)∂pjxiφi

] [
∂xipiφi + (n− 1)∂xjpiφi

]
> 0, (64)

where

∆x ≡ ∂xixiφi + (n− 1)∂xixjφi.

Since

∂xixiφi = −c′′(Bx∗)
[
1 + λ(n− 1)β2

]
q∗ − Γ′′(x∗)

and

∂xixjφi = −c′′(Bx∗) [τ + λ (1− β)]βq∗,

it follows that

∆x ≡ −c′′(Bx∗)q∗τB − Γ′′(x∗) < 0 (65)

under Assumptions A.2 and A.3. Together conditions (63) and (64) imply that the first-order

conditions (61) and (62) both have a unique symmetric solution if they hold globally, and we

assume that a symmetric regular equilibrium exists.

B.2.1 Comparative statics with respect to λ

In this Section we show that, as in the Cournot oligopoly model, if ∂x∗/∂λ ≤ 0, then ∂p∗/∂λ > 0

(Lemma B1). Secondly, we derive the signs: sign {∂x∗/∂λ} and sign {∂p∗/∂λ} (Lemma B2).

Finally, we discuss conditions that identify the three regions in Bertrand competition with

product differentiation.

As in the Cournot oligopoly model, we can establish

LEMMA A3 In the symmetric equilibrium, ∂p
∗

∂λ > 0 if ∂x
∗

∂λ ≤ 0.

Proof. By totally differentiating the first-order condition ∂φi/∂pi = 0 with respect to λ we

obtain:

∂pipiφi
∂p∗

∂λ
+ (n− 1)∂pipjφi

∂p∗

∂λ
+ ∂xipiφi

∂x∗

∂λ
+ (n− 1)∂xjpiφi

∂x∗

∂λ
+ ∂λpiφi = 0.
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Therefore,

∂p∗

∂λ
= − 1

∂pipiφi + (n− 1)∂pipjφi

{
∂λpiφi +

[
∂xipiφi + (n− 1)∂xjpiφi

] ∂x∗
∂λ

}
.

Using the stability condition ∆p < 0, it follows that

sign

{
∂p∗

∂λ

}
= sign

{
∂λpiφi +

[
∂xipiφi + (n− 1)∂xjpiφi

] ∂x∗
∂λ

}
. (66)

Since

∂λpiφi = (n− 1)(p∗ − c(Bx∗))∂Dk(p
∗)

∂pi
> 0,

we have that
∂x∗

∂λ
≤ 0⇒ ∂p∗

∂λ
> 0 when ϑ ≡ ∂xipiφi + (n− 1)∂xjpiφi < 0.

Note that

∂xipiφi = −c′(Bx∗)∂Di(p
∗)

∂pi
− λ(n− 1)c′(Bx∗)β

∂Dk(p
∗)

∂pi

= −
[
∂Di(p

∗)

∂pi
+ λ(n− 1)β

∂Dk(p
∗)

∂pi

]
c′(Bx∗).

The expression ∂xjpiφi can be obtained from (59):

∂xjpiφi = −c′(Bx∗)β∂Di(p
∗)

∂pi
− λc′(Bx∗)∂Dk(p

∗)

∂pi
− λ(n− 2)c′(Bx∗)β

∂Dk(p
∗)

∂pi

= −
[
β
∂Di(p

∗)

∂pi
+ λ (B − β)

∂Dk(p
∗)

∂pi

]
c′(Bx∗).

Using the above expression we can write

ϑ = −
{
∂Di(p

∗)

∂pi
+ λ(n− 1)β

∂Dk(p
∗)

∂pi
+ (n− 1)

[
β
∂Di(p

∗)

∂pi
+ λ (B − β)

∂Dk(p
∗)

∂pi

]}
c′(Bx∗)

= −
{
B
∂Di(p

∗)

∂pi
+ (n− 1) [λβ + λ (B − β)]

∂Dk(p
∗)

∂pi

}
c′(Bx∗)

= −
[
B
∂Di(p

∗)

∂pi
+ λ(n− 1)B

∂Dk(p
∗)

∂pi

]
c′(Bx∗)

= −B
[
∂Di(p

∗)

∂pi
+ λ(n− 1)

∂Dk(p
∗)

∂pi

]
c′(Bx∗).

Assumptions A.2 and v < 0 imply that ϑ < 0.�

By totally differentiating the first-order conditions with respect to λ and solving for ∂p∗/∂λ
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and ∂x∗/∂λ we obtain:

∂p∗

∂λ
=

1

∆

{
∂λxiφi

[
∂xipiφi + (n− 1)∂xjpiφi

]
− ∂λpiφi∆x

}
(67)

and
∂x∗

∂λ
=

1

∆

{
∂λpiφi

[
∂xipiφi + (n− 1)∂pjxiφi

]
− ∂λxiφi∆p

}
. (68)

To obtain sign {∂x∗/∂λ} and sign {∂p∗/∂λ} we next derive in turn each of the expressions

contained in equations (67) and (68). After some manipulations we can establish:

∂xipiφi + (n− 1)∂xjpiφi = −Bvλc′(Bx∗),

∂xipiφi + (n− 1)∂pjxiφi = −τvc′(Bx∗).

We also have that

∂λxiφi = −(n− 1)c′(Bx∗)βq∗ ≥ 0,

∂λpiφi = (n− 1)(p∗ − c(Bx∗))∂Dk(p
∗)

∂pi
> 0.

Finally, we need the expressions for ∆p (the expression for ∆x is given by (65)). Recall that

∆p ≡ ∂pipiφi + (n− 1)∂pipjφi. By differentiating and evaluating in the symmetric equilibrium,

we obtain

∂pipiφi = 2
∂Di(p

∗)

∂pi
+ (p∗ − c(Bx∗))

[
∂2Di(p

∗)

∂p2
i

+ λ(n− 1)
∂2Dk(p

∗)

∂p2
i

]

and, using that in the symmetric equilibrium ∂Di/∂pj = ∂Dj/∂pi and ∂2Di/∂pj∂pi = ∂2Dj/∂pj∂pi,

∂pipjφi = (1 + λ)
∂Di(p

∗)

∂pj
+ (p∗ − c(Bx∗))

[
(1 + λ)

∂2Di(p
∗)

∂pj∂pi
+ λ(n− 2)

∂2Dk(p
∗)

∂pj∂pi

]
. (69)

Thus,

∆p = v + vλ −
q∗

vλ
(n− 1)

{
1

n− 1

∂2Di(p
∗)

∂p2
i

+ λ
∂2Dk(p

∗)

∂p2
i

(70)

+

[
(1 + λ)

∂2Di(p
∗)

∂pj∂pi
+ λ(n− 2)

∂2Dk(p
∗)

∂pj∂pi

]}
.

Therefore,

∆ = −∆p

(
c′′(Bx∗)q∗τB + Γ′′(x∗)

)
− τBvvλ

(
c′(Bx∗)

)2 .
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Under regularity conditions ∆ > 0, then:

sign

{
∂x∗

∂λ

}
= sign

{
τ (p∗ − c(Bx∗)) ∂Dk(p

∗)

∂pi
v − βq∗∆p

}
(71)

and

sign

{
∂p∗

∂λ

}
= sign

{
−(n− 1)c′(Bx∗)βq∗

[
−Bvλc′(Bx∗)

]
− (n− 1)(p∗ − c(Bx∗))∂Dk(p

∗)

∂pi
∆x

}
,

thus

sign

{
∂p∗

∂λ

}
= sign

{
−Bβq∗vλc′(Bx∗) + (p∗ − c(Bx∗))∂Dk(p

∗)

∂pi

∆x

c′(Bx∗)

}
. (72)

Clearly, from (71) and (72), and in line with the Cournot oligopoly model: for β = 0, ∂x∗/∂λ < 0

and ∂p∗/∂λ > 0. Let P ′(c) be the cost pass-through coeffi cient P ′(c) ≡ dp∗/dc; for β > 0 we

can establish the analogous to Lemmata 1 and 2:

LEMMA A4 In the symmetric equilibrium

sign

{
∂x∗

∂λ

}
= sign

{
β − P ′(c) |v|

v2
λ

τ
∂Dk(p

∗)

∂pi

}
, (73)

where P ′(c) = vλ/∆p > 0, and

sign

{
∂p∗

∂λ

}
= sign {H − βB} , (74)

where

H =
∂Dk(p

∗)/∂pi

(vλc′(Bx∗))
2

[
−c
′′(Bx∗)BΓ′(x∗)

c′(Bx∗)
+ Γ′′(x∗)

]
. (75)

Proof. Inserting the first-order condition with respect to the price, p∗ − c(Bx∗) = −q∗/vλ,

into (71) yields

sign {∂x∗/∂λ} = sign

{
−τ ∂Dk(p

∗)

∂pi

(
v

vλ

)
− β∆p

}
.

