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Abstract

In order to identify the relevant sources of firms’ financing constraints, we ask 
what financial frictions matter for corporate policies. To that end, we build, solve, 
and estimate a range of dynamic models of corporate investment and financing, 
embedding a host of financial frictions. We focus on limited enforcement, moral 
hazard, and trade-off models. All models share a common technology, but differ in 
the friction generating financing constraints. Using panel data on Compustat firms 
for the period 1980-2015 and a more recent dataset on private firms from Orbis, 
we determine which features of the observed data allow to distinguish among 
the models, and we assess which model or model combination performs best at 
rationalizing observed corporate investment and financing policies across various 
samples. Our tests, based on empirical policy function benchmarks, favor trade-
off models for larger Compustat firms, limited commitment models for smaller 
firms, and moral hazard models for private firms. Our estimates point to signifi-
cant financing constraints due to agency frictions and highlight the importance of 
identifying their relevant sources for firm valuation.
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1. Introduction

Corporate finance revolves around the study of financing constraints. Indeed, as pointed out

forcefully by Modigliani and Miller, in the absence of frictions restricting firms’ access to external

financing, corporations’ financing decisions are irrelevant to their valuations and real policies. But

what are the sources of financing constraints? What are these frictions that limit firms’ access to

external financing? While there is little disagreement on their relevance, their nature is much more

debated, and a host of theoretical models have been proposed to rationalize observed firm financing

policies. Are firms financially constrained because tax advantages make it attractive to firms to

issue loans that they might default on after adverse shocks, as in a trade-off model? Is it because

firms cannot commit to honor their debt obligations, as in a limited commitment model? Or is it

because firms might misreport their effective performance to lenders and divert cash flows, as moral

hazard models have suggested? Moreover, are these frictions equally important across firms, if at

all?

In this paper, we propose to take a step towards providing quantitative guidance regarding

the sources of financing constraints by empirically evaluating a host of dynamic financing models

proposed in the literature by means of structural estimation, across a variety of different data

samples, and assessing their relative fit. In every estimation, we ask: Which of the proposed models

provides the best description of the actual behavior of a given set of companies, if any? Do our

data allow us to discriminate between the relevance of these models for a particular set of firms?

Similarly, what combination of models, if any, improves on the empirical fit of individuals models?

Moreover, how do models with different fit in a sample affect firm valuation?

We start by laying out in a unified environment a triplet of models of dynamic firm financing

that have received attention in both empirical and theoretical literature. The first is a standard

trade-off model, similar to Hennessy and Whited (2007), in which tax advantages of debt encourage

firms to issue defaultable debt. The relevance of tax considerations for the determination of firms’

capital structures has long been highlighted in the literature. More recently, in contrast, the theo-

retical literature has emphasized the role of financial contracting in determining firm policies and

dynamics.1 Dynamic financial contracts arise to mitigate agency conflicts between firms’ insiders

1See e.g. the surveys of Harris and Raviv (1991) and Zingales (2000).
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and outsiders and affect corporations’ financial structures, investment policies, and valuations. We

account for these developments by considering, first, a model in which an optimal lending contract

between lenders and shareholders determines firm financing when the latter cannot commit to honor

their obligations, similar to Albuquerque and Hopenhayn (2004), or more recently in Rampini and

Viswanathan (2010), and Rampini and Viswanathan (2013), and second, a model in which firms’

access to external financing is curtailed by moral hazard in the presence of asymmetric information

about cash flows, so that shareholders can divert cash flows from lenders, similar to Clementi and

Hopenhayn (2006), Quadrini (2004), or Verani (2016). In contrast to tax-based trade-off models,

the latter dynamic agency models emphasize the state-contingent nature of financial instruments

as important features of optimal dynamic contracts.

Our approach relies on recent advances in computation and estimation. On the computational

side, the linear programming approach to dynamic programming, introduced by Trick and Zin (1993)

and recently extended in the context of dynamic corporate finance models in Nikolov, Schmid, and

Steri (2019), enables us to efficiently solve a large number of dynamic models of firm financing that

are computationally challenging because of the high-dimensionality of the set of choice variables.

Regarding estimation, we adopt a novel approach to structural estimation, empirical policy function

estimation, introduced by Bazdresch, Kahn, and Whited (2016), that allows to trace out firms’

dynamic behavior2 by providing the empirical mapping between a corporation’s actions (policies)

and current characteristics (states). Since ultimately the main predictive restriction of a model is

a set of policy functions dynamically linking choices and state variables, these empirical mappings

constitute a natural benchmark for model evaluation and comparison. Formally, our estimator

picks model parameters that minimize the distance between policy functions recovered from model

simulations and the empirical benchmarks. This procedure allows to test the empirical relevance

of a set of model implied policy functions and has excellent power to detect misspecification, as

emphasized in Bazdresch, Kahn, and Whited (2016).

Our strategy is to evaluate all of these models by estimating their policy functions on a variety

of samples and assess their relative fit with respect to the relevant empirical benchmarks. This

approach exploits and emphasizes the relevance of firm heterogeneity in the data. To that end,

2Gala and Gomes (2016) offer a related approach.
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we consider full samples and subsamples drawn from both the standard Compustat universe, as

well as a more recent dataset on US private firms from Orbis. Our data thus allow us to evaluate

model fit across small and large firms, public and private firms, profitable and unprofitable firms,

among others. Our implementation is based on empirical mappings between investment, leverage

and payout (policies), and size, profitability, and leverage (states), respectively. Finally, rather

than evaluating models across samples in isolation only, we provide an approach to model combi-

nation and nesting based on Bayesian model averaging3. Here we allow for different weights on the

underlying candidate models and estimate what combination of weights best describes the data.

This procedure yields a pragmatic approach to inform researchers about the relative relevance of

candidate frictions across firms and samples, and to account for firm heterogeneity that is likely to

persist even in smaller subsamples. Indeed, the relative weight that our nested estimation assigns

to a candidate model not only has a natural interpretation as the relative relevance of a particular

friction, but also as the incidence of that friction in a particular sample.

Our estimation approach allows us to provide guidance on model selection in a formal, statistical

manner by means of tests. We first statistically compare the fit of the competing models by means

of statistical tests built on Rivers and Vuong (2002). In that regard, we test the null hypothesis that

a pair of models is statistically indistinguishable relative to the data, versus the two alternatives

that one model fits the data better than the other. As the Vuong (1989) test for model comparison

for maximum likelihood estimations, our tests do not require any specific assumptions to nest the

three models. Thus, they are designed to compare non-nested models as the trade-off, limited

enforcement and dynamic agency models without the need of embedding our candidate frictions

in a single specification.4 Second, in the context of our weighted averaging approach to nesting

models, we can use standard Wald tests to evaluate whether a particular financial friction is more

relevant than another in a given subsample of firms.

Our estimation results favor trade-off models as best representations of the dynamic behavior

of large public firms. Key to this empirical result is the observation that the empirical investment

benchmark is largely unresponsive to leverage, while the leverage benchmark responds positively to

3We are grateful to our referee for proposing this approach.
4Paulson, Townsend, and Karaivanov (2006), and Karaivanov and Townsend (2014) follow a similar approach.

They estimate non-nested models by maximum likelihood and use the Vuong (1989) test to discriminate among
them.
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profitability in this sample. This is in line with a trade-off model in which the desire to shield profits

from taxes is the main driver of leverage, rather than funding investment expenditures. In this sense,

our empirical approach suggests that large firms’ capital structure decisions are predominantly

revolving around profitability.

When it comes to smaller public firms, we find that limited commitment models provide the most

adequate descriptions of corporate behavior. This result reflects that in the empirical benchmarks

these firms’ leverage responds negatively to profitability, while investment does so positively. This

is readily rationalized in a limited commitment model, in which enforcement constraints limit a

firms’ leverage, and thus investment and growth, while a windfall profitability shock reduces firms’

dependance on external financing and spurs growth. Accordingly, our empirical approach highlights

the relevance of growth opportunities as drivers of these firms’ financing policies.

Intriguingly, our estimation procedure strongly favors moral hazard specifications over alterna-

tive candidate models in the case of private firms. In our dataset, private firms tend to be smaller

and less profitable than public firms, they tend to invest less, and be significantly more levered.

Our results suggests that cash flow diversion is highly relevant for this class of firms. Realistically,

cash flow diversion is likely to be interpreted not narrowly as outright stealing of profits, but more

broadly perhaps as conflicts of interest about the proper use of funds in firms that are less transpar-

ent and lacking the scrutiny of the public spotlight. One way to interpret our results then is that

leverage arises as an effective device to discipline such conflicts. Key to our empirical result here

is the observation that in this sample the empirical benchmark for investment responds negatively

to leverage, in that highly levered firms invest less. This is consistent with a moral hazard model

in which firms can invest only if insiders’ interests are sufficiently aligned with those of financiers,

so that insiders’ incentives for cash flow diversion are minimized. This is achieved by giving them

’skin in the game’, that is more equity, and thus, all else equal, less leverage. In other words, agency

emerges as the main determinant of private firms’ financing policies.

Remarkably, when evaluated across the entire Compustat universe, our estimations favor trade-

off models. This suggests that a trade-off model provides an adequate description of the dynamic

behavior of an ’average’ firm in Compustat. Our results thus provide guidance to researchers looking

for a ’one size fits it all’ model of capital structure, for the purpose of a macroeconomic model. Such
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a model can be useful to evaluate the aggregate implications of debt financing, for example. Our

estimations thus single out a trade-off model as a good starting point in this regard.

Our structural estimation procedure also yields point estimates of the relevant parameters across

models, and thus also allow us to gauge the magnitudes of the financial frictions and agency costs

necessary to rationalize observed firm behavior, both in the full sample as well as across subsamples.

Reassuringly, we find that the estimates of the technological parameters are remarkably similar and

consistent across model specifications, so that differences in fit can be plausibly attributed almost

exclusively to their financing behavior, allowing us to identify the relevant sources of financing

constraints. The parameter estimates of particular concern, therefore, relate to the unobserved

agency conflicts that drive financial structure and investment, such as the degree of cash flow

diversion in moral hazard models, the degree of informational asymmetries, and the amount of

capital firms can abscond with in limited commitment models. Regarding cash flow diversion, our

results indicate that in order to rationalize observed corporate policies, firm owners need to be able

to divert around 13 cents on the dollar of profits, for private firms. Moreover, the contribution of

unobservable shocks to total volatility is estimated to be substantial for these firms. On the other

hand, consistent with earlier results in Nikolov, Schmid, and Steri (2019), firms can collateralize

around 60 percent of their assets in limited commitment models, for smaller public firms.

Finally, we use our estimation results to infer the costs of financing constraints across models and

samples. We do this by comparing firm valuations from models in which financing is constrained

by one of our candidate frictions, to counterfactual specifications in which external financing is

i) entirely unconstrained in that firms can costlessly access equity markets, and ii) maximally

constrained in that no external financing is available and all expenditures need to be financed

using internal funds, so that firms are effectively in financial autarky. The relevant costs then are

embedded in the relative valuations. We find costs ranging from 20 to 30 percent across samples.

Our estimates thus point to significant financing constraints due to financial frictions.

We use the results of our counterfactual analysis to provide guidance regarding firm valuations

across models that fit particular samples well or poorly. While it is not surprising that the valuations

for the model that fits a sample best are highest, valuations obtained under models with poorer fit

are substantially different. Computing and assessing firm valuations under poorly fitting models can

5



therefore be severely misleading. This observation corroborates the importance of identifying the

most relevant financial frictions and sources of financing constraints for a given sample to provide

reliable guidance for firm valuation. Our work provides such an approach. Our results thus have

important implications for firm valuation.