By computing the total derivative of ∂φi/∂pi = 0 with respect to the cost c, we obtain P ′(c) =

vλ/∆p, and therefore (73). Using again the first-order condition: p∗ − c(Bx∗) = −q∗/vλ, and

equation (65), we get

sign

{
∂p∗

∂λ

}
= sign

{
−Bβvλc′(Bx∗)−

1

vλc′(Bx∗)

∂Dk(p
∗)

∂pi

[
−c′′(Bx∗)q∗ (τB)− Γ′′(x∗)

]}
.

Noting that the first-order condition with respect to R&D investment can be re-written as
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q∗ = Γ′(x∗)/(−c′(Bx∗)τ), and using that vλc′(Bx∗) > 0, we have

sign

{
∂p∗

∂λ

}
= sign

{
−Bβ − 1

(vλc′(Bx∗))
2

∂Dk(p
∗)

∂pi

[
−c′′(Bx∗) Γ′(x∗)

−c′(Bx∗)τ (τB)− Γ′′(x∗)

]}
= sign

{
−B +

1

β (vλc′(Bx∗))
2

∂Dk(p
∗)

∂pi

[
−c
′′(Bx∗)BΓ′(x∗)

c′(Bx∗)
+ Γ′′(x∗)

]}
.

As in the Cournot oligopoly model we define the functionH for Bertrand competition with differ-

entiated products as follows in equation (75). Thus, in the symmetric equilibrium: sign {∂p∗/∂λ} =

sign {H − βB}.�

In Cournot we showed that sign {∂q∗/∂λ} = sign {βB −H}. The reverse of the terms inside

the curly brackets is explained by the different type of competition (price/output competition)

in the two models. Assuming that Γ′′ > 0, we can rewrite H as follows:

H =
∂Dk(p

∗)/∂pi

(vλc′(Bx∗))
2 Γ′′(x∗)

[
−c
′′(Bx∗)Bx∗

c′(Bx∗)

Γ′(x∗)

Γ′′(x∗)x∗
+ 1

]
. (76)

By defining, as we did in the Cournot model, χ(Bx∗) ≡ −c′′(Bx∗)Bx∗/c′(Bx∗) ≥ 0, y(x∗) ≡

Γ′′(x∗)x∗/Γ′(x∗) ≥ 0,

ξ(q∗, x∗) ≡ (vλc
′(Bx∗))2

∂Dk(p∗)
∂pi

Γ′′(x∗)
> 0,

and by replacing these terms into (76) we get

H =
1

ξ(q∗, x∗)

(
1 +

χ(Bx∗)

y(x∗)

)
.

Note that the only difference with respect to the Cournot model is that here the expression

for the relative effectiveness of R&D (ξ) takes into account the fact that products are now

differentiated. In Cournot: ξ ≡ −(c′(Bx∗))2/(f ′(Q∗)Γ′′(x∗)); in Bertrand with differentiated

products, however, the term (f ′)−1 is replaced with vλ 2 (∂Dk(p
∗)/∂pi)

−1.

We can proceed as in the Cournot model and define the corresponding three regions: RI,

where ∂p∗/∂λ > 0 and ∂x∗/∂λ ≤ 0; RII where ∂p∗/∂λ > 0 and ∂x∗/∂λ > 0; RIII where

∂p∗/∂λ < 0 and ∂x∗/∂λ > 0.

Regarding RI, because of gross substitutes (∂Dk(p
∗)/∂pi > 0), we can have ∂x∗/∂λ < 0

for all β (73). This is the case when −∆p < Λ (∂Dk(p
∗)/∂pi) v/vλ. Regarding the spillover

threshold between RII and RIII, note that here, as in Cournot, Assumption A.4 implies that

the equation H − βB = 0 has a unique positive solution, which again we may denote by β′.

It follows that for β > β′, ∂p∗/∂λ < 0. Furthermore, RIII exists (because the threshold β′ is

strictly lower than 1) when n > H(1).
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B.2.2 Welfare analysis

Welfare (with quasilinear utility) at a symmetric equilibrium is given by

W = U(q∗)− c(Bx∗)nq∗ − nΓ(x∗),

where q∗ is the equilibrium output vector and U is the utility of a representative consumer,

assumed to be smooth and strictly concave (i.e., with a negative definite Hessian). By differen-

tiating with respect to λ:

W ′(λ) =

(∑
i

∂U(q∗)

∂qi
− nc(Bx∗)

)
∂q∗

∂λ
−
(
nc′(Bx∗)Bq∗ + nΓ′(x∗)

) ∂x∗
∂λ
.

From the maximization problem of the consumer: pi = ∂U(q∗)/∂qi, so

W ′(λ) = (p∗ − c(Bx∗))n∂q
∗

∂λ
−
(
nc′(Bx∗)Bq∗ + nΓ′(x∗)

) ∂x∗
∂λ
.

From the first-order condition with respect to price: p∗ − c(Bx∗) = −q∗/vλ, and from the

first-order condition with respect to R&D investment: Γ′(x∗) = −c′(Bx∗)q∗τ , thus

W ′(λ) = − q
∗

vλ
n
∂q∗

∂λ
−
(
nc′(Bx∗)Bq∗ − nc′(Bx∗)q∗τ

) ∂x∗
∂λ

= − q
∗

vλ
n
∂q∗

∂λ
− nc′(Bx∗)q∗(B − τ)

∂x∗

∂λ
.

From the demand definition, q∗ = Di(p
∗(λ)) we have that ∂q∗/∂λ = v (∂p∗/∂λ). Using that

B − τ = (1− λ)β(n− 1), we finally may write

W ′(λ) = −
[
v

vλ

∂p∗

∂λ
+ (1− λ)β(n− 1)c′(Bx∗)

∂x∗

∂λ

]
nq∗. (77)

Thus,

• in RI, where ∂x∗/∂λ < 0 and ∂p∗/∂λ > 0 (so ∂q∗/∂λ < 0): W ′(λ) < 0.

• in RII, where ∂x∗/∂λ > 0 and ∂p∗/∂λ > 0 (so ∂q∗/∂λ < 0): W ′(λ) ≶ 0.

• in RIII, where ∂x∗/∂λ > 0 and ∂p∗/∂λ < 0 (so ∂q∗/∂λ > 0): W ′(λ) > 0.

From (67), it follows that

∂p∗

∂λ
=

(n− 1)q∗

∆

{(
c′(Bx∗)

)2
βBvλ −

∂Dk(p
∗)/∂pi
vλ

[
c′′(Bx∗)q∗Bτ + Γ′′(x∗)

]}
. (78)
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Similarly, from (68), after some manipulations, we obtain

∂x∗

∂λ
=

(n− 1)q∗(−c′(Bx∗))
∆

∂Dk(p
∗)

∂pi

β
 ∆p

−∂Dk(p∗)
∂pi

− v

vλ
τ

 . (79)

By inserting (78) and (79) into (77) we obtain

W ′(λ) =
(n− 1) q∗ 2

∆

∂Dk(p
∗)

∂pi
z (80)

where

z ≡ (c′(Bx∗))2 βB(−v)

∂Dk(p∗)/∂pi
+

v

vλ 2

[
c′′(Bx∗)q∗Bτ + Γ′′(x∗)

]
(81)

+
(
c′(Bx∗)

)2
(1− λ)β(n− 1)

[
β (−∆p)

∂Dk(p∗)/∂pi
− v

vλ
τ

]
.

Remark B1. Consider the case of independent products, ∂Dk(p
∗)/∂pi = 0. If the local

monopoly problem is well-defined we have: (i) if β > 0, then λoTS = λoCS = 1, whereas (ii) if

β = 0, then λ has no impact on total surplus or consumer surplus.

Proof. It follows immediately from equation (71) that sign {∂x∗/∂λ} > 0 for β > 0 and

∂x∗/∂λ = 0 for β = 0. Similarly, from equation (72): sign {∂p∗/∂λ} < 0 (or equivalently

sign {∂q∗/∂λ} > 0) for β > 0, while ∂p∗/∂λ = ∂q∗/∂λ = 0 for β = 0. Using (77), W ′(λ) > 0 for

all λ if β > 0, thus λoTS = 1. Since sign {CS′(λ)} = sign {∂q∗/∂λ}, we also have that λoCS = 1. If

β = 0, clearly from (77), W ′(λ) = 0; note that for ∂Dk(p
∗)/∂pi = β = 0, first-order conditions

do not depend on λ.�

B.3 Two-stage model

We first derive the first-order conditions and the expression for β̃(λ) for the Bertrand case. We

then discuss the strategic effect and welfare in Bertrand with two stages.

Interior equilibrium and threshold β̃(λ). Let

ϕ ≡ −∂Di(p
∗)

∂pi
∂pipiφi + λ

∂Dk(p
∗)

∂pi

[
(n− 1)∂pipjφi − (n− 2)∂pipiφi

]
.

Then, using (37) we can write:

∂

∂xi
p∗j (x) =

−c′(Bx)

Ω
(−ϕ)

(
β̃(λ)− β

)
, (82)
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where

Ω ≡
(
∂pipiφi − ∂pipjφi

) [
∂pipiφi + (n− 1) ∂pipjφi

]
(83)

and

β̃(λ) =
1

(−ϕ)

[
∂Di(p

∗)

∂pi
∂pipjφi − λ

∂Dj(p
∗)

∂pi
∂pipiφi

]
. (84)

The denominator of β̃(λ) is positive since ϕ < 0:

ϕ ≡ −∂Di(p
∗)

∂pi
∂pipiφi + λ

∂Dk(p
∗)

∂pi

[
(n− 1)∂pipjφi − (n− 2)∂pipiφi

]
(85)

= −∂Di(p
∗)

∂pi
∂pipiφi + λ

∂Dk(p
∗)

∂pi

[
∂pipiφi + (n− 1)∂pipjφi

]
− λ∂Dk(p

∗)

∂pi
(n− 1)∂pipiφi

= λ
∂Dk(p

∗)

∂pi
∆p − ∂pipiφi

[
∂Di(p

∗)

∂pi
+ λ(n− 1)

∂Dk(p
∗)

∂pi

]
< 0.

Therefore, if
∂Di(p

∗)

∂pi
∂pipjφi − λ

∂Dj(p
∗)

∂pi
∂pipiφi < 0 (86)

then β̃(λ) < 0. Condition (86) is satisfied in the case of linear and constant elasticity demand

with differentiated products (see analysis below).

Finally, note that in Bertrand at the symmetric equilibrium first-order conditions boil down

to

q∗ + (p∗ − c(Bx∗))vλ = 0 (87)

and

−c′(Bx∗)τq∗ − Γ′(x∗) + (n− 1)
∂φi
∂pj

(
∂p∗j
∂xi

)
= 0. (88)

Strategic effect. The strategic effect is

ψ(x) ≡ (n− 1)
∂

∂pj
φi(p

∗(x),x)
∂

∂xi
p∗j (x). (89)

Next we show that ∂φi/∂pj is strictly positive for β < 1. We then show that ∂p∗j/∂xi < 0 with

strategic complements price competition and β high enough, and as a result the strategic effect

is negative.

We can write the first-order condition with respect to R&D as

∂

∂xi
φi(p

∗(x),x, λ) + (n− 1)
∂

∂pj
φi(p

∗(x),x, λ)
∂

∂xi
p∗j (x) = 0,
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and

∂

∂pj
φi(p

∗(x),x, λ) = (p∗ − c(Bx))
∂Di(p

∗)

∂pj
+ λ

[
q∗ + (p∗ − c(Bx))

∂Dj(p
∗)

∂pj

]
+λ(n− 2)(p∗ − c(Bx))

∂Dk(p
∗)

∂pj
,

which can be rewritten as

∂

∂pj
φi(p

∗(x),x, λ) =
−q∗
vλ

[
∂Di(p

∗)

∂pj
+ λ

∂Dj(p
∗)

∂pj
+ λ(n− 2)

∂Dk(p
∗)

∂pj

]
+ λq∗, (90)

where we have used the first-order condition: (p∗ − c(Bx)) = −q∗/vλ. To show that ∂φi(p∗(x),x, λ)/∂pj >

0, we rewrite (90) as follows:

∂

∂pj
φi(p

∗(x),x, λ) =
−q∗
vλ

[
∂Di(p

∗)

∂pj
+ λ

∂Dj(p
∗)

∂pj
+ λ(n− 2)

∂Dk(p
∗)

∂pj
− λvλ

]
=
−q∗
vλ

[
∂Di(p

∗)

∂pj
+ λ

∂Dj(p
∗)

∂pj
+ λ(n− 2)

∂Dk(p
∗)

∂pj

−λ
(
∂Di(p

∗)

∂pi
+ λ(n− 1)

∂Dk(p
∗)

∂pi

)]
.

Using now that in the symmetric equilibrium ∂Di/∂pi = ∂Dj/∂pj and ∂Di/∂pj = ∂Dk/∂pj =

∂Dk/∂pi for i 6= j 6= k, we can rewrite the above expression as follows

∂

∂pj
φi(p

∗(x),x, λ) =
−q∗
vλ

[
1 + λ (n− 2)− λ2 (n− 1)

] ∂Di(p
∗)

∂pj
(91)

=
−q∗
vλ

(1− λ) Λ
∂Di(p

∗)

∂pj
> 0 for λ < 1.

We now show that ∂2φi/∂xj∂pi is negative or positive depending on whether β is high or

low. Note that:

∂2φi
∂xi∂pi

(x) = −c′(Bx)

[
∂Di(p

∗)

∂pi
+ λ (n− 1)β

∂Dk(p
∗)

∂pi

]

and

∂2φi
∂xj∂pi

(x) = −c′(Bx)

[
β
∂Di(p

∗)

∂pi
+ λ

∂Dj(p
∗)

∂pi
+ λ (n− 2)β

∂Dk(p
∗)

∂pi

]
= −c′(Bx)

{
β

[
∂Di(p

∗)

∂pi
+ λ(n− 1)β

∂Dk(p
∗)

∂pi

]
+ (1− β)λ

∂Dk(p
∗)

∂pi

}
.
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Therefore, ∂2φi/∂xj∂pi < 0 for β high enough. From (37), we have

∂

∂xi
p∗j (x) =

1

Ω

(
∂xipiφi∂pipjφi − ∂xhpiφi∂pipiφi

)
,

where in the symmetric equilibrium, and using that p∗ − c(Bx) = −q∗/vλ,

∂pipiφi(x) = 2
∂Di(p

∗)

∂pi
+

(
−q∗
vλ

)[
∂2Di(p

∗)

(∂pi)
2 + λ(n− 1)

∂2Dk(p
∗)

(∂pi)
2

]

and

∂pipjφi(x) =
∂Di(p

∗)

∂pj
+

(
−q∗
vλ

)[
(1 + λ)

∂2Di(p
∗)

∂pj∂pi
+ λ(n− 2)

∂2Dk(p
∗)

∂pj∂pi

]
+ λ

∂Dj(p
∗)

∂pi
. (92)

Strategic complements price competition ∂pipjφi(x) > 0, together with the assumption ∆p <

0, both imply that Ω > 0. Note also that the assumption v < 0 implies ∂2φi/∂xi∂pi < 0, and

since the expression for ∂2φi/∂xj∂pi becomes negative for β high enough, we can establish:

∂p∗j
∂xi

< 0 with strategic complements price competition and β high enough,

in which case the strategic effect is negative and firms adopt a "puppy dog" strategy (Fudenberg

and Tirole, 1984): increasing xi decreases the prices of rivals because a larger xi shifts the price

best reply of firm j inwards as ∂2φj/∂xi∂pj < 0 as well as shifting inwards also the price best

reply of firm i since ∂2φi/∂xi∂pi < 0. The result is that the strategic effect is negative (ψ < 0)

and we have puppy dog investment incentives.

Welfare. From our previous analysis:

W ′(λ) = (p∗ − c(Bx∗))n∂q
∗

∂λ
−
(
nc′(Bx∗)Bq∗ + nΓ′(x∗)

) ∂x∗
∂λ
.

The first-order condition with respect to x is

Γ′(x∗) = −c′(Bx∗)
[
τ + (n− 1)ω(λ)

(
β̃(λ)− β

)]
q∗. (93)

Inserting the first-order conditions p∗−c(Bx∗) = −q∗/vλ and (93) into the expression forW ′(λ)

we obtain:

W ′(λ) =

{
− 1

vλ

∂q∗

∂λ
−
[
(1− λ)β − ω(λ)

(
β̃(λ)− β

)]
(n− 1) c′(Bx∗)

∂x∗

∂λ

}
nq∗. (94)

In Cournot when the strategic effect is negative (i.e.,
(
β̃(λ)− β

)
< 0) , the sign of the impact of
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λ on welfare in each region (RI, RII and RIII) is the same in the simultaneous and the two-stage

model. This is the case also with Bertrand competition and β high (puppy dog strategy).

B.4 Model specifications

In this section we characterize the model with linear and constant elasticity demands analogs

to AJ and CE. For each case, we first consider the simultaneous and then the two-stage model.