1.1. Related literature

Our paper belongs to a small, but growing literature which tries to estimate, or quantitatively

evaluate, the empirical implications of the literature on dynamic agency conflicts across a variety of

economic environments. In our attempt to distinguish and discriminate across different models of

dynamic financing constraints, we are inspired by Karaivanov and Townsend (2014) and Karaivanov

and Wright (2011), who use numerical techniques and estimation methods to distinguish among

different sources of financing constraints that inhibit risk sharing among households in Thai villages,

and international capital flows, respectively. Our work introduces this agenda in the context of the

literature of dynamic contracting and dynamic corporate finance.

A number of recent papers have used structural estimation to evaluate models based on a single

source of agency conflicts for firm dynamics and financing. For example, Li, Whited, and Wu

(2016) investigate a dynamic limited commitment model to gauge the relative importance of tax

advantages and agency conflicts for firm financing. Relatedly, Ai, Kiku, and Li (2016) estimate a

dynamic moral hazard model in general equilibrium to assess the severity of the agency conflicts

arising from effort provision for the real economy. We differ from these papers by our focus on model

comparison, and estimation technique. Verani (2016) presents and estimates a model combining

moral hazard and limited commitment and estimates it on macroeconomic data from Colombia,

while we focus on firm-level panel data.

In our implementation of a limited commitment model, we follow the work of Albuquerque and

Hopenhayn (2004), and especially Rampini and Viswanathan (2010, 2013), Zhang (2016), and Sun

and Zhang (2016). Our approach is closest to Nikolov, Schmid, and Steri (2019), which emphasizes

the implementation of a limited commitment model with state-contingent debt with a mixture of

real world securities such as straight loans and credit lines. Bolton, Wang, and Yang (2018) present

a tractable continuous-time approach in the context of non-alienability of human capital.
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Our implementation of a discrete time moral hazard model follows the work of Clementi and

Hopenhayn (2006), DeMarzo and Fishman (2007b), DeMarzo and Fishman (2007a), and especially,

Quadrini (2004), who quantitatively examines a dynamic moral hazard model when shocks can

be persistent. Doepke and Townsend (2006) develop computational techniques to deal with the

challenging case when persistent shocks are privately observed only. In contrast, we assume that

persistent shocks are publicly observable. For the case with privately observed persistent shocks,

Fu and Krishna (2016) develop an implementation of the corresponding cash flows by means of real

world securities. DeMarzo, Fishman, He, and Wang (2012) and Gryglewicz, Mayer, and Morellec

(2018) develop tractable continuous-time models with moral hazard and investment, while Albu-

querque and Schroth (2010) and Wang and Wu (2018) estimate private benefits of control by means

of a structural approach.

Regarding structural estimation and quantitative evaluation in dynamic corporate finance, our

work more broadly builds on a growing and maturing literature that estimates and gauges the

magnitude of financial frictions, as in Gomes (2001), Cooley and Quadrini (2001), Hennessy and

Whited (2005, 2007), Taylor (2010, 2013), Korteweg (2010), Nikolov and Whited (2014), Glover

(2015), Morellec, Nikolov, and Schürhoff (2012, 2018), and Wu (2017).

2. A triplet of models

In this section, we present the models that we take to the data and attempt to empirically

evaluate and compare. The models themselves are fairly standard and have been widely used in the

literature to address a variety of questions in corporate finance, growth and development, among

others. To facilitate comparison, we present them in a unified setup that emphasizes similarities,

and readily allows to identify differences. In all the models, financing constraints ultimately emerge

from limited liability, which preclude straight equity financing. Critically, however, their precise

nature and the amount and form of external financing differs across models and depends on the

particular financial friction assumed.

The models are i) a standard trade-off model where tax advantages encourages financing with

defaultable debt which is limited by rising credit spreads, ii) a limited commitment model which
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retains the tax advantages of debt financing, but allows for a more flexible implementation of debt

structure by means of state-contingent debt repayment schedules, which need to be secured by

collateralizable assets, as well as iii) a model where external financing from lenders is limited by

asymmetric information, in that lenders do not observe shock realizations and financial contracts

thus need to be structured such that borrowing firms are induced to revealing the truth in the

presence of moral hazard.

We keep the specification of technology identical across models, so that differences in observed

policies stem exclusively from different financial frictions. We outline the technology first, and then

describe in detail the different sources of frictions. Perhaps slightly deviating from the standard

formulations of the models familiar from the literature, we cast them as firm rather than equity

value maximization problems, to facilitate comparison.

Our baseline empirical approach compares how different models each capturing a single candidate

friction fit the data. In other words, we compare a set of non-nested models. Realistically, perhaps,

it is plausible to think that several candidate frictions constrain firms’ access to external financing at

the same time, and it is natural to ask which of these are the relatively most relevant for particular

firms in specific samples. Fully nesting our candidate frictions in one all-encompassing model is

conceptually and computationally challenging as some of our model feature exogenously incomplete

markets (trade-off), while others feature endogenously incomplete markets (limited enforcement

and moral hazard) and some (moral hazard) feature asymmetric information, while the others do

not. We therefore adopt an implementable approach to model nesting in the spirit of Bayesian

model averaging that allows for different weights on the underlying candidate models and infers

those from the data. The relative weight that our nested estimation assigns to a candidate model

not only has a natural interpretation as the relative relevance of a particular friction, but also as

the incidence of that friction in a particular sample. This procedure therefore yields a pragmatic

approach to inform researchers about the relative relevance of candidate frictions across firms and

samples taking into account the degree of heterogeneity in the data.

2.1. Technology and Investment

We consider the problem of value-maximizing firms in a perfectly competitive environment.

Time is discrete. We assume that all agents are risk-neutral, so that the one period interest rate r
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is constant.

After-tax operating profits for firm i in period t depend upon the capital stock kit and shocks

zit and ηit, respectively, and are given by

π(kit, zit, ηit) = (1− τ)((zit + ηit)k
α
it − f), (1)

where 0 < τ < 1 denotes the corporate tax rate, 0 < α < 1 is the capital share in production,

and f > 0 is a fixed cost incurred in the production process. Note that a capital share less

than unity captures decreasing returns to scale. The variable zit reflects shocks to demand, input

prices, or productivity and follows a stochastic process with bounded support Z = [z, z], with

−∞ < z < z < ∞, and described by a transition function Qz(zit, zit+1)
5. Finally, ηit is an iid

disturbance, which takes values η with probability κ and −η with probability 1− κ. The shock ηit

only plays a major role in the context of dynamic moral hazard, in which it allows us to introduce

asymmetric information in a tractable manner.

At the end of each period t the firm is allowed to scale its operations by choosing its next period

capital stock kit+1. This is accomplished through investment iit, which is defined by the standard

capital accumulation rule

kit+1 = kit(1− δ) + iit, (2)

where 0 < δ < 1 is the depreciation rate of capital. Given our modeling of corporate taxation, we

account for a depreciation tax allowance in the form of τδkit.

Investment is subject to capital adjustment costs. As in Bolton, Chen, and Wang (2011), for

example, we follow the neoclassical literature (Hayashi, 1982) and consider convex adjustment costs

for simplicity. We parameterize capital adjustment costs with the functional form

Ψ(kit+1, kit) ≡
1

2
ψ

(
iit
kit

)2

kit, (3)

where the parameter ψ governs the severity of the adjustment cost.

5In our empirical work, we parameterize zit so as to provide a discrete approximation to a continuous AR(1)
process with persistence ρz and conditional volatility σz.
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Timing In settings that accommodate asymmetric information and moral hazard, some care must

be taken with respect to the timing of decisions. While less critical in the other specifications, for

the sake of comparison, we adopt the same timing across candidate models. In particular, for a set

of endogenous state variables s and persistent shocks z, we will refer to W (sit, zit) as the firm values

at the end of period t, that is after the realization of all the t shocks and production, and before that

of the time t+ 1 shocks. The state variable zit is informative about the conditional distribution of

zit+1 in period t+ 1, which affects the expected returns to capital. For tractability, we assume that

decisions are taken at the end of period t about financing and investment expenditures occurring at

the beginning of period t+1. The latter entail adjustment costs and leaves them with a depreciated

capital stock after production. At the end of period t+ 1 the firm makes transfers to financiers as

the result of the financing decisions taken in period t.

Figure 1 provides a graphical account of the timing of decisions and the resolution of uncertainty

across our models.

2.2. Trade-off

Our first model is a standard trade-off model in which firms aim at exploiting the tax advantage

of debt financing available in the US tax code, similar to e.g. Hennessy and Whited (2007). In this

setup, ηit is public information.

Financing At the end of period t, firms have the option to arrange for external financing by

issuing one-period bonds that generate a cash inflow bit+1 at the beginning of the next period.

Previously issued bonds in the amount bit are due, with interest. Limited liability implies that

there are states in which firms will be unable to fully repay their debt obligations at time t + 1.

This is because internal funds after a sequence of bad shocks are so low that they are not sufficient

to cover repayments. In such states, shareholders default on their commitments, creditors take over

and recover a fraction of firm cash flows and assets net of bankruptcy costs. In anticipation of

such states, creditors adjust the yields on debt so as to break even in expectation. In other words,

they will charge a default premium ∆it above the risk-free rate to be compensated for potential
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losses in default, so that the effective interest rate on bonds amounts to r+ ∆it. We determine ∆it

endogenously below.

In line with the US tax code, we assume that interest payments are tax deductible, so that the

effective repayment due in period t + 1 amounts to (1 + (1 − τ)(r + ∆it))bit only. The amount

τ(r + ∆it)bit therefore represents a tax shield.

We assume that firms have to repay debt commitments at the end of each period, after the

realization of the shocks, and before making new financing and investment decisions. At that point,

the firm is solvent if and only if

(1− τ)π(kit, zit, ηit) + (1− δ)kit + τδkit − (1 + (r + ∆it−1)(1− τ)) bit−1 ≥ 0, (4)

or, in other words, whenever the net worth of a firm, that is, the resources available to the firm

after the realization of shocks, is positive.

We assume that the lenders liquidate the firm if the pair of shocks (zit, ηit) and the pol-

icy (kit,∆it−1) violate this solvency constraint. We can thus define the default set as Dit ≡

{(zit, ηit, kit,∆it−1) ∈ Z × N × R+ × R+ : (4) does not hold}, where Z and N denote the sup-

port for the shocks z and η respectively. Analogously, we denote the set of solvency states, in

which (4) holds, as Dit. To save on notation, we denote the indicator function for default as ID,it .

Creditors will anticipate default states, and determine the default premium accordingly. Given risk

neutrality, creditors break even in expectation if

Et−1

[
(1 + r + ∆it−1)(1− ID,it) +

ξ(1− δ)kit
bit−1

ID,it
]

= 1 + r

where ξ denotes the recovery rate in bankruptcy.

With the default premium at hand, we can determine firms’ payouts. Debt and internal re-

sources can be used to fund investment expenditures, or distributions dit to shareholders. Given

limited liability, seasoned equity offerings are effectively precluded. While this may initially appear

restrictive, in the data equity issuances are often employee-initiated issues6. Employee-initiated

6McKoen (2015) documents the empirical relevance of employee-initiated equity issuances.
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issues are not part of our model and characterize the exercise of stock options. With this caveat in

mind, then, we have that

dit ≡ (1− τ)π(kit, zit, ηit)− kit + (1− δ)kit −Ψ(kit, kit−1) + τδkit − (1 + (r + ∆it−1)(1− τ)) bit−1 + bit ≥ 0.