B.4.1 Linear model

Model specification: main assumptions. We assume the following: Di(p) = a − bpi +

m
∑

j 6=i pj with a, b,m > 0; this linear direct demand obtains from a representative consumer

with the following symmetric and strictly concave quadratic utility function:

U(q) = u1

n∑
i=1

qi −
1

2

(
u2

n∑
i=1

q2
i + 2u3

∑
j 6=i

qiqj

)
,

with u2 > u3 > 0, u1 > 0, and where

a =
u1

u2 + (n− 1)u3
,

b =
u2 + (n− 2)u3

[u2 + (n− 1)u3] (u2 − u3)

and

m =
u3

[u2 + (n− 1)u3] (u2 − u3)
.

(See Vives 1999, pp. 146-147.)

The innovation function of firm i is ci = c̄ − xi − β
∑

j 6=i xj and the cost of investing x in

R&D is given by Γ(x) = (γ/2)x2. Linear demand satisfies Assumption 1B, the innovation and

investment functions satisfy Assumptions A2 and A3. Under this model specification, we have

v = −b + (n − 1)m, and vλ = −b + λ(n − 1)m. According to the above analysis, we impose:

v < 0, i.e. b > (n− 1)m.

Simultaneous model Interior equilibrium. By solving the first-order conditions and using

that in the symmetric equilibrium q∗ = a+ vp∗, we derive the symmetric interior equilibrium:

p∗ =
vλ (Baτ − c̄γ) + aγ

∆
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and

x∗ =
τ(−vλ) (c̄v + a)

∆
.

Second-order, stability and regularity conditions. It is straightforward to get

∆x = −γ,

∆p = v + vλ = −2b+ (n− 1)m(1 + λ),

and

∆ = −(v + vλ)γ − vvλBτ .

Because of demand is linear, the regularity condition ∆p < 0 is implied by the assumption

v < 0. We thus only have impose the second regularity condition (64), therefore we assume

−(v + vλ)γ > vvλBτ . Second-order conditions are: ∂pipiφi = −2b < 0, ∂xixiφi = −γ < 0 and

∂pipiφi(∂xixiφi)− (∂xipiφi)
2 > 0, which is equivalent to 2γb > [−b+ λ(n− 1)βm]2.

Table B1: Linear Bertrand Model

Demand Di(p) = a− bpi +m
∑

j 6=i pj
ci = c̄− xi − β

∑
j 6=i xj

Γ(x) = (γ/2)x2

v = −b+ (n− 1)m
vλ = −b+ λ(n− 1)m

S.O.C γb > [−b+ λ(n− 1)βm]2 /2
Regularity Condition [− (v + vλ) /vvλ] γ > Bτ

Comparative statics on λ and spillover thresholds. Recall that only RI exits if

−∆p < (∂Dk(p
∗)/∂pi) Λ(v/vλ), i.e., if

− (v + vλ) < mΛ

(
v

vλ

)
, (95)

otherwise we can identify RII and RIII by deriving the corresponding spillover threshold. From

(73):

sign

{
∂x∗

∂λ

}
= sign

{
β
[
− (v + vλ)

vλ
v
− λ(n− 1)m

]
−m

}
.

Therefore,

if β ≤ β (λ) ≡ m [b− (n− 1)m]

λ(n− 1)2(λ+ 2)m2 − 4b (λ+ 1/4) (n− 1)m+ 2b2
, (96)

then ∂x∗/∂λ ≤ 0 and ∂p∗/∂λ > 0 (RI). It is easy to see that β (λ) depends only on m/b and
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that it is hump-shaped in m/b (with β (λ) = 0 for m/b = 0 and for m/b = 1/ (n− 1)).

Note that χ = 0, y = 1 and

ξ =
β [b− λ(n− 1)m]2

mγ
,

so

H =
mγ

[b− λ(n− 1)m]2
. (97)

Since vλ < 0, H is strictly increasing in λ. Thus,

sign

{
∂p∗

∂λ

}
= sign {H − βB} .

It follows that:

β′ =
−1 +

√
4H(n− 1) + 1

2(n− 1)
. (98)

The threshold β′, as H, is strictly increasing in λ (in AJ and KMZ β′ is independent of λ).

Figures B1a and B1b depict the spillover thresholds and the three regions. The threshold

for RI and RII is given by (96), whereas the threshold for RII and RIII is given by (98). For

illustrative purposes we consider two cases that only differ in the number of firms. In Figure

B1a, n = 8, and condition (95) is never satisfied for β suffi ciently high, and consequently RII

and/or RIII exist. In Figure B1b, n = 10, and condition (95) holds for λ > 0.882. Thus, for λ

suffi ciently high, only RI exists irrespective of the spillover level.

Spillover thresholds and regions RI, RII and RIII
4

Fig. B1a. Linear Bertrand model.

(n = 8)

Fig. B1b. Linear Bertrand model.

(n = 10)

Comparative statics on β′. Straightforward calculations show that the threshold β′(λ) is

strictly decreasing in b and strictly increasing in γ. These results are in line with the Cournot

4All simulations are conducted for a = 700, c̄ = 600, b = 1.4, m = 0.12 and γ = 70.
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model.5 We also obtain that β′(λ) is strictly increasing in the slope of the direct demand

with respect to rival prices, m. This follows since H has the same properties. However, H is

increasing in u3/u2 for u3/u2 low (local monopolies) and decreasing in u3/u2 for u3/u2 close

to 1 (homogenous products). Therefore β′(λ) is non-monotone in u3/u2. It can also be showed

that as in AJ and the CE model, β′(0) is strictly decreasing in n (the threshold does not depend

on n in KMZ), and therefore in terms of consumer surplus it is optimal to suppress overlapping

ownership for any level of spillovers when firm entry is insuffi cient. In particular, this is the case

in Bertrand with linear demand when n < mγ/b2, in which case β′(0) > 1. More generally, the

sign of ∂β′(λ)/∂n for some λ ∈ (0, 1) depends on the level of λ and n. Numerical simulations

show that for low or moderate values of λ, ∂β′(λ)/∂n < 0, whereas for high λ, ∂β′(λ)/∂n > 0

if n is suffi ciently high.6

PROPOSITION BL1 Under the linear demand specification, if − (v + vλ) < mΛ (v/vλ) then

only region RI exists. Otherwise, assume n > H(1), where H is given by (97), and let β (λ)

and β′ be given, respectively, by (96) and (98). Then the following statements hold :

(i) if β ≤ β (λ) , then ∂q∗

∂λ < 0 and ∂x∗

∂λ ≤ 0 (RI);

(ii) if β (λ) < β ≤ β′ (λ) , then ∂q∗

∂λ ≤ 0 and ∂x∗

∂λ > 0 (RII);

(iii) if β > β′ (λ) , then ∂q∗

∂λ > 0 and ∂x∗

∂λ > 0 (RIII).

We have that both β (λ) and β′ (λ) are increasing in λ and hump-shaped in u3/u2, and ∂β′(0)/∂n <

0.

Profit. Simulations show that also in Bertrand with differentiated products and linear

demand, profit in equilibrium is strictly increasing in the degree of overlapping ownership:

π∗′(λ) > 0.

Welfare. First, we derive the threshold, β̄, above which welfare increases with λ starting

from λ = 0. We obtain β̄ from the condition W ′(0) > 0. Using (80), we only have to solve

z|λ=0 = 0 for β to obtain the expression for β̄. In particular, we have to solve

−βBv
m

+
v

vλ 2
γ − β (n− 1)

[
β (−b+ v)

m
+

v

vλ

]
= 0,

5 In Cournot β′(0) is strictly increasing in b (see Table A3); recall that b is the (absolute value of the) slope of
the inverse demand in Cournot, while it is the slope of the direct demand with respect to own price in Bertrand.

6For example, for b = 1.5, m = 0.1 and γ = 60, ∂β′(λ)/∂n < 0 for n = 2..5, but ∂β′(λ)/∂n > 0 for n = 6 and
λ > 0.87.
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or, equivalently,

vλ
2 (n− 1)(b− 2v)β2 − vλv [vλ +m(n− 1)]β + vγm = 0.

The above equation has two roots, only one of them can be positive since −2b(n−1)(b−2v) < 0.

Thus, β̄ is given by

β̄ =
v 2 −

√
v {v(n− 1)2m2 + 2 [(4γ − b) v − 2bγ] (n− 1)m+ b2v}

−2b(n− 1)(b− 2v)
.

Numerical simulations confirm that the spillover thresholds satisfy β′(0) > β̄.

Table B2: H and Spillover Thresholds in Linear Bertrand Model

H = mγ/ [b− λ(n− 1)m]2

β (λ) = m [b− (n− 1)m] /
[
λ(n− 1)2(λ+ 2)m2 − 4b (λ+ 1/4) (n− 1)m+ 2b2

]
β̄ =

(
v 2 −

√
v {v(n− 1)2m2 + 2 [(4γ − b) v − 2bγ] (n− 1)m+ b2v}

)
/ [−2b(n− 1)(b− 2v)]

β′ =
(
−1 +

√
4H(n− 1) + 1

)
/ [2(n− 1)]

Comparative statics on β̄. As in Cournot (in AJ, KMZ and CE), the threshold β̄ decreases

with n. Similarly and in line with Cournot: β̄ decreases with the slope of demand and increases

with the parameter of the slope for the investment cost, γ. Regarding product differentiation:

β̄ is hump-shaped in u3/u2 since β̄ = 0 both for u3/u2 = 0 and u3/u2 = 1. Finally, in Bertrand

also β̄ may take values greater than 1 (so λoTS = 0 irrespective of the value of β) when there are

a few firms in the market and γ (and b) are suffi ciently high (low), respectively. Note that in

Figures B2a-c we assume that parameters a, b and m are fixed as n changes. This implies that

parameters u1, u2 and u3 must change with n (see Section B.4.1). Alternatively, we assume in

Figure B2d that parameters u1, u2 and u3 are fixed (such that a = 750, b = 1.5 and m = 0.1

for n = 8), while a, b and m change with n. Results are qualitatively the same: the threshold

in B2a and B2d are equal or almost the same for n equal or close to 8, while it is higher in B2d

than in B2a for two or three firms in the market.
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Threshold value β̄

Fig. B2a. Linear Bertrand model.

(b = 1.5, m = 0.1)

Fig. B2b. Linear Bertrand model.

(γ = 60, m = 0.1)

Fig. B2c. Linear Bertrand model.

(b = 1.5, γ = 60)

Fig. B2d. Linear Bertrand model.

(u1 = 937.5, u2 = 0.7 and u3 = 0.078)
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Optimal degree of overlapping ownership (TS and CS standard)7

Fig. B3a. Linear Bertrand model.

(γ = 50, n = 6)

Fig. B3b. Linear Bertrand model.

(γ = 50, n = 8)

Fig. B3c. Linear Bertrand model.

(γ = 80, n = 6)

Fig. B3d. Linear Bertrand model.

(γ = 80, n = 8)

Comparative statics on the socially optimal degree of overlapping ownership. Our simulations

confirm that the main findings obtained in Cournot also hold in Bertrand, namely the socially

optimal level of overlapping ownership increases with the size of spillovers and with the number

of firms. Secondly, while the comparative statics are qualitatively similar in terms of consumer

surplus, the scope for overlapping ownership is lower. Thirdly, Figures B3 show that for not

7All simulations are conducted for a = 700, b = 1.5, m = 0.1 and c̄ = 500.
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too high concentrated markets and high spillover levels, λ = 1 can be optimal in terms of total

and consumer surplus. The thresholds β̄ and β′(0), as discussed above, decrease with n, and

the optimal degrees of overlapping ownership λoTS and λ
o
CS, decrease with the parameter of the

slope for the investment cost, γ.

Optimal degree of overlapping ownership (TS and CS standard) 8

Fig. B4a. Linear Bertrand model.

(γ = 80, β = 0.2)

Fig. B4b. Linear Bertrand model.

(γ = 80, β = 0.4)

Fig. B4c. Linear Bertrand model.

(γ = 80, β = 0.6)

Fig. B4d. Linear Bertrand model.

(γ = 80, β = 0.8)

8All simulations are conducted for a = 750, b = 1.5, m = 0.1 and c̄ = 500.
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Fig. B4e. Linear Bertrand model.

(γ = 80, β = 0.2, u1 = 937.5, u2 = 0.7

and u3 = 0.078)

Fig. B4f. Linear Bertrand model.

(γ = 80, β = 0.4, u1 = 937.5, u2 = 0.7

and u3 = 0.078)

Fig. B4g. Linear Bertrand model.

(γ = 80, β = 0.6, u1 = 937.5, u2 = 0.7

and u3 = 0.078)

Fig. B4h. Linear Bertrand model.

(γ = 80, β = 0.8, u1 = 937.5, u2 = 0.7

and u3 = 0.078)

Finally, as Figures B4a-d indicate, it is no optimal to allow overlapping ownership for highly

concentrated markets. As in the case of output competition, λoTS increases with the number of

firms, and as in AJ and CE, λoCS increases weakly with the number of firms and only if n is

suffi ciently large relative to the size of the spillover.9 In Figures B4a-d we keep parameters a, b

9Recall that in KMZ the threshold β′, and therefore sign{CS′(λ)}, are independent of the number of firms.
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and m fixed as n changes, so parameters u1, u2 and u3 must change with n. In Figures B4e-h,

however, we allow parameters a, b and m to change with n by setting u1, u2 and u3 at values

such that a = 750, b = 1.5 and m = 0.1 for n = 8. Results are qualitatively the same in the

two cases.
Optimal degree of overlapping ownership (TS and CS standard)10

Fig. B5a. Linear Bertrand model.

(β = 0, γ = 150, n = 5)

Fig. B5b. Linear Bertrand model.

(β = 0.25, γ = 150, n = 5)

Fig. B5c. Linear Bertrand model.

(β = 0.75, γ = 150, n = 5)

Fig. B5d. Linear Bertrand model.

(β = 1, γ = 150, n = 5)

Comparative statics on the degree of product differentiation. Here, we fix u2 = 1, and we then

compute the optimal degrees of overlapping ownership (λoTS and λ
o
CS) for values of u3 ranging

10All simulations are conducted for a = 700 and c̄ = 500.
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from 0 (which reflects the monopoly case) to 0.92 (which reflects the case of intense competition

because of very low product differentiation). To guarantee that the regularity condition is

satisfied for u3 ∈ [0, 0.92] we consider n = 5 and γ = 150. Simulations show that for β > 0, λoTS

is U-shaped, and also λoCS is for β suffi ciently high (see Figures B5a-d). Therefore, for β > 0, if

u3 → 0, then λoTS = λoCS = 1. The U-shaped pattern is robust and also appears for higher/lower

values of n and γ. In particular, in Figures B6a-b we conduct similar simulations but assuming

n = 8 and γ = 60.

Optimal degree of overlapping ownership (TS and CS standard)11

Fig. B6a. Linear Bertrand model.

(β = 0.1, γ = 60, n = 8)

Fig. B6b. Linear Bertrand model.

(β = 0.9, γ = 60, n = 8)

Two-stage model Interior equilibrium. By solving the first-order conditions (87) and

(88) with c = c̄−Bx∗ and q∗ = a+ vp∗, we obtain the symmetric interior equilibrium:

p∗ =
{c̄γ − a [(n− 1)s(λ) + τ ]B} vλ − aγ
{γ + v [(n− 1) s(λ) + τ ]B} vλ + vγ

and

x∗ =
vλ(c̄v + a) [(n− 1)s(λ) + τ ]

{γ + v [(n− 1)s(λ) + τ)]B} vλ + vγ
,

where s(λ) = ω(λ)(β̃(λ)− β), and ω(λ) and β̃(λ) are obtained below.

Strategic effect. Here, we first obtain ∂p∗j (x)/∂xi, and we then derive the expressions for

11All simulations are conducted for a = 700 and c̄ = 500.
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the strategic effect of investment (ψ) and the threshold β̃(λ). With linear demand we have:

∂xipiφi(x) = −c′(Bx) [−b+ λ (n− 1)βm]

and

∂xjpiφi(x) = −c′(Bx) [−bβ + λm+ λ (n− 2)βm] .

We also have that ∂pipiφi(x) = −2b and ∂pipjφi(x) = m (1 + λ). Therefore,

∂pipiφi(x)− ∂pipjφi(x) = −2b−m(1 + λ),

∂pipiφi(x) + (n− 1)∂pipjφi(x) = −2b+ (n− 1)m(1 + λ),

∂pipjφi(x)− ∂pipiφi(x)β = m (1 + λ) + 2bβ.

Using (37) we can write

∂

∂xi
p∗j (x) =

−c′(Bx)

Ω
[ϕ(λ)β − (1− λ) bm] ,

where

Ω = [−2b−m(1 + λ)] [−2b+ (n− 1)m(1 + λ)] > 0,

and

ϕ(λ) = λ (1 + λ) (n− 1)m2 + 2λ (n− 2) bm− 2b2 < 0

since ϕ(0) = −2b2 < 0, ϕ(1) = 2(b+m) [−b+m(n− 1)] < 0 and ϕ′(λ) > 0. Therefore,

∂

∂xi
p∗j (x) < 0.

From (91) we may write

∂

∂pj
φi(p

∗(x),x, λ) =
−q∗
vλ
{m [1 + λ (n− 2)]− bλ}+ λq∗

= − q
∗

vλ
m (1− λ) Λ.