Firms payouts are determined after the realization of shocks, with next period debt issuance and

investment in mind.

Firm problem Investment and financing policies are set to maximize firm value. Capital ac-

cumulation and financing needs reflect the persistent profitability shocks zit, while debt policies

additionally exploit the tax advantage and constraints. More formally, given our timing conven-

tion, firm value W (kit−1, bit−1, zit−1) satisfies the following Bellman equation:

W (kit−1, bit−1, zit−1) ≡ 1
1+r

max
kit,bit

− kit + (1− δ)kit −Ψ(kit, kit−1) + τδkit

+τ(r + ∆it−1)bit−1I1−D,it − ((1− ξ)(1− δ)kit + τδkit)ID,it + Et−1[(1− τ)π(kit, zit, ηit) +W (kit, bit, zit)]

subject to

(1− τ)π(kit, zit, ηit)− kit + (1− δ)kit −Ψ(kit, kit−1) + τδkit − (1 + (r + ∆it−1)(1− τ)) bit−1 + bit ≥ 0,∀zit, ηit

Et−1

[
(1 + r + ∆it−1)(1− ID,it) + ξ(1−δ)kit

bit−1
ID,it

]
= 1 + r.

Discussion The previous paragraphs summarize a standard trade-off model of capital structure

in the context of a dynamic firm investment problem, similar to, for example, Hennessy and Whited

(2007). Firms’ financing decisions thus reflect funding needs for investment expenditures, for exam-

ple, in light of limited liability, but also the possibility of shielding profits from taxation. Financing

constraints arise from a pricing mechanism in that elevated leverage increases the default set and

thus raises spreads on risky debt. The type of debt contract thus entertained in this setup most

likely resembles unsecured, public debt in the form of corporate bonds. Our empirical approach,

detailed below, thus allows to let the data inform us about the relative relevance of these forces
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for various types of firms and for which type this sort of external financing is of relevance. More-

over, it will be informative about the magnitude of losses through default that lenders realistically

anticipate and face.

2.3. Limited enforcement

We now relax the perhaps slightly stark assumption that firms only source of external financing

is one-period debt. This assumption immediately precludes any instruments with a more state-

contingent flavor such as credit lines, derivatives, or even external equity. We relax this in the

context of a limited commitment model, in which, formally, we allow the payoffs of the securities

available to outside investors to be contingent on the realization of the profitability shock zit. While

we do not take a stand on the precise implementation of this instrument by means of real world

securities for the sake of this paper, we refer to Nikolov, Schmid, and Steri (2019), or the recent work

by Rampini and Viswanathan (2013) or Li, Whited, and Wu (2016) for examples and estimation

evidence.7 In this context, ηit is public information.

Financing Formally, in every period firms can sell a portfolio of securities whose payoffs to

investors are contingent on the realization of next periods profitability shocks zit+1 and ηit+1. Selling

such a portfolio at time t thus raises an amount bit ≡ 1
1+r

Et[pzit+1,ηit+1
+ bzit+1,ηit+1

], where pzit+1,ηit+1

is the cash flow transferred to the investors contingent on the realization of the two shocks, and

bzit+1,ηit+1
is the residual present value of future promised repayments. For the sake of our analysis

here, we think of these state contingent payments as repayments to a lender, which need to be fully

collateralized. That is, we require that

pzit+1,ηit+1
+ bzit+1,ηit+1

≤ θ(1− δ)kit+1, ∀zit+1, ηit+1.

where θ denotes the fraction of capital that can be pledged as collateral. Similar to the case of

straight debt considered in the trade-off model above, these state-contingent debt instruments can

be used to fund investment expenditures and distributions to shareholders, dit, jointly with internal

7Our estimation procedure does not require to fully specify the implementation of the optimal contracts as their
state-contingent features are embedded in observed corporate policies.
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resources. We retain the assumption of limited liability on the shareholders’ side, which requires

that

dit ≡ (1− τ)π(kit, zit, ηit)− kit + (1− δ)kit −Ψ(kit, kit−1) + τδkit + τrbit−1 − pzit,ηit ≥ 0

Firm problem The firm’s problem is then to choose investment and state-contingent financing

plans so as to maximize firm value, subject to constraints. Formally, appealing to our timing

assumption, firm value W (kit−1, bit−1, zit−1) satisfies the following Bellman equation:

W (kit−1, bit−1, zit−1) =
1

1 + r
max

kit,bzit,ηit ,pzit,ηit

−kit + (1− δ)kit −Ψ(kit, kit−1) + τδkit + τrbit−1

+Et−1[(1− τ)π(kit, zit, ηit) +W (kit, bzit,ηit , zit)]

subject to

bit−1 ≡
1

1 + r
Et−1[pzit,ηit + bzit,ηit ] (5)

(1− τ)π(kit, zit, ηit)− kit + (1− δ)kit −Ψ(kit, kit−1) + τδkit + τrbit−1 − pzit,ηit ≥ 0, ∀zit, ηit(6)

pzit,ηit + bzit,ηit ≤ θ(1− δ)kit,∀zit, ηit. (7)

Discussion Models of firm financing based on limited enforcement have been studied extensively

theoretically in Albuquerque and Hopenhayn (2004) and Rampini and Viswanathan (2010, 2013),

for example. Financing constraints here arise from the enforcement or collateral constraints in

expressions (7) that tie firms’ debt capacity to tangible assets. In this sense, all debt is secured

and firms’ financing and investment decisions are tied together through the collateral resulting from

firms’ investment. Such models thus emphasize the relevance of firm investment and funding needs

for capital structure. Moreover, the type of debt contract arising in this setup thus most likely

resembles secured bank debt, perhaps, given its state-contingent nature, likely in the form of credit

lines, as in Nikolov, Schmid, and Steri (2019). Our empirical approach thus gives us a means

to let the data speak to for which type of firms this sort of external financing is most relevant.
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Additionally, our estimations can give guidance on the extent to which firms’ assets can effectively

serve as collateral in financing deals.

2.4. Moral hazard

We now embed a dynamic moral hazard problem into our setup by assuming that lenders cannot

observe the realization of all shocks and therefore have to rely on shareholders’ report. Naturally, all

else equal, shareholders have an incentive to underreport realized shocks as it allows them to pocket

a larger share of realized cash flows by repaying less debt. An incentive compatible contract therefore

designs a repayment schedule such that shareholders are always better off truthfully reporting. This

can be achieved by implementing state-contingent repayments satisfying a number of constraints as

detailed below.

Given that shocks are unobservable to lenders, some care must be taken with the specification of

information sets. Further, as previously, we realistically want to allow for serially correlated shocks

zit. To keep the analysis transparent, we assume, as before, that zit follows a Markov Chain, which

is publicly observable8, especially for the lender. However, conditional on a particular realization

of zt, realized cash flows are also impacted by the iid disturbance ηit. To give rise to a meaningful

dynamic moral hazard problem, critically, we assume that ηit is observable by shareholders, but

unobservable by lenders.

In this context, a lending contract amounts to a sharing rule that splits a firm’s resources between

payments to the lender, pit, and payments to the shareholder, that is, dividends, dit in a fully state-

contingent manner. An optimal contract between shareholders and lenders maximizes the firm

value Wit, subject to incentive constraints, promise keeping, as well as limited liability constraints.

In this context, the incentive constraints amount to requiring that under the contract shareholders

are always better off sticking to the contract and revealing the true realization of ηit, rather then

underreporting realized cash flows and diverting cash flows. At this stage, we capture the cash flows

that can be diverted by misreporting η̂it rather than the true ηit so as to reap benefits according to

the general ’diversion function’ D(kit, zit, ηit, η̂it). We will discuss economically motivated functional

forms below.

8See Doepke and Townsend (2016) for analyses of privately observable persistent shocks
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In this setting with dynamic moral hazard, it is convenient to use the equity value of the

firm, Vit, as a state variable. Clearly, then, the value of debt can be recovered, from bit = Wit− Vit.

Similarly, the contract picks state-contingent dividend payments dit as controls, so that the payments

to the lender pit are recovered from the resource constraint, as detailed below. Accordingly, we

accommodate tax deductability of interest on debt, τrbit = τr(Wit − Vit), which translates into an

adjusted discount rate for the firm (1/(1+(1−τ)r) rather than 1/(1+r)) and a penalty for foregone

tax deductions on debt for the amount of τrVit.

More formally, the firm value function satisfies

W (kit−1, Vit−1, zit−1) = max
kit,Vzit,ηit ,dzit,ηit

1

1 + (1− τ)r
[−kit −Ψ(kit, kit−1) + (1− δ)kit + τδkit − rτVit−1

+Et−1[(1− τ)π(kit, zit, ηit) +W (kit, Vzit,ηit , zit)]]

subject to

Vit−1 =
1

1 + r
Et−1[dzit,ηit + Vzit,ηit ], (8)

dzit,ηit + Vzit,ηit ≥ dzit,η̂it + Vzit,η̂it +D(kit, zit, ηit, η̂it), ∀zt, ∀η̂it, (9)

dzit,ηit ≥ 0, ∀zit,∀ηit, (10)

Vzit,ηit ≥ 0, ∀zit,∀ηit, . (11)

Here, Vit−1 is the equity value at the end of period t − 1, and the promise keeping constraint

states that the (state-contingent) dividend payments to shareholders and equity value at the end

of period t have to add up to Vt−1 in expectation. The incentive constraints state that shareholders

are always better reporting the true realization of the iid shock ηit and receiving a dividend dzit,ηit

and continuation value Vzit,ηit , rather than misreporting η̂it and pocketing the diverted cash flow,

captured by the diversion function D(kit, zit, ηit, η̂it), as well as the dividends and continuation values

under the misreported cash flows, dzit,η̂it+Vzit,η̂it . The diversion function, in its most straightforward

specification, is just λ(π(kit, zit, ηit) − π(kit, zit, η̂it)), where 1 − λ captures potential losses in cash

flow diversion. Finally, in every state, dividend payments and equity values have to be non-negative,

reflecting shareholders’ limited liability.
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Given our timing assumption, all the cash flows accrue intra-period, so that payments pit to the

lender are simply the mirror image of contractually designed dividend payments to shareholders.

In other words, we must have that these respective payments exhaust available resources, so that,

state by state,

pit = −kit −Ψ(kit, kit−1) + (1− δ)kit + τδkit + τr(Wit − Vit) + π(kit, zit, ηit)− dit.

This formulation emphasizes the trade-off between payments to shareholders and lenders, which

must respect promise keeping and incentive constraints laid out above.

Discussion In dynamic moral hazard models, financing constraints arise from asymmetric infor-

mation between financiers and insiders. Strictly speaking, such asymmetry of information gives

rise to the possibility that insiders ’divert’ or blatantly steal cash flows. Realistically, cash flow

diversion is likely to be interpreted not narrowly as outright stealing of profits, but more broadly

perhaps as conflicts of interest about the proper use of funds in firms that are less transparent and

lack the scrutiny of the public spotlight. In other words, financing decisions in a moral hazard

setting prominently reflect agency conflicts and informational asymmetries. These agency conflicts

are mitigated by the optimal contract by providing insiders with equity, that is, skin-in-the-game,

that prevents them from stealing, as the incentive constraints, expressions (9) in our recursive for-

mulation indicate. The contracts also dictates how equity, and thus leverage, dynamically evolves.

Our empirical approach thus not only gives us a way to assess for which firms such conflicts are of

primary importance, but also enables us to provide guidance regarding the magnitudes of potential

cash flow diversion λ and the amount of asymmetric information η.

2.5. Nesting models

In reality, conflicts of interests between firms’ various claimholders stemming from informational

asymmetries are likely to shape all firms’ decisions albeit perhaps to a different degree, just as much

as the risk of breaching contracts when those are imperfectly enforceable constrains all firms’ access

to external financing to some extent. Similarly, all firms can take advantage of tax shields when

they choose debt financing. It is then natural to ask which of these frictions are the relatively most
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relevant for particular firms in specific samples. Ideally, an all-encompassing model nesting all of

our candidate frictions (and possibly more) is called for to answer such questions. Constructing

and solving, let alone estimating, is conceptually and computationally challenging. Conceptually,

it is challenging as some of our models, such as the trade-off model, feature exogenously incomplete

markets, while in the limited enforcement and moral hazard models incompleteness arises endoge-

nously. Moreover, the moral hazard model critically features asymmetric information, while all

information is public in the other models. We therefore adopt an implementable approach to model

nesting in the spirit of Bayesian model averaging that allows for different weights on the underlying

candidate models and infers those from the data. This procedure yields a pragmatic approach to

inform researchers about the relative relevance and incidence of candidate frictions across firms and

samples.

Specifically, our approach to nesting models entails assigning weights wTO to the trade-off model,

wLE to the limited enforcement model, and wMH to the moral hazard model. We solve each model

numerically, obtaining their policy functions, so that for any combination of weights, and each point

in the state space, we obtain an ex-post weighted model average. We then ask, which combination

of weights gives rise to the weighted model average that describes firms in a given sample best? It

is intuitive to expect that a friction that is more prevalent in a given class of firms is assigned a

larger weight.

Discussion Considering weighted model averages is standard in Bayesian approaches to model

comparison (see, for example, Draper (1995) or Hoeting, Madigan, Raftery, and Volinsky (1999) for

original papers, or Robert (2007) for a recent textbook treatment). While averaged policy functions

do not represent the actual policy function of a representative firm in a given sample, they provide

a pragmatic approach to deal with the heterogeneity that is likely to persist in smaller subsamples.

Indeed, one way to interpret averaged policy functions that we find useful in our context is to

think of a given sample of firms as composed of a fraction wTO firms that are best described by a

trade-off model, a fraction wLE of firms that are best represented by a limited enforcement model,

and likewise for wMH . Therefore, the for the weights have a natural interpretation as a measure

of the incidence of each friction. In this sense, Bayesian model averaging provides an approach to

model nesting that is especially useful in contexts with substantial heterogeneity, such as ours.
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3. Model computation and estimation

In this section, we describe the two key steps that enable us to bring the models we laid out

in Section 2 to the data. Section 3.1 describes the numerical solution method we use for model

computation. Section 3.2 presents the structural estimation procedure and the statistical tests we

use for model comparison.

3.1. Solution method: Linear programming

The triplet of models we laid out in Section 2 has no closed-form solution. Thus, we solve the

dynamic programs all of them numerically. In addition, the numerical solution of the limited com-

mitment and moral hazard models is computationally challenging. The presence of state-contingent

policies introduces a large number of control variables that makes the curse of dimensionality ex-

cessively severe for standard iterative computational methods.9

We overcome this difficulty by adopting the linear programming (LP) representation of dynamic

programming problems with infinite horizon (Ross (1983)), building on Trick and Zin (1993), and

Trick and Zin (1997). We exploit and extend linear programming methods to efficiently solve

for the value and policy functions. Linear programming methods, while common in operations

research, have been introduced into economics and finance in Trick and Zin (1993, 1997). We

follow Nikolov, Schmid, and Steri (2019) to extend the LP approach to setups common in dynamic

corporate finance. More specifically, we exploit a separation oracle, an auxiliary mixed integer

programming problem, to deal with large state spaces and find efficient implementations of Trick

and Zin’s constraint generation algorithm.

To start with, any finite dynamic programming problem with infinite horizon can be equivalently

formulated as a linear programming problem (LP). The LP representation associates every feasible

decision at each grid point on the state space with a constraint. Specifically, the three models can

be formulated as LP problems as follows:

9Because of the presence of several occasionally non-binding collateral constraints, the models cannot be solved
numerically by interior point methods. In principle, all models can be solved on a discrete grid by standard iterative
methods as value and policy function iteration. However, as discussed above, the application of these methods to
the contracting models in Section 2 is computationally problematic.
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min
Wk,u,z

nk∑
k=1

nu∑
u=1

nz∑
z=1

Wk,u,z (12)

s.t.

Wk,u,z ≥ Rk,u,z,a +
nz∑
z′=1

βQz(z, z
′)Wk′(a),u′(a),z′ ∀k, u, z, a, (13)

where u denotes the promised utility variable, namely bit for the trade-off and the limited commit-

ment model and vit for the moral hazard model; nk, nu, and nz are the number of grid points on

the grids for ki,t, ui,t, and zi,t respectively; Wk,u,z is the value function on the grid point indexed by

k, u, and z; a is an index for a feasible action on the grid for both capital, promised utility, and

payouts, and Rk,u,z,a denotes the return function corresponding to the action a starting from the

state indexed by k, u, and z; β is the appropriate discount rate; Qz(z, z
′) is the transition matrix of

the Markov chain driving profitability shocks; k′(a) and u′(a) denote the future values for the state

variables given the current firm’s decisions. For a formal proof, we refer to Ross (1983).

The solution of the LP above would require to store an extremely large matrix, because state-

contingent decisions render the number of constraints in the problem enormous. Precisely, the set

of feasible actions a is a highly dimensional object for both the limited commitment model (due to

state-contingent debt repayments) and the moral hazard model (due to state-contingent dividends

and promised equity values). Computational requirements would therefore be excessive. Thus, we

implement constraint generation, a standard operation research technique to attack problems with

a large number of constraints. First, we solve a relaxed problem with the same objective function.

Second, we use the current solution to identify the constraints it violates. Third, we add one of

the violated constraints, namely the most violated one, to the relaxed problem. We iterate the

procedure until all constraints are satisfied.

To practically implement the constraint generation procedure, we need to deal with another

computational issue. The selection of the most violated constraint involves searching over an ex-

tremely large vector of grid points for all the state-contingent control variables. The computational

burden would still be excessive for the two contracting models we solve. To do so, we implement a

separation oracle, an auxiliary mixed-integer programming problem to identifies the most violated
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constraint10. Appendix A outlines the constraint-generation algorithm and the separation oracle

for the three models.

We implement the codes with Matlab R© and CPLEX R© as a solver for the linear and mixed-

integer programming problems. Our workstation has a CPU with 24 cores and 124GB of RAM.

The models are solved with five grid points for the idiosyncratic shock, 21 grid points for capital,

17 grid points for current promised utility. All control variables are chosen on a continuous grid up

to CPLEX numerical precision, which is 1e-6.

3.2. Estimation method

The dynamic corporate finance literature relies typically on two estimation methods: the Simu-

lated Method of Moments or SMM, ((Hennessy and Whited, 2005), (Taylor, 2010)) and the Simu-

lated Maximum Likelihood or SML ((Morellec, Nikolov, and Schürhoff, 2012), (Morellec, Nikolov,

and Schürhoff, 2018)). We depart from the literature and rely on an alternative method that is

most readily identified as Indirect Inference or II in the terminology of Gourieroux, Monfort, and

Renault (1993)).

Unlike SMM or SML II relies on an auxiliary model for estimating the structural parameters. The

auxiliary model is an approximation of the true data generating process. Typically, this approach

is suitable in cases where the likelihood is not available in closed form and is computationally

infeasible. In our case, we choose II as it constitutes a natural framework for comparing models. In

particular, for the auxiliary model, we choose the model policy functions. The competing models

that we consider do not share the same parameters, but their policy functions are common. We can

thus compare in this framework both nested and non-nested models. Below we further motivate

our choice of estimation method and describe its implementation.

We estimate the key structural parameters of interest using II. However, we estimate some of

the model parameters separately. For example, we set the risk-free interest rate, r, equal to the

average one-year Treasury rate over the sample period. We set the corporate tax rate equal to 20%.

This rate is an approximation of the corporate tax rate relative to personal taxes. Finally, we set

10Separation oracles are standard tools in operation research, as described in Schrijver (1998) and Vielma and
Nemhauser (2011).
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the probability κ of observing a high realization of the iid cash flow shock to 50%. Because κ and η

always appear as a product in the trade-off and limited enforcement models, they are not separately

identified. Setting κ = 0.5 guarantees that the iid shock η has zero mean and does not directly

affect average profitability.

We then estimate ten parameters: the curvature of the profit function, α; the fixed production

cost, f ; the serial correlation of ln(z), ρz; the standard deviation of the innovation of ln(z), σz; the

depreciation of capital, δ; the capital adjustment cost, ψ; the magnitude of the iid cash flow shock,

η; the recovery rate, ξ; the fraction of capital that can be pledged as collateral, θ; and the diversion

parameter, λ.

3.2.1. Empirical policy functions

A policy function11 is an association between an optimal choice of the firm, for example invest-

ment or financing, and its currently observable state. In accordance with this definition, we write

the policy function as

w = P (x) (14)

where x is a vector of (possibly transformed) state variables and w is a vector of policy variables

of the model. For all models, we choose kit, bit, and zit as states, and kit+1, bit+1, and dit+1 as policy

variables. Thus, xit = {kit, bit, zit} and wit = {kit+1, bit+1, dit+1}.

One challenge when working with policy functions is that some state or control variables are un-

observable. We tackle this challenge by working with observable transformations of these variables.

For example, the state variable z is unobservable. In this case, we use zkα/k, firm profitability, that

is observable.

We now characterize the empirical counterpart of the policy function w = P (x). One way to do

so is linear approximation. This approach however will fail to capture the non linearities embedded

in our models. We select then a semiparametric approach.

11The exposition follows Bazdresch, Kahn, and Whited (2016).
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We consider the following specification for each control variable

wn
it = P n(xit) + unit (15)

where n is the nth element of the policy vector wn
it, u

n
it is the specification error with E[unit |

xit] = 0. We estimate the function P (xit)

We use a series approximation functions pj(xit) where j = 1, ...J to estimate the policy function

P (xit). In particular, as J → ∞, the expected mean square difference between the P (xit) and a

linear combination of pj(xit) approaches zero, that is

lim
J→∞

E

(
J∑
j=1

hjpj(xit)− P (xit)

)2

. (16)

We find that a power series with linear, quadratic, and all cross-products performs well. We

have experimented with several alternative series functions. We observe that our results are immune

to the particular choice of the series functions.

3.2.2. Structural estimation: Indirect inference

We use Indirect Inference to structurally estimate our set of models. The Indirect Inference

method relies on an auxiliary model. While the auxiliary model is an approximation of the true

data generating process, it captures the most important features of the data. Empirical policy

functions constitute a natural candidate for an auxiliary model as they characterize the solution of

the model. Below we detail the estimation procedure.

We define the vector of observed data vit ≡ (wit,xit), where i = 1, ..., n indexes firms and

t = 1, ..., T indexes time. Similarly, we define the vector of simulated data vsit, where s = 1, ..., S

is the number of times we simulate the model. The simulated data vector, vsit(β), depends on the

vector of structural parameters β. We define the estimating equation as

g(vit, β) =
1

nT

n∑
i=1

T∑
t=1

[
h(vit)−

1

S

S∑
s=1

h(vsit(β))

]
(17)
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where h(.) is the parameter vector from (16) defining the empirical policy functions. The

dimension of h is larger than the dimension of the vector of structural parameters β. The Indirect

Inference estimator for β is given by

β̂ = arg minβ g(vit, β)′ŴnTg(vit, β)

where ŴnT is a positive definite weighting matrix that converges in probability to a deterministic

positive definite matrix W .