Note that (1− λ)Λ is strictly positive for all λ < 1, thus, and as expected, for λ < 1:

∂

∂pj
φi(p

∗(x),x, λ) > 0.
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Therefore, the strategic effect of investment is

ψ ≡ (n− 1)
∂φi
∂pj

(
∂p∗j
∂xi

)
= −(n− 1)

q∗

vλ
m (1− λ) Λ

(
−c′(Bx)

Ω
[ϕ(λ)β − (1− λ) bm]

)
=
−c′(Bx)

Ω

(
− q
∗

vλ

)
m(n− 1) (1− λ) Λ [ϕ(λ)β − (1− λ) bm] < 0.

We can rewrite the strategic effect of investment as

ψ = −c′(Bx)q∗ω(λ)
(
β̃(λ)− β

)
,

where

ω(λ) =
m(n− 1) (1− λ) Λϕ(λ)

Ωvλ
> 0

and

β̃(λ) =
1− λ
ϕ(λ)

bm < 0.

Welfare. The expression for W ′(λ) is given by (94). Recall that in Cournot only when the

strategic effect is negative, the sign of the impact of λ on welfare in each region (RI, RII and

RIII) is the same in the simultaneous and the two stage model. The reason is that the factor

that multiplies ∂x∗/∂λ in the expression for W ′(λ) is positive. However, when the strategic

effect is positive and spillovers are low, the factor is negative and as a result, welfare decreases

with λ in RII, and can increase or decrease with λ in RI and in RIII. In the Bertrand model

with linear demand, the strategic effect is always negative, and as in Cournot, the factor that

multiplies ∂x∗/∂λ is positive. (Note also that −1/vλ > 0.) Therefore, the sign of the impact

of λ on welfare in each region (RI, RII and RIII) is the same in the simultaneous and the two

stage model: W ′(λ) < 0 when x∗ decreases and p∗ increases with λ (as in RI), W ′(λ) > 0 when

x∗ increases and p∗ decreases with λ (as in RIII), and W ′(λ) ≷ 0 when x∗ and p∗ increase with

λ (as in RII).

Next figures depict the threshold β̄2S
LD above which welfare increases with λ at λ = 0.
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Threshold value β̄12

Fig. B7a. Linear Bertrand 2-stage model.

(b = 1.5,m = 0.1)

Fig. B7b. Linear Bertrand 2-stage model.

(m = 0.1, γ = 60)

Fig. B7c. Linear Bertrand 2-stage model.

(b = 1.5, γ = 60)

Comparative statics on β̄. Results are consistent with those obtained in Cournot and in

simultaneous Bertrand: the threshold β̄ increases with m and γ, and decreases with n and with

b. In addition, and in line with the other models, β̄ may be greater than 1 (and thus λoTS = 0

for all β) when there are a few firms in the market and γ (and b) are suffi ciently high (low),

respectively.

12 In the three simulations: a = 900 and c̄ = 500.
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Optimal degree of overlapping ownership (TS and CS standard)13

Fig. B8a. Linear Bertrand 2-stage

model. (γ = 50, n = 6)

Fig. B8b. Linear Bertrand 2-stage

model. (γ = 50, n = 8)

Fig. B8c. Linear Bertrand 2-stage

model. (γ = 80, n = 6)

Fig. B8d. Linear Bertrand 2-stage

model. (γ = 80, n = 8)

Comparative statics on the socially optimal degree of overlapping ownership. Results are

similar to those obtained in Cournot with 2-stages: λoTS increases with β and n, and when R&D

has commitment value λoTS tends to be higher than in the simultaneous model when spillovers

are high. However and unlike the Cournot model, we do not observe cases in which λoCS > λoTS.

The reason is that those cases may arise in Cournot when the strategic effect is positive; in

13All simulations are conducted for a = 900, b = 1.5, m = 0.1 and c̄ = 500.
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Bertrand with linear demand the strategic effect is always negative. Finally, in line with the

simultaneous case, λoTS and λ
o
CS decrease with γ. Note also that we do not have a bang-bang

solution for CS.
Optimal degree of overlapping ownership (TS and CS standard)14

Fig. B9a. Linear Bertrand 2-stage

model. (γ = 80, β = 0.2)

Fig. B9b. Linear Bertrand 2-stage

model. (γ = 80, β = 0.4)

Fig. B9c. Linear Bertrand 2-stage

model. (γ = 80, β = 0.6)

Fig. B9d. Linear Bertrand 2-stage

model. (γ = 80, β = 0.8)

Figures B9 confirm that it is no optimal to allow overlapping ownership for highly concen-

trated markets. In line with other models, λoTS increases with the number of firms, and λ
o
CS

increases weakly with n (only if n is suffi ciently large relative to the size of the spillover).

14All simulations are conducted for a = 900, b = 1.5, m = 0.1 and c̄ = 500.
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Optimal degree of overlapping ownership (TS and CS standard)15

Fig. B10a. Linear Bertrand 2-stage

model. (γ = 60, β = 0.2)

Fig. B10b. Linear Bertrand 2-stage

model. (γ = 60, β = 0.4)

Fig. B10c. Linear Bertrand 2-stage

model. (γ = 60, β = 0.6)

Fig. B10d. Linear Bertrand 2-stage

model. (γ = 60, β = 0.8)

B.4.2 Constant elasticity model

Model specification: main assumptions. Consider the following form for the representative

consumer’s utility function

U =

[
n∑
i=1

qρi

]1/ρ

qθ0,

15All simulations are conducted for a = 900, b = 1.5, m = 0.1 and c̄ = 500.
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with ρ ∈ (0, 1) and θ > 0, and where q0 is the numéraire and qi is quantity for the variety i

of the differentiated product. The consumer’s problem consists of maximizing U subject to the

budget constraint
∑n

i=0 piqi = Y , where Y is aggregate income. The demand functions resulting

from this problem are

Di(p) =
p
−1−1/µ
i∑n
j=1 p

−1/µ
j

S,

where µ = (1 − ρ)/ρ ∈ (0,∞), and S ≡ Y/(1 + θ) is the total spending on the differentiated

product variants; the amount of numéraire is q0 = θS. Note that σ = 1/(1− ρ) is the constant

elasticity of substitution between any two products. As ρ → 1 (σ → ∞), products become

perfect substitutes, while as ρ→ 0 (σ → 1), products become independent.

Innovation function is ci = κ(xi + β
∑

j 6=i xj)
−α with α, κ > 0, whereas the investment cost

function is Γ(xi) = xi. Thus, the innovation and investment functions satisfy Assumptions A2

and A3. CE demand, as specified, is not quasilinear, but it is smooth and downward sloping,

the demand system is symmetric and products are gross substitutes (Assumption 1B). From

Table B3, we get at the symmetric equilibrium

v∗ = − 1

np∗2
S < 0

and

v∗λ = −(n− 1)(1− λ) + µn

n2p∗2µ
S < 0.

Table B3: CE Demand Bertrand Basic Derivatives
for i 6= j 6= k

∂Di(p
∗)/∂pi = − S

n2p∗2µ (n− 1 + nµ)

∂2Di(p
∗)/ ∂pi

2 = 2S
n3p∗3µ2

[
n2µ2 + 3

2(n− 1)nµ+ 1
2(n− 2)(n− 1)

]
∂Di(p

∗)/∂pj = S
n2p∗2µ

∂Di(p
∗)/ ∂pj

2 = − S
n3p∗3µ2 [(n− 2) + nµ]

∂2Di(p
∗)/∂pj∂pi = − S

n3p∗3µ2 [(n− 2) + nµ]

∂2Di(p
∗)/∂pk∂pj = 2S

n3p∗3µ2

Simultaneous model Interior equilibrium. The first-order conditions in the symmetric

solution are given by (61) and (62):

p∗ − c(Bx∗)
p∗

=
1

ηi − λ(n− 1)ηik
;

−c′(Bx∗)q∗τ = Γ′(x∗),
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where ηi = (n − 1 + nµ)/nµ and ηik = 1/nµ. In the symmetric solution: Di = Dk = q∗ =

S/(np∗), ci = κ(Bx∗)−α, c′ = ∂ci/∂xi|xi=x∗ = −ακ(Bx∗)−α−1, and Γ′(x∗) = 1; by solving the

system of first-order conditions for p∗ and x∗ we get the symmetric interior equilibrium:

x∗ =
ατSA

Bn
(99)

p∗ =
κ

A (ατSA/n)α
, (100)

where

A = 1 +
µn

Λ− n(1 + µ)
=

n− Λ

n− Λ + nµ
> 0 for λ < 1.