3.2.3. Testing and model selection

We now build a set of tests that help us evaluate the relative performance of the competing

models. We focus on two distinct set of tests. First, to discriminate across single candidate frictions,

we need to test whether pairs of models are statistically distinguishable given the data. This requires

comparing the relative fit of non-nested models. In this respect, we build on recent advances in

econometrics by exploiting tests developed in Rivers and Vuong (2002) that precisely allow to

evaluate the relative fit of pairs of non-nested models estimated using the method of moments.

Second, in our weighted averaging approach to nesting models, we wish to test whether two weights

on two models are identical against the alternative hypotheses that one weight is larger than the

other, thereby evaluating whether a particular financial friction is more relevant than another in a

given subsample of firms. This can be accomplished by implementing standard Wald tests on the

weights. Here, we provide a brief overview of our test statistics and procedures.

Non-nested model selection tests To discriminate across non-nested models based on a single

candidate friction, we use the test in Rivers and Vuong (2002). That procedure precisely allows to

test whether each pair of models is statistically distinguishable relative to the data. The test in

Rivers and Vuong is suited to statistically compare the fit of a pair of non-nested models estimated

using the method of moments and can be applied to our indirect inference estimation.12 This test is

the counterpart of the Vuong (1989) model comparison test for maximum likelihood estimation, used

12See also Hall and Pelletier (2011).
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for example in Paulson, Townsend, and Karaivanov (2006) and Karaivanov and Townsend (2014).

As the Vuong (1989) test, it does not require any specific functional form or other assumptions to

nest the three models.

We consider two separate estimations for which we use the same set of data moments, h (vit),

but that use different economic models, so that the simulated data differ across estimations. Let

the parameter vector from the first estimation be β1, and let the parameter vector from the second

estimation be β2. We want to test the null hypothesis that the two models are asymptotically

equivalent, that is H0 : Q(β1) = Q(β2), where Q(βk), k = 1, 2, are the estimation minimands.

Rivers and Vuong show that under the null the test statistics

νnT =
1
√
nT

Q̂(β̂1)− Q̂(β̂2)

σ̂nT
,

has a standard normal distribution, where Q̂(β̂k), k = 1, 2 are the minimands under the estimated

parameter vectors, and σ̂nT is a consistent estimator of the limiting variance of Q̂(β̂1)− Q̂(β̂2). We

detail the computation of σ̂nT in Appendix B.

In one tailed tests, we contrast the null hypothesis with the alternatives that model k = 1 is

asymptotically better than model k = 2, that is H1 : Q(β1) < Q(β2), and that model k = 2 is

asymptotically better than model k = 1, that is H2 : Q(β1) > Q(β2).

Nested model selection tests In the case of our approach to model nesting through weighted

model averaging, our objective is to use tests that allow to statistically evaluate, for all subsamples

of firms, the differences in estimated weights for the three types of financial frictions. While the

point estimates for the weights measure the incidence of each friction, the tests outlined in this

section answer the question whether one financial friction is more relevant than the other in a given

subsample of firms.

Formally, the three null hypotheses we test, for any sample, are

H0 : wTO = wLE

H0 : wTO = wMH

H0 : wLE = wMH
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against the two alternative hypotheses that one weight is larger than the other. The tests, there-

fore, are standard Wald tests based on the parameter covariance matrix, which we also use to

compute standard errors in the weighted estimation. Accordingly, under the null, the test statistics

asymptotically follow a Chi-Square distribution with one degree of freedom, so that evaluating test

statistics is straightforward.

4. Empirical results

Our strategy is to first empirically establish policy function benchmarks for a variety of samples.

With these benchmarks at hand, our estimation procedure then identifies the best fitting model from

our selection of candidate models, as well as combinations thereof in the sense of Bayesian model

averaging, by comparing empirical benchmarks with policy functions recovered from simulations.

We consider a variety of samples drawn from both the standard Compustat universe, as well as a

more recent dataset on US private firms from Orbis, and describe our data below. Our ensuing

discussion of the empirical benchmarks and those implied from model simulations, and the point

estimates, is complemented by various counterfactuals.

4.1. Data and sample splits

Our main sample is drawn from the Compustat database for the 1965 to 2015 period. We

exclude firms that do not have a stock exchange code (EXCHG) equal to 10 or 11. We remove firms

that operate in the financial sector (four-digit SIC code between 4900 and 4999) or in regulated

sectors (four-digit SIC code between 6000 and 6999 or between 9000 and 9999). We also drop firms

with less than two consecutive year of data to be able to compute growth rates when required. Our

resulting sample includes 39,433 firm-year observations.

We then compute the following variables. Investment is CAPX/AT; net book leverage is

(DLTT+DLC-CHE)/AT; profitability is OIBDP/AT; dividends are (DVT+PSSTKC-PSTKRV)/AT;

log size is the natural logarithm of PPENT; market-to-book is (DLTT+DLC+PRCCF x CHSO)/AT.

Following, for example, Hennessy and Whited (2005) and Hennessy and Whited (2007), for the es-

timation procedure we remove firm fixed effect of each state and control variable. To reconcile the
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average levels of the control variables in the data and in the model, we add the sample mean into

each variable after removing fixed effects.

To quantify the importance of the different types of frictions behind each model, we estimate

the three models on different subsamples of firms. These subsamples are formed by splitting the

sample in two on each on the (rescaled) state variables, namely (log) size, profitability, and leverage.

Firms in the top and bottom 30th percentiles are respectively assigned to the subsamples with high

and low values for the sorting variable.

In addition, we also consider a subsample of private firms. We obtain data on US private firms

from the Orbis database in the period from 2003 to 2012, as described in Kalemli-Ozcan, Sorensen,

Villegas-Sanchez, Volosovych, and Yesiltas (2015). We remove observations with missing, zero, or

negative values for total assets. We drop firms with total assets less than 100,000 USD or less than

10 employees. Due to data restrictions, data on dividends are not available. In addition, market-

to-book ratios cannot be computed for private firms in that there are no market share prices for

them. We proxy investment as the growth rate of total assets, leverage as the ratio of the difference

between total assets and shareholder funds and total assets, log size as the natural logarithm of

total assets, and profitability as the ratio between profit and losses before taxes and total assets.

We drop firm-year observations with missing values for investment, leverage, and profitability. We

are left with an unbalanced panel with 83,823 firm-year observations.13

Table 1 reports the summary statistics of the aforementioned variables in the model. We

winsorize all variables at the one percent level. Our Compustat sample is representative in that it

exhibits sample statistics in line with the extant literature. As fraction of total assets, the average

profitability of our Compustat sample is around 15%, asset growth around 12%, net book leverage

around 13%, and payouts around 2.2%. The average log size is around 6.5, with market-to-book

somewhere around 1.4. When we split firms according to the 30th and 70th percentile, we find that

larger firms invest less than smaller ones, have higher leverage, and are more profitable. Regarding

payout, smaller and larger firms are similar.

In comparison to public firms, private firms are less profitable, significantly smaller, invest less,

and are far more levered, with a remarkable debt-to-asset ratio around 60%. While this figure

13Not surprisingly, private firms are numerous in comparison to public firms in a given time period.
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appears rather high, it is in line with Huynh, Paligorova, and Petrunia (2012), who discuss that it

is mainly driven by higher short-term leverage than public firms. In addition, private firms exhibit

a significant heterogeneity across firms, as a standard deviation around thirty percent suggests.

4.2. Identification and model comparison

4.2.1. Identification

For each model, global identification of the parameter vector requires a one-to-one mapping

between the vector of model deep parameters β and a subset of the parameters of the auxiliary

model with the same dimension. Local identification requires the gradient
∂h(vsit(β))

∂β
of the auxiliary

model with respect to the deep parameters to have full rank. This condition has an intuitive

interpretation. Identification requires that every estimated deep parameter in β has a differential

impact on the firms’ investment, financing, and payout policies as characterized by the set of

auxiliary parameters h(vsit(β)).

Because the choice of β, and in particular of the financing parameters ξ, θ, and λ affects the

optimal policy functions, the aptness of the three models to rationalize observed corporate policies

depends on how parameters can be chosen to minimize the distance between the policies implied

by the model and their real-data counterparts, described by h(vit). For each model, the estimation

procedure selects parameters to minimize the distance function in Equation 17.

Importantly, different financial frictions have a different importance for different types of firms,

that in turn make different corporate decisions. Intuitively, the financial constraints that restrict

the most the access to external financing for large mature firms are likely to be different than those

that restrict small young firms. As a consequence, the observed investment, financing, and payout

policies of different subsets of firms can significantly differ, and the model that better describes such

policies is likely not to be the same for all firms in the economy.
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4.2.2. Model comparison: Empirical policy functions

We now turn to the basis of our model evaluation and comparison procedure, namely empirical

policy function benchmarks. These benchmarks provide an empirical description of the mapping

between corporate actions (policies) and current firm characteristics (state variables). When firm

characteristics change over time with the economic environment, this mapping allows to trace out

firm dynamics in a natural way. By recovering policy functions in a analogous manner from sim-

ulations of each of our candidate models and comparing them with the empirical benchmarks, we

obtain a natural procedure to evaluate the adequacy of a model’s dynamic implications. At the

same time, it provides us with parameter estimates and a distribution theory that allows us to

compare the dynamic implications across models not just qualitatively, but also formally statisti-

cally. Our implementation is based on empirical mappings between the main choices in our model,

namely investment, leverage and payout, and the main state variables, namely size, profitability,

and leverage, respectively.

Figure 2 provides a first illustration of our approach, and helps validate it by visually examining

a subset of our estimated empirical policy benchmarks. It plots the mappings between investment

and size, and future leverage and current leverage, respectively, across samples and models. Quali-

tatively, the emerging patterns are well known and have been widely documented in the literature,

in that the link between investment and size is negative, so that relatively larger firms invest less,

and the mapping between current leverage and future leverage is positive, so that leverage exhibits

hysteresis. The policy benchmarks estimated from the data further show that these particular

patterns obtain across all samples, be it in larger or smaller, or private, firms. Moreover, in sim-

ulated data, at the estimated parameter values that we will discuss in detail below, the mappings

recovered from model simulations replicate these patterns quite well. Intuitively, this reflects that

the production function in all models exhibits decreasing returns to scale, leading to a negative

relation between investment and size, and observable profitability is persistent, leading to leverage

hysteresis. Providing validation to our approach, these results show that indeed our models have

the potential to rationalize relevant aspects of the dynamic behavior of firms. On the other hand,

the policies underlying the mappings considered here are driven by technological properties that

are common across our models, and illustrate that these particular benchmarks are not informative

29



about the nature of financial frictions at work in the data. However, as we now document in our

main results, careful inspection of informative policy benchmarks allows us to tease out the relevant

financial frictions driving financing constraints and discriminate across models and across samples,

both economically and statistically. We note that all our estimates are based on the entire set of

empirical benchmarks, whether informative regarding discrimination across models or not. Specifi-

cally, we consider investment, future leverage, and payout versus size; investment, future leverage,

and payout versus leverage; and investment, future leverage, and payout versus profitability.