Table B4: CE Bertrand Model

Demand Di(p) = Sp
−1−1/µ
i /

∑n
j=1 p

−1/µ
j

ci = κ(xi + β
∑

j 6=i xj)
−α

Γ(x) = x
v = −S/np∗2
vλ = −S [(n− 1)(1− λ) + nµ] /n2p∗2µ

S.O.C τn4µ(n− Λ)λ̃(1 + α)(1 + µ)− n2αA (µn+ n− Λ) [(1 + µ)n− τ ]2 > 0
Regularity Condition λ < 1

with λ̃ = 1 + λ(n− 1)β2.

Second-order, stability and regularity conditions. We first check the stability and

regularity conditions; using (65) and (70) and from Table B3 we obtain

∆x = −(1 + α)
Bn

ατSA
< 0,

∆p = −(1− λ)(n− 1)

n2p∗2µ
S < 0 (101)

and

∆ = ∆p∆x − τBvvλ
(
c′(Bx∗)

)2
=

A
(
ατSA
n

)2α
B

nκ2µατ
(n− 1)(1− λ) > 0

for λ < 1.

Second-order conditions are: (i) ∂pipiφi < 0; (ii) ∂xixiφi < 0; and (iii) ∂pipiφi (∂xixiφi) −
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(∂pixiφi)
2 > 0. Conditions (i) and (ii) are satisfied:

∂pipiφi = 2
∂Di(p

∗)

∂pi
−
(
q∗

vL

)[
∂2Di(p

∗)

∂p2
i

+ λ(n− 1)
∂2Dk(p

∗)

∂p2
i

]
(102)

= −
S1+2α

(
ατ
n

)2α
A2α+2(1− λ)(1 + µ)

(
n−1
n

)
[(1− λ)(n− 1) + µn]µκ2

< 0

and

∂xixiφi = −c′′(Bx∗)
[
1 + λ(n− 1)β2

]
q∗ − Γ′′(x∗)

= −
(

1 + α

α

)
n

τSA

[
1 + λ(n− 1)β2

]
< 0.

Using that

∂pixiφi = −
(
ατSA
n

)α
A

κnµτ
[(n− 1)(1− βλ) + nµ] ,

we have that condition (iii) is satisfied iff

−
(
ατSA
n

)2α
A

µ2n4 [(n− 1)(1− λ) + µn]κ2τα
{D − E} > 0

where

D ≡ A3 [(−βλ+ µ+ 1)n+ λβ − 1]2 [(n− 1)(1− λ) + µn] τS2α3 n2

(ατSA)2

and

E ≡ n4µ(1− λ)(n− 1)
[
1 + λ(n− 1)β2

]
(1 + α)(1 + µ).

Therefore, the SOC reduces to

τn4µ(n− Λ)λ̃(1 + α)(1 + µ)− n2αA (µn+ n− Λ) [(1 + µ)n− τ ]2 > 0,

where λ̃ ≡ 1 + λ(n− 1)β2.

Comparative statics on λ and spillover thresholds. Recall that only RI exits (irre-

spective of the spillover level) if −∆p < (∂Dk(p
∗)/∂pi) Λ(v/vλ); replacing terms and simplifying

the condition reduces to

µn(2Λ− n)− (n− 1)2(1− λ)2 > 0, (103)

which holds for λ = 1. If (103) does not hold, then we may identify RII and RIII by deriving

the corresponding spillover threshold. From (99) we have that

∂x∗

∂λ
=

2αS(n− 1)

Bn [n− Λ + µn]2

{
−
[(
−λ

2

2
+ (1 + µ)λ− 1 + µ

2

)
n+

(1− λ)2

2

]
β(n− 1)− µn

2

}
,
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which implies that

sign

{
∂x∗

∂λ

}
= sign

{
β

[(
λ2

2
− (1 + µ)λ+

1 + µ

2

)
n− (1− λ)2

2

]
(n− 1)− µn

2

}
.

Therefore,

if β ≤ β (λ) ≡ µn

(n− 1)
{[
λ2 + (1 + µ)(1− 2λ)

]
n− (1− λ)2

} , (104)

then ∂x∗/∂λ ≤ 0 and ∂p∗/∂λ > 0 (RI). Simple calculations show that ∂β (λ) /∂µ > 0. Since

dµ/dρ = −1/ρ2 < 0, we have that ∂β (λ) /∂ρ < 0. From (100) we obtain

∂p∗

∂λ
=

2κ

(n− 1)(1− λ)2
{

(n−1)(1−λ)αSτ
n[µn+(n−1)(1−λ)]

}α
τ
ϑCE,

where

ϑCE ≡ (n− 1)

{[(
−λ

2

2
+ (µ+ 1)λ− 1 + µ

2

)
n+

(1− λ)2

2

]
α+

λµn

2

}
β +

µn(1 + α)

2
.

It follows that

sign

{
∂p∗

∂λ

}
= sign {ϑCE} .

Consequently,

β′ =
µn(1 + α)

(n− 1)
({[

λ2 + (1 + µ)(1− 2λ)
]
n− (1− λ)2

}
α− λµn

) . (105)

Using that Γ′′ = 0 and by replacing p∗, x∗, ∂Dk(p
∗)/∂pi, c′(Bx∗) and c′′(Bx∗) into (75) we

obtain:

H =
nµ(1 + α)τB

(n− Λ)α [n(1 + µ)− Λ]
. (106)

Note that sign {∂p∗/∂λ} = sign {H − βB}, so by solving H −βB = 0 for β we obtain again the

expression for β′ given by (105).

Recall that CS′(λ) > (<)0 iff β > (<)β′. The threshold β′ is strictly increasing in λ:

∂β′

∂λ
=
µn(1 + α)

(n− 1)

[µn(1 + 2α) + 2(1− λ)(n− 1)α]({[
λ2 + (1 + µ)(1− 2λ)

]
n− (1− λ)2

}
α− λµn

)2 > 0.

As a result, λoCS > 0 if β > β′(0), where

β′(0) =
µn(1 + α)

(n− 1) [(1 + µ)n− 1]α
.
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Spillover thresholds and regions RI, RII and RIII
16

Fig. B11a. CE Bertrand model.

(n = 6, α = 0.5, ρ = 0.5)

Fig. B11b. CE Bertrand model.

(n = 10, α = 0.5, ρ = 0.5)

Fig. B11c. CE Bertrand model.

(n = 6, α = 0.2, ρ = 0.5)

Fig. B11d. CE Bertrand model.

(n = 10, α = 0.2, ρ = 0.5)

Fig. B11e. CE Bertrand model.

(n = 6, α = 0.5, ρ = 2/3)

Fig. B11f. CE Bertrand model.

(n = 10, α = 0.5, ρ = 2/3)

We depict the spillover thresholds and the three regions in Figures B11. For illustrative

16All simulations are conducted for κ = 1, Y = 20 and θ = 0.05. Note that S = Y/(1 + θ).
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purposes, we consider six cases that differ in n, α and ρ. In contrast to the linear demand case,

the condition under which only RI exists for all β, which is given by (103), always holds for λ

close or equal to 1. For lower values of λ, RII and/or RIII may exist for β suffi ciently high. Fig.

11a-d show how area RIII (respectively, RII) increases (decreases) with α, and illustrate that

RIII increases with n. Finally, the comparison of Fig. B11a with B11e, and B11b with B11f,

display the increase of RIII with ρ.

Comparative statics on β′. Straightforward calculations show that β′(λ) is strictly decreasing

in α and strictly increasing in µ. Thus, ∂β′(λ)/∂ρ < 0. As in the linear demand case, β′(0) is

strictly decreasing in n. Therefore, if β′(0) > 1 for n = 2, which holds when µ > α/2, then to

have β′(0) < 1, so that λoCS > 0 when β > β′(0), the number of firms must be suffi ciently high

such that

n >

2(1 + µ)α+ µ+ 2

√[(
α+ 1

2

)2
µ+ α2 + α

]
µ

2(1 + µ)α
.

PROPOSITION BCE1 Under the CE demand specification, if µn(2Λ−n)−(n−1)2(1−λ)2 > 0

then only region RI exists. Otherwise, assume n > H(1), where H is given by (106), and let

β (λ) and β′ be given, respectively, by (104) and (105). Then the following statements hold :

(i) if β ≤ β (λ) , then ∂q∗

∂λ < 0 and ∂x∗

∂λ ≤ 0 (RI);

(ii) if β (λ) < β ≤ β′, then ∂q∗

∂λ ≤ 0 and ∂x∗

∂λ > 0 (RII);

(iii) if β > β′, then ∂q∗

∂λ > 0 and ∂x∗

∂λ > 0 (RIII).

We have that β (λ) and β′ (λ) are increasing in λ and decreasing in ρ, and ∂β′(0)/∂n < 0.

Profit. By inserting equilibrium values into the profit function and simplifying, we obtain:

π(λ) =
1

nB

[
nµB − ατ(n− Λ)

(µ+ 1)n− Λ

]
S.

Simulations show that also in Bertrand with CE demand, profit in equilibrium is strictly in-

creasing in the degree of overlapping ownership: π∗′(λ) > 0.

Utility. Note that the indirect utility function in not linear in income. Thus, to solve the

first-best problem we have to maximize the utility function subject to the resource constraint:

Y =
∑n

i=1 ciqi +
∑n

i=1 Γ(xi) + q0. At the symmetric equilibrium the utility function with this

constraint included is

V (λ) = n1/ρq∗ (Y − nc(Bx∗)q∗ − nx∗)θ ,
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where Y = S(1 + θ). Computing V ′(λ) and using the first-order condition 1 = −c′(Bx∗)τq∗,

after some manipulations we can write

V ′(λ) = n1/ρ%θ−1

{
[S(1 + θ)− nc(Bx∗)q∗(1 + θ)− nx∗] ∂q

∗

∂λ
− c′(Bx∗)β(n− 1)(1− λ)θnq∗

2 ∂x∗

∂λ

}
,

where % ≡ S(1 + θ)− nc(Bx∗)q∗ − nx∗.

We now may obtain the threshold β̄ from the condition W ′(0) > 0. In particular, the

equation W ′(0) = 0 is quadratic in β, and writes as ϑ1β
2 + ϑ2β + ϑ3 = 0, where

ϑ1 ≡ α [(µ+ 1)n− 1] (n− 1)2
{
Sαθ(n− 1)2Z−1 + [(µ+ 1)n− 1]n(1 + θ)nµ

}
,

ϑ2 ≡ −n(n− 1)
{
− [(µ+ 1)n− 1] (1 + θ) [−(n− 1)α+ nµ] (n− 1) + Sµα2θ(n− 1)2Z−1

+ [(µ+ 1)n− 1]2
[
(n− 1)α2 − (1 + θ)(n− 1)α+ nµ(1 + θ)

]}
,

and

ϑ3 ≡ −n2µ(α+ 1) [(µ+ 1)n− 1] {[(1 + θ)µ− α]n+ α} ,

with

Z ≡ αS(n− 1)

[(µ+ 1)n− 1]n
.

The threshold β̄ is given by the positive root:

β̄ =
−ϑ2 +

√
ϑ2

2 − 4ϑ1ϑ3

2ϑ1
.

Table B5: H and Spillover Thresholds in CE Bertrand Model

H = nµ(1 + α)τB/ {(n− Λ)α [n(1 + µ)− Λ]}
β (λ) = µn/

(
(n− 1)

{[
λ2 + (1 + µ)(1− 2λ)

]
n− (1− λ)2

})
β̄ =

(
−ϑ2 +

√
ϑ2

2 − 4ϑ1ϑ3

)
/ (2ϑ1)

β′ = µn(1 + α)/
[
(n− 1)

({[
λ2 + (1 + µ)(1− 2λ)

]
n− (1− λ)2

}
α− λµn

)]

65



Threshold value β̄

Fig. B12a.CE Bertrand model. Fig. B12b. CE Bertrand model.

Comparative statics on β̄. We observe in Fig. 12a,b that β̄ decreases with α and ρ. The

threshold as in the previous cases decreases with n and may take values greater than 1 (so

λoTS = 0 irrespective of the value of β) when there are a few firms in the market. Note that we

use notation λoTS with subscript TS even tough we refer to utility V .

Comparative statics on the socially optimal degree of overlapping ownership. Simulation

results are in line with previous findings: the socially optimal level of overlapping ownership

increases with the size of spillovers (see Figures B13a-d) and with the number of firms (see

Figures B14a-d).
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Optimal degree of overlapping ownership (TS and CS standard)17

Fig. B13a. CE Bertrand model.

(α = 0.5, ρ = 0.5, n = 6)

Fig. B13b. CE Bertrand model.

(α = 0.5, ρ = 0.5, n = 8)

Fig. B13c. CE Bertrand model.

(α = 0.75, ρ = 0.5, n = 6)

Fig. B13d. CE Bertrand model.

(α = 0.5, ρ = 2/3, n = 6)

17All simulations are conducted for κ = 1, Y = 20 and θ = 0.05.
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Optimal degree of overlapping ownership (TS and CS standard)18

Fig. B14a. CE Bertrand model.

(α = 0.5, ρ = 2/3, β = 0.2.)

Fig. B14b.CE Bertrand model. (α = 0.5,

ρ = 2/3, β = 0.4.)

Fig. B14c. CE Bertrand model.

(α = 0.5, ρ = 2/3, β = 0.6.)

Fig. B14d. CE Bertrand model.

(α = 0.5, ρ = 2/3, β = 0.8.)

Comparative statics on the degree of product differentiation. In Fig. B15a-d we depict the

optimal degree of overlapping ownership (λoTS) for ρ ∈ (0, 1); if ρ → 0, then products tend to

be independent, while if ρ → 1, then products tend to be perfect substitutes. The grey area

represents the values for ρ and λ where the interior (regular) equilibrium exists.19 Simulations

18All simulations are conducted for κ = 1, Y = 20 and θ = 0.05.
19That is, the second-order condition holds, and profit, cost, price, output and R&D are positive. (The

regularity condition holds for λ < 1.)
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show that for β > 0, λoTS increase towards 1 when ρ → 1. However, λoTS is not U-shaped, the

reason is that the monopoly case is not well defined with CE demand: when ρ→ 0, the price p

tends to infinity, and therefore the output q tends to zero.

Optimal degree of overlapping ownership20

Fig. B15a. CE Bertrand model.

(α = 0.5, β = 0.25, n = 6)

Fig. B15b. CE Bertrand model.

(α = 0.5, β = 0.5, n = 6)

Fig. B15c. CE Bertrand model.

(α = 0.5, β = 0.75, n = 6)

Fig. B15d. CE Bertrand model.

(α = 0.5, β = 1, n = 6)

Two-stage model Interior equilibrium. The interior equilibrium is characterized by the

two first-order conditions (87) and (88), which at the symmetric equilibrium can be written as

20All simulations are conducted for κ = 1, Y = 20 and θ = 0.05.
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follows

q∗ + (p∗ − c(Bx∗))vλ = 0

−c′(Bx∗)τq∗ − 1 + ψ = 0.

Next we derive the strategic effect, ψ ≡ (n− 1)(∂φi/∂pj)(∂p
∗
j/∂xi).

Strategic effect. The expression for ∂φi/∂pj , which is strictly positive for λ < 1, is given by

(91). The expression for ∂p∗j/∂xi is computed in (82): ∂p
∗
j/∂xi = − (c′(Bx)/Ω) (−ϕ)

(
β̃(λ)− β

)
.

By inserting equilibrium values into the definition of Ω, given in equation (83), we get

Ω =
{(n− 1) [(1 + µ)n+ λ] + 1} (ατSA/n)4α (n− 1)S2A4(1− λ)2

n4 [(n− 1)(1− λ) + µn]µ2κ4
> 0.

The term ϕ is defined in (85). By replacing ∂pipiφi, given by (102), ∆p given by (101), and

∂Di(p
∗)/∂pi and ∂Dk(p

∗)/∂pi provided in Table B3, into ϕ we obtain

ϕ = −
A4
(
ατSA
n

)4α
(n− 1)(1− λ) [n(1 + µ) + λ]S2

n4κ4µ2
< 0. (107)

To obtain β̃(λ) we first have to calculate ∂pipjφi, which using equation (92) and Tables B3 and

B4 can be shown to be

∂pipjφi =
Λ(1− λ)S

[(n− 1)(1− λ) + nµ]µp2n2
.

As a result we have that

∂Di(p
∗)

∂pi
∂pipjφi − λ

∂Dj(p
∗)

∂pi
∂pipiφi = −

A4
(
ατSA
n

)4α
(1− λ)S2

n4κ4µ2
, (108)

which is strictly negative for λ < 1. By inserting (107) and (108) into (84), and simplifying, we

get

β̃(λ) = − 1

(n− 1) [(1 + µ)n+ λ]
< 0.

Consequently, the strategic effect is:

ψ = − q
∗

vλ
(n− 1)(1− λ)Λ

∂Di(p
∗)

∂pj

[
−c
′(Bx∗)

Ω
(−ϕ)(β̃(λ)− β)

]
.

Let

ω(λ) =

∂Di(p
∗)

∂pj
(n− 1)(1− λ)Λϕ

Ωvλ
> 0,
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then the strategic effect is shown to be negative:

ψ = −c′(Bx∗)q∗ω(λ)
(
β̃(λ)− β

)
< 0.
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