4.3. Estimation results

We now describe the empirical patterns, as represented by empirical policy benchmarks, that

are informative about the sources of financing constraints, across samples. Going beyond model

validation, for each of our main samples, large and small public firms, and private firms, we identify

a number of policies that are qualitatively distinct across these samples. Critically, we show that

the implications of our candidate models for these policies are qualitatively rather distinct as well,

suggesting a particular candidate friction as the driving economic force underlying the policies of a

typical firm in these samples. Importantly, we document that these qualitative differences are borne

out statistically as well by our estimator, thereby identifying a particular model, and thus a friction,

as the main source of financing constraints for any of our samples. Our estimator naturally also

delivers parameter estimates that not only allow us to evaluate the economic relevance of particular

financial frictions, but also to quantify their magnitudes.

4.3.1. Large Public Firms

Figure 3 presents a subset of empirical benchmarks for large public firms, and the corresponding

estimated policy functions from our candidate models. The leftmost panel shows that the empirical

investment benchmark is flat and thus essentially unrelated to leverage, suggesting that funding

needs are not major drivers of leverage here. Relatedly, profits are often paid out rather than rein-

vested, as the middle panel shows. Critically, leverage is strongly positively related to profitability,

as documented in the rightmost panel.
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Visually, the figure suggests qualitatively that policy functions estimated from a trade-off model

can by and large account for the dynamic behavior of large, public firms most adequately. Intuitively,

this is in line with the notion that in such a model profits and the desire to shield profits from

taxes are major drivers of payout and leverage decisions, rather than funding needs. As such they

describe well the behavior of profitable, large firms, which have rather direct access to external

financing from equity markets. The policies estimated from a limited enforcement model on this

sample suggest a strong connection between funding needs, investment, and leverage, as profits

are counterfactually more likely reinvested than paid out, and higher profitability reduces leverage.

Similarly, a moral hazard prescribes a counterfactually steep positive link between leverage and

profitability, as the optimal contract requires that insiders receive more skin in the game after

persistent rises in profitability in order not to divert resources. At these low levels of leverage, this

raises debt capacity.

Table 2 formally confirms these qualitative results statistically, based on estimation on the entire

set of benchmarks, as well as a joint estimation that identifies the weights on each benchmark

that provides the overall best fit. The results from the joint estimation are reported in the last

column (column five), displaying the relevant estimated weights as well as the appropriately weighted

parameter estimates. Regarding model comparison, the relevant results are in the last row, reporting

the values of the objective function, namely the distance between empirical benchmarks and the

model implied policies, to be minimized.

Starting with single benchmark estimation results reported in columns two to four, the lowest

value for the objective function, namely 2.805, is obtained from the trade-off model indicating thus

that it provides the best relative fit across the candidate models. Clearly, a moral hazard model

struggles to account for the dynamic behavior for large, public firms, while a limited enforcement

model does better, but not as well as the trade-off specification.

Inspection of column five, reporting results from the joint estimation, paints a similar, but

more refined picture. Clearly, the additional flexibility of allowing for averaging across model

specifications is manifested at a lower value of the objective function, estimated at 1.460, indicating

a better overall fit. The estimated weights allow to quantify the relative fit of the candidate models

more precisely. The best overall fit is obtained in case of about a sixty percent weight on the trade-

off specification, which is roughly twice the weight assigned to the limited enforcement model, and
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a negligible weight on the moral hazard model. All these weights are estimated precisely, as the low

standard errors indicate. While the negligible weight on the moral hazard model reflects our earlier

observation that this specification struggles to account for the dynamics of large, public firms, the

relative weights on trade-off and limited enforcement models indicate that limited enforceability of

contracts and collateral are still a quantitatively relevant determinant of these companies’ capital

structures, but are dominated by concerns of the tax benefits in the presence of high profitability.

A natural interpretation of the estimated weights is in terms of the relative incidence of the relevant

sources of financing constraints in a sample of firms that are all public and large, but likely still

displays a significant amount of heterogeneity, some of which a one-friction-fits-it-all approach

potentially masks. Our estimated weights therefore suggests that this sample can adequately be

represented by a panel of firms, sixty percent of whose capital structure decisions are primarily

shaped by the profit shielding benefits of defaultable debt, while one third of firms are constrained

by the availability of collateral, and just a few firms are impacted by the possibility of cash flow

diversion.

The table also provides guidance regarding the magnitudes of the implied financial frictions.

The relatively high estimated recovery rates on debt, ξ, of about 60 percent reflect the elevated

leverage ratios of large firms. While less reliable given their inferior fit, the same observation is

reflected in high pledgeability of assets, θ, and a low diversion parameter, λ, suggesting a lower

need for incentive provision via skin-in-the-game, and thus a higher debt capacity. Critically, we

emphasize that the estimates for the technological parameters are in a very similar range across

candidate models. Therefore, the differences in dynamic behavior we identify are unlikely driven

by technology, but plausibly by differences in financial frictions.

4.3.2. Small Public Firms

Figure 3 reports qualitative results for small, public firms by means of a number of relevant and

informative empirical benchmarks and corresponding policies recovered from candidate models. On

this sample, the rightmost panel shows that the empirical link between profitability and leverage is

negative, so that more profitable firms choose lower leverage, in contrast to the case of large firms.

Intuitively, this is in line with a setting in which tax shields effects are not a main driver of leverage
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policies, but perhaps funding needs are. Consistent with that notion, as the middle panel shows,

investment responds positively to profitability. Payout is also positively related to profitability, but

empirically that link is weaker than with large firms.

Visually, the policies estimated from a limited enforcement model provide the closest approxima-

tion of the empirical benchmarks. This is consistent with the notion that in such models enforcement

constraints limit firms’ investment and growth, so that higher profitability reduces firms’ depen-

dence on external financing and thereby leverage, and boosts investment. The relevance of funding

needs and limits in this case is consistent with firms with growth options that are operating at a

smaller scale, so that profitability shocks accelerate their growth to an optimal scale. On the other

hand, while in a trade-off model tax incentives and funding needs counteract each other, it pre-

dicts an excessively high level of leverage, and a very steep link between payouts and profitability.

Similarly, a moral hazard model predicts a positive link between profitability and leverage on that

sample, as the optimal contract prescribes raising insiders stake to give proper incentives not to

divert resources, which raises debt capacity at these levels of leverage.

Table 3 provides the formal statistical evaluation of our model comparison. The objective

function when restricting the estimation to single benchmark models is minimized at 4.552 in

case of the limited enforcement specification, giving econometric content to the assertion that this

model describes the dynamic behavior of small public firms most adequately. A moral hazard model

struggles to account for the dynamic behavior of these firms as well, while a trade-off specification

provides a better fit, but worse than limited enforcement.

The joint estimation approach provides further insights into the relative performance of limited

enforcement and trade-off models for small firms in particular. Indeed, the added flexibility of

averaging models improves the overall fit as measured by a reduction of the objective function by

more than half relative to the best fitting single benchmark model. Intriguingly, the joint estimation

assigns a weight to the limited enforcement model (0.440) that is only slightly higher than that of

the trade-off model (0.388), suggesting that small firms’ capital structures are not just driven by

lack of collateral, but also by profitability and tax concerns. Intuitively, this finding reflects that

our sample of small firms still consists of public firms only, so that they exhibit a certain minimal

size in the first place. However, given that the sample consists of the smaller firms in the universe
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of public firms, the possibility of cash flow diversion in the context of asymmetric information is

relatively more important than in the case of large, public firms discussed previously.

In terms of magnitudes, the parameter estimates suggest that firms can collateralize around 60

percent of their assets in this sample. This estimate is consistent with earlier estimation results

e.g. in Nikolov, Schmid, and Steri (2019), obtained with alternative estimation methods, such as

SMM. This observation validates the relevance of the parameter estimates based on our procedure

as well. Finally, we emphasize again that the estimates for the technological parameters are fairly

uniform across candidate specifications, suggesting that the distinct dynamic behavior across them

can mainly be attributed to differences in financial frictions.

4.3.3. Private Firms

Figure 4 displays a subset of empirical benchmarks that are informative about the dynamic

behavior of private firms. In this sample, investment responds negatively to leverage, as documented

in the leftmost panel. This is inconsistent with both trade-off and limited enforcement specifications,

whose policies exhibit a strong positive link between investment and leverage. Given persistent

shocks and adjustment costs, investment tends to come with a history of past funding needs, leading

levered firms to invest more, all else equal. Intriguingly, in the moral hazard specification, highly

levered firms tend to invest less, as private firms do. In that setting, firms can invest and grow when

the threat of diversion is low. This is the case when insiders have sufficient skin in the game, or in

other words, a sufficient equity stake so that, all else equal, leverage falls is at the observed levels of

leverage. The relevant empirical benchmark is thus consistent with an environment in which agency

conflicts are a key determinant of investment policies.

The moral hazard model is also consistent with a setting in which investment responds positively

to profitability, while leverage is largely unaffected by size, as the middle and rightmost graphs

document. In both trade-off and limited enforcement models leverage responds quite steeply to

size, positively with rising profits in the trade-off model and negatively with declining funding

needs in the limited enforcement case. In the moral hazard setup two agency-driven effects are at

play that work in opposite directions. To begin with, weaker incentives need to be given to insiders

in larger firms in the first place, as growth opportunities decline with size, raising debt capacity. On
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the other hand, given fixed costs, persistent profits tend to rise with size as the optimal prescribes

increasing equity in order to provide insiders with incentives not to steal, reducing leverage at the

observed high levels of size, all else equal. The result is a policy which is largely unrelated to size.

The latter effect also explains why investment is increasing with profitability, as in the data.

We report the results of the formal model comparison in Table 4. In line with the preceding

qualitative discussion, the objective function in the single benchmark estimation is minimized at

5.129 in case of the moral hazard specification, with both trade-off and limited enforcement models

doing roughly equally worse with values above 7. This establishes not only qualitatively, but also

statistically the moral hazard model as providing the most adequate representation of the dynamic

behavior of the private firms in our sample.

The joint estimation further reduces the minimized objective function to a value just above 4.

Intriguingly, however, the estimation points to substantial heterogeneity in our private firm sample

as indicated by the incidence of financial frictions reflected in the weights. While, perhaps not

surprisingly, the joint estimation assigns a weight of close to sixty percent to firms constrained

by moral hazard, it also suggests that concerns regarding profitability and tax benefits are still

rather prevalent in private firms, as indicated by the weight of around thirty percent on the trade-

off specification. This is in line with our earlier observation that firms in our private sample are

significantly more levered than the public firms, so that concerns regarding default may be especially

prevalent in this case.

The estimates for the moral hazard specification in this case are of independent interest. They

not only allow to infer the magnitude of potential profit diversion implied by the data, but also that

of insiders’ private information about shocks. Regarding profit diversion, the point estimate for λ is

0.13, indicating that observed policies imply that insiders could divert 13 cents on a dollar profits,

unless given incentives to do otherwise by the optimal contract. To put that number in some context,

we observe that the corresponding estimates for λ in case of large and small public firms are an

order of magnitude lower, indeed just barely a few percentage points. This comparison corroborates

the notion that agency conflicts and informational asymmetries, perhaps stemming from reduced

disclosure requirements, are key determinants of private firms’ policies. Indeed, our point estimates

for η indicate that these are substantially larger for private firms than the corresponding estimates
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for either type of public firms considered, so that unobservable shocks account for a substantial

fraction of private firms’ total volatility.

4.3.4. Subsample estimation: Leverage and Profitability

While it is economically natural to examine model fit across the firm size distribution, method-

ologically our procedure more broadly suggests testing and comparing models by means of sorting

firms along the relevant state variables, that is, not only size (assets), but also leverage and prof-

itability. We describe the results of the corresponding estimates in this subsection. In particular,

we implement our estimation procedure on subsamples identified as the top and bottom terciles of

firms sorted, first, on leverage, and second, on profitability.

Table 5 reports estimates based on the leverage sorts, and shows that differences in estimated fi-

nancing parameters can account rather well for variation in capital structures across firms. From the

perspective of a trade-off model, the debt of high leverage firms is supported by substantially higher

estimated recovery rates, ξ, than that of low leverage firms. Similarly, estimates of pleadgeability, θ

in the context of a limited enforcement model are higher for the former type of firms. Intriguingly,

higher leverage ratios are rationalized in a moral hazard model by a lower diversion parameter, λ.

A lower ability to divert or steal resources from the company implies that insiders need to be given

less incentives, so less skin in the game and equity, and thus supports more leverage. Our estimates

are consistent with that notion.

The joint estimation reveals substantial heterogeneity in the driving forces of capital structures

of both high and low leverage firms. Indeed, the incidence of financial frictions assigned to the

underlying models is roughly evenly split for both the high and the low leverage sample. Similarly,

the reduction of the minimized objective function when allowing for model averaging is rather small.

This suggests that high (low) leverage is about equally likely to reflect high (low) profitability,

abundant (scarce) collateral, and substantial (little) asymmetric information. This observation

presents additional evidence that a ’one-theory-fits-it-all’ approach to capital structure is unlikely

to describe the data well.

Our estimates also reveal further notable differences between high and low leverage firms. For

example, low leverage firms tend to be exposed to substantially more volatile shocks, as indicated
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by the estimates for σz. As such volatility is partially offset by lower fixed costs, an intuitive picture

of a low leverage firm emerges in our setting as a perhaps younger firm facing more uncertainty,

but lacking the commitments in the form of wages that established, mature firms face, in line with

the empirical evidence that smaller firms tend to be less levered.

In contrast to the leverage splits discussed, Table 6 presenting sorts of firms along profitability,

shows that differences in profitability across firms are likely attributable to technological differences

across firms rather than financing conditions. While this is economically plausible, it is statistically

borne out in our candidate models. Indeed, estimated financing parameters are quite similar across

sample splits and models. On the other hand, there are stark differences in estimated technological

parameters across profitability splits, which are also economically plausible. Indeed, less profitable

firms face fixed costs an order of magnitude higher than those of profitable firms, and returns to

scale, α uniformly lower than those of profitable firms. The notion that financing conditions are

not the main drivers of differences in profitability is also in line with the observation in Table 1

that the variation in leverage across profitability sorts are limited.

The joint estimation allows to trace out the driving forces and the sources of heterogeneity

behind high and low profitability further. Remarkably, while among high profitability firms the

incidence of financial frictions is mostly similarly split between trade-off and collateral constraints,

in low profitability firms agency conflicts related to asymmetric information become paramount and

the dominant force, accounting for almost half of the incidence. It is economically relevant to note

that the joint estimation points to forces driving cash flow diversion as being especially prevalent in

firms with low profitability, so that, intuitively, diverting an additional dollar is valued more highly.

4.3.5. Full Sample Estimation

So far, we have presented and discussed results based on economically and methodologically

motivated splits of our data, to identify frictions relevant especially for a particular subset of firms.

We now take a step back and ask, which of our candidate models provides the most adequate

description of the ’average’ firm, especially the typical firm from the entire Compustat universe?

Rather than identifying a particular economic source of financing constraints, this investigation

provides guidance to researchers looking to find a ’one size fits it all’ model of capital structure.
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Such a model can be useful in the context of a macroeconomic model, such as an analysis of the

aggregate effects of debt financing, perhaps, or the impact of monetary policy on firms’ credit

conditions, to name a few examples.

Table 7 reports the results of our estimation across the entire Compustat universe. As indicated

by the minimized objective functions across candidate models in the last row, the trade-off model

statistically provides the best representation of the dynamic behavior of a typical firm in Compus-

tat. This results partially reflects an estimated recovery rate, ξ, of around 0.57, which, reassuringly,

falls between the corresponding estimate in the cases of smaller and larger public firms. Consis-

tently, the estimate for the pledgeability parameter, θ, in case of the limited enforcement model

falls between the ones obtained in the corresponding size splits, giving credence to our procedure.

However, the limited enforcement model produces a somewhat larger distance between empirical

policy benchmarks and simulated ones than does the trade-off specification. Clearly, the moral

hazard model does not provide an adequate representation of the dynamic behavior of Compustat

firms, as indicated by the large approximation error. This is in line with our result that this model

specification appears to be most relevant to describe private firms.

The joint estimation confirms these patterns. Allowing for averaging reduces the overall min-

imized objective function slightly, giving rise to a somewhat better fit relative to the best single

benchmark case. The incidence on the moral hazard friction is unsurprisingly small, while the

trade-off model dominates in terms of weights. Nevertheless, the weight on the limited enforce-

ment is significantly estimated as close to forty percent, suggesting that collateral constraints play

a relevant role in shaping the capital structures of Compustat firms.

Overall, our results prioritize trade-off specifications over alternative candidate models as an

adequate description of the typical Compustat firm. For researchers that are primarily looking

for a suitable description of an aggregate or representative firm, our estimations thus single out a

trade-off setup as a good starting point in this regard.

4.4. Model selection: statistical tests

We now evaluate the relative performance of our candidate models more formally by means

of the statistical tests described in section 3.2.3. We consider two sets of tests. To discriminate
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across single candidate frictions, we use Rivers and Vuong (2002), that allows to test whether each

pair of models is statistically distinguishable relative to the data. The test in Rivers and Vuong is

suited to statistically compare the fit of a pair of non-nested models estimated using the method of

moments and can be applied to our indirect inference estimation. On the other hand, in the case

of nesting models through weighted averaging, we can use standard Wald tests that evaluate the

null hypothesis that two weights on two models are identical against the two alternative hypotheses

that one weight is larger than the other. This provides a formal statistical test whether a particular

financial friction is more relevant than another in a given subsample of firms.

Non-nested model selection tests Table 8 reports the results of our model selection based

on non-nested models. The results in this table indicate formally statistically which individual

model provides the best description of the average firm in a given sample. The table compares the

trade-off, limited commitment, and moral hazard model on the samples of firms we consider in the

estimations in section 4.3.

The columns of the table refer, from left to right, to the comparisons between the trade-off

(TO) and the limited enforcement (LE) models, between the trade-off (TO) and the moral hazard

(MH) models, and between the limited enforcement (LE) and the moral hazard (MH) models. The

rightmost column summarizes the model, if any, that provides a better description of the observed

empirical policy functions on the corresponding subsample. The results in the table suggest that

the data features that characterize our empirical policy function benchmarks suffice to statistically

distinguish across models in all subsamples. For all pairs of models and all subsamples, we reject

the null hypothesis of asymptotically equivalent models at the ten percent significance level.

Consistent with our point estimation results, our tests strongly indicate the trade-off model

as the best representation of the dynamic behavior of large public firms. On this subsample, we

accept the alternative hypotheses that the trade-off model has a better fit than both the limited

enforcement and the moral hazard models at the one percent level. The limited enforcement model

provides a better description of corporate behavior than the moral hazard model. Corporate policies

of small public firms appear to be better described by the limited enforcement model, which is

asymptotically better than the others at the one percent level. In addition, our tests strongly
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favor the trade-off model over the moral hazard model on the same subsample. The third row of

the table instead shows that the policies estimated from a moral hazard model provide the closest

approximation of the empirical benchmarks. The moral hazard model provides a better fit that

both the trade-off and the limited enforcement models at the one percent level. We also reject the

hypothesis that the trade-off model is asymptotically equivalent to the limited enforcement model

against the alternative hypothesis that it better fits the policies of private firms at the ten percent

significance level.

Finally, the bottom five rows of the table confirm the statistical significance of our estimation

results on the remaining samples of firms. The trade-off model provides the closest approximation

of corporate policies for firms with high leverage and high profitability, and for the full sample of

Compustat firms. The limited enforcement model better describes the policies of low leverage firms,

and the moral hazard model offers the most accurate characterization of the dynamic behavior of

low profitability firms.

Nested model selection tests Table 9 gives statistical content to our discussion of the relative

incidence of the sources of financing constraints in our samples and the degree of heterogeneity

therein.

For large firms, as the point estimates in Table 2 suggest, the tests indicate that the trade-off

friction has the highest incidence, since we reject the null at the 5% confidence level. Both the

trade-off and the limited enforcement frictions appear more relevant than the moral hazard friction

as the null for both pairwise tests is rejected at the 5% level

For small firms, both the trade-off and the limited enforcement frictions have a higher incidence

than the moral hazard friction. Although our point estimates indicate that the limited enforcement

friction as more relevant than the trade-off friction (wTO = 38.8%, wLE = 44%), their difference

is not statistically significant at the 10% level. In line with our earlier discussion, this reflects

a substantial amount of heteregeneity in the sources of financial constraints affecting small listed

firms.

For private firms, the tests confirm that the moral hazard friction has the highest incidence.

We reject the null hypotheses of equal incidence at the 5% level in comparison with the limited
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enforcement friction and at the 10% level in comparison with the trade-off frictions. As our point

estimates and descriptive statistics suggest, highly levered private firms also take advantage of tax

shields of debt. Statistically, this oservation is mirrored in the trade-off friction having a higher

incidence than the limited enforcement friction.

For the other subsamples, sorted on leverage and profitability, the broad pattern emerging from

our tests is that the friction with the highest point estimate for the weight parameter appears as the

most relevant. Low leverage firms, for which all frictions have roughly the same weight, represent

the only exception.

4.5. Counterfactuals

So far, we have provided an approach that allows to identify and statistically evaluate the most

relevant sources of firms’ financing constraints through models and model combinations. We now

ask, economically, does identifying the most relevant sources of financing constraints matter for firm

valuation? In this section, we use counterfactual analysis to provide guidance in this regard. Along

the way, we can use these counterfactuals to gauge the costs of financing constraints across models

and samples.

To begin with, table 10 illustrates our approach and reports a first set of results. Our procedure

starts by fixing, for each sample, the relevant estimated parameters for the best fitting model. We

then change only the financial frictions parameters, ξ, θ, and λ to the point estimates obtained from

the corresponding specification in each sample, and assess the resulting firm valuations by means

of Tobin’s Q . This approach allows us to isolate the differential effects of our candidate financial

frictions from changes in other estimated parameters. A number of observations are noteworthy.

While it is not surprising that the valuations for the model that fits a sample best are highest,

valuations obtained under models with poorer fit are substantially different. For example, if a

private firm’s access to external finance would not be constrained by asymmetric information, but

tax-related trade-offs or limited enforcement, the costs of financing constraints would be substantial,

in the order of magnitude of about 50 to 55 percent. This reflects the notion that these firms are

neither very profitable, nor investing much for seeking growth. On the other hand, if a large firms’

external financing would be constrained by limited enforcement, or informational asymmetries and
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moral hazard, these costs of alternative constraints would be in the order of 36 to 46 percent.

This reflects the observation that these firms are profitable, investing less, and likely not subject to

significant asymmetric information.

Economically, the stark quantitative differences in firm valuations across models in a given sam-

ple are quite revealing. Indeed, the results suggest that computing and assessing firm valuations

under poorly fitting models can be severely misleading. This observation corroborates the impor-

tance of identifying the most relevant financial frictions and sources of financing constraints for a

given sample to provide reliable guidance for firm valuation.

We can also use a similar approach based on our estimation results to infer the costs of financing

constraints across models and samples. We do this by comparing firm valuations from models in

which financing is constrained by one of our candidate frictions, to counterfactual specifications

in which external financing is i) entirely unconstrained in that firms can costlessly access equity

markets, and ii) maximally constrained in that no external financing is available and all expenditures

need to be financed using internal funds, so that firms are effectively in financial autarky. The

resulting relative valuations then provide guidance on the costs of financing constraints.

Table 11 reports results on the costs of financial frictions from counterfactuals. In the middle

row, it reports firm valuations for all of our estimated models, across our main samples. Keeping the

relevant estimated parameters fixed in each case, it compares those to the financial autarky case in

each specification (first row), and to the financially unconstrained version (last row). A number of

observations are in order. First, going from the first to the second row, we see that access to external

financing even subject to financial frictions in any of the forms considered, creates substantial value

as Tobin’s Q raises significantly relative to the autarky case across the board. However, there is

also considerable heterogeneity in value gains. For example, for large firms, being able to exploit

tax advantages by issuing defaultable bonds more than doubles firm valuations (1.88/0.84), while

value gains would be around 15 percent if their external financing were subject to asymmetric

information and diversion in a moral hazard context (1.02/0.88), for example. Second, passing

from the second to the third row, we find that financing constraints give rise to substantial costs in

terms of valuations, with a fair amount of heterogeneity again. For example, for small firms being

subject to collateral constraints due to enforcement frictions lowers their valuations by about 20
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percent relative to the unconstrained benchmark, as they inhibit growth. However, the costs of

financing constraints would increase to about 80 percent if these firms would exhibit asymmetric

information and the threat of diversion in an environment with moral hazard. We note that for each

sample, the costs of financing constraints are lowest in case of the best fitting among our candidate

models. This pattern is consistent with an environment in which, from the set of debt contracts

offered across models, picking the one from the best fitting model is value-maximizing.

Firm valuations across counterfactual simulations are informative about the severity and the

relevance of financial frictions. Overall, our estimates point to significant financing constraints due

to financial frictions, and emphasize the importance of identifying their relevant sources in order to

provide reliable guidance for firm valuation.

5. Conclusion

We propose to empirically evaluate the sources of financing constraints across firms by drawing

on recent advances in modeling, computing, and estimation. To that end, we develop, solve, and

estimate a range of dynamic models of corporate investment and financing, with the objective

of empirically identifying the quantitatively most prevalent financial frictions underlying firms’

financing constraints. Our approach encompasses tax and default based models of firms’ financial

structure, as well as dynamic contracting models featuring limited commitment and dynamic moral

hazard in the presence of asymmetric information. Critically, our estimation procedure based on

empirical policy function benchmarks readily lends itself to developing tests that allow to empirically

compare and discriminate among candidate models across various samples, as well as to assess the

relative relevance and incidence of candidate frictions in given samples in the spirit of Bayesian model

averaging. Specifically, we evaluate and compare the fit of our candidate models and combinations

thereof both on the standard Compustat universe and a dataset on private firms coming from Orbis,

as well as various subsample splits. Our tests, based on empirical policy function benchmarks, favor

trade-off models for larger Compustat firms, limited commitment models for smaller Compustat

firms, and moral hazard models for private firms.

Our estimation procedure also allows to gauge the magnitude of various financial frictions pro-

posed in the dynamic contracting literature. The parameter estimates of particular concern relate
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to the unobserved agency conflicts that drive financial structure and investment, such as the de-

gree of cash flow diversion in moral hazard models, and the amount of capital firms can abscond

with in limited commitment models. Regarding cash flow diversion, our results indicate that in

order to rationalize observed corporate policies for private firms, firm owners need to be able to

divert about 13 cents on the dollar of profits. On the other hand, consistent with earlier results in

Nikolov, Schmid, and Steri (2019), firms can collateralize about 60 percent of their assets in limited

commitment models.

Finally, we use counterfactual simulations to gauge the implications of different models and

candidate frictions for firm valuation. We find that assessing firm valuations under poorly fitting

models can be severely misleading. This observation corroborates the importance of identifying the

most relevant sources of financing constraints for a given sample to provide reliable guidance for

firm valuation. Our work provides such an identification approach.

Our work aims at providing some first guidance regarding the quantitative significance across

firms of various financial frictions proposed in the recent literature. Clearly, by focusing on limited

enforcement, moral hazard, and trade-off models, many prominent and promising mechanisms and

models have been left out. We view subjecting these approaches to tests of the kind we propose in

this paper as an important agenda going forward.
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Appendix A: Solution by mixed-integer programming

The following constraint generation algorithm converges to the unique fixed point of our Bellman problems.
To save notation, the firm index i is omitted and primes denote variables at time t+ 1.

1. solve the problem in (12) with an initial random subset of constraints for each state (k, u, z);
2. if all constraints a ∈ Γn(k, u, z), for all (k, u, z), are satisfied, terminate the algorithm (where Γn(k, u, z)
is the set of feasible actions at iteration n);
3. for each state (k, u, z), add the constraint a ∈ Γn(k, u, z) that generates the highest violation in (13)
with respect to the current solution Wn(k, u, z);
4. solve the problem with the current set of constraints;
5. go back to step 2.
The separation oracles for the three problems are specified as follows.

Definition 1 (Separation Oracle - trade-off)

max
a={k′,b′}

Rk,k′,b,b′,z +

nz∑
z′=1

Qz(z, z
′)

1

1 + r
Wk′(a),b′(a),z′ −Wk,b,z (18)

s.t.

p(ik) ∈ {0, 1} ∀ik = 1, ..., nk (19)
nk∑
ik=1

p(ik) = 1 (20)

k′ =

nk∑
ik=1

p(ik)k
G(ik) (21)

Rk,k′,b,b′,z =
1

1 + r
(−k′ + (1− δ)k′ −Ψ(k′, k) + τδk′ + τ(r + ∆′)b′I1−D′

−(1− ξ)((1− δ)k′ + τδk′)ID′ + E[(1− τ)π(k′, z′, η′)] (22)

k′ =

nk∑
ik=1

p(ik)k
G(ik) (23)

dk,k′,b,b′,z ≥ 0 (24)

45



Definition 2 (Separation Oracle - Limited Enforcement)

max
a={k′,b(z′,η′),p(z′,η′)}

Rk,k′,b,b(z′,η′),p(z′,η′),z +
nz∑
z′=1

Qz(z, z
′)

1

1 + r
Wk′(a),b′(a),z′ −Wk,b,z (25)

s.t.

b = E[p(z′, η′) + b(z′, η′)] (26)

p(z′, η′) + b(z′, η′) ≤ θk′(1− δ) ∀z′, η′ (27)

p(ik) ∈ {0, 1} ∀ik = 1, ..., nk (28)
nk∑
ik=1

p(ik) = 1 (29)

k′ =

nk∑
ik=1

p(ik)k
G(ik) (30)

Rk,k′,b,b(z′,η′),p(z′,η′),z =
1

1 + r
(−k′ + (1− δ)k′ −Ψ(k′, k) + τδk′ + τrb

+E[(1− τ)π(k′, z′, η′)] (31)

dk,k′,b,b(z′,η′),p(z′,η′),z ≥ 0 (32)

b(z′, η′) ≥ 0 (33)

Definition 3 (Separation Oracle - Moral Hazard)

max
a={k′,V (z′,η′),d(z′,η′)}

Rk,k′,V,V (z′,η′),d(z′,η′),z +
nz∑
z′=1

Qz(z, z
′)

1

1 + r(1− τ)
Wk′(a),V ′(a),z′ −Wk,V,z (34)

s.t.

V =
1

1 + r
E[d(z′, η′) + V (z′, η′)] (35)

d(z′, η′) + V (z′, η′) ≥ d(z′, η̂′) + V (z′, η̂′) +D(k, z, η, η̂), ∀z,∀η̂ (36)

p(ik) ∈ {0, 1} ∀ik = 1, ..., nk (37)
nk∑
ik=1

p(ik) = 1 (38)

k′ =

nk∑
ik=1

p(ik)k
G(ik) (39)

Rk,k′,V,V (z′,η′),d(z′,η′),z =
1

1 + r(1− τ)
(−k′ + (1− δ)k′ −Ψ(k′, k) + τδk′ − τrV

+E[(1− τ)π(k′, z′, η′)] (40)

dz′,η′ ≥ 0 (41)

Vz′,η′ ≥ 0 (42)

Equations (19), (20), (28), (29), (37), and (38) define the variables p(ik) that have the role to select a
grid point for capital on the grid kG(ik) and linearize the term k′α in the production function and the
adjustment cost function. The default conditions for the trade-off model and all products of variables are
incorporated in the separation oracles using standard mixed-integer formulations. The computation of the
law of motion for future debt is obtained by interpolation with the logarithmic formulation of Vielma and
Nemhauser (2011).
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Appendix B: Variance estimation in model selection tests

Following Rivers and Vuong (2002) and Hall and Pelletier (2011), to which we refer the reader for an
exhaustive treatment, σ̂nT is constructed as

σ̂nT = R̂′nT V̂nT R̂nT ,

where V̂nT is a consistent estimator of limnT→∞ V ar
[

1
(nT )0.5

∑n
i=1

∑T
t=1 ξit

]
, based on the sample counter-

part ξ̂it of ξit. The vector ξ̂it is constructed as ξ̂it = [â′1it, b̂
′
1it, â

′
2it, b̂

′
2it], where, for k = 1, 2,

â′kit = h(vit)−
1

S

S∑
s=1

h(vsit(β̂k))− g(vit, β̂k)

and
b̂′kit = vech{ψh(vit)ψ

′
h(vit)

− Ω̂k}.

ψh(vit) is the influence function of the vector of the functions of moments, and Ω̂k is the covariance of
such vector of functions, computed by covarying the influence function with itself as in Nikolov and Whited
(2014).

The matrix R̂nT is constructed as

R̂nT =

[
R̂nT

(1)

−R̂nT
(2)

]

where, for models k = 1, 2:

R̂T
(k)

=

[
2{Ω̂k}−1g(vit, β̂k)

−∆̂
(k)
nTB

′
i{g(vit, β̂k)⊗ g(vit, β̂k)}

]
,

where
∆̂

(k)
nT = Lk[{Ω̂k}−1 ⊗ {Ω̂k}−1]Bk.

The matrices Li and Bi are selection matrices defined such that

vech[{Ω̂k}−1] = Livec[{Ω̂k}−1]

and
vec[{Ω̂k}−1] = Bivech[{Ω̂k}−1].
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Table 2
Estimation: Large Public Firms

The table reports parameter estimates for the trade-off (TO), limited enforcement (LE), and moral
hazard (MH) models using empirical policy functions. All models are estimated on top terciles of
Compustat firms sorted by size. α denotes the curvature of the production function, f the fixed
production cost, ρz the persistence of the profitability shock, σz the volatility of the profitability
shock, δ the depreciation rate, ψ the capital adjustment cost parameter, η the size of the iid shock
to profits, ξ the recovery rate parameter in the trade-off model, θ the tangibility parameter in
the limited enforcement model, and λ the diversion parameter in the moral hazard model. The
rightmost column reports results from an estimation in which the incidence of the TO friction
(”Weight TO”), LE friction (”Weight LE”), and MH friction (”Weight MH”) is jointly estimated
on the sample. Obj. Fun. denotes the goodness of fit measures as the minimized criteria for the
empirical policy function estimation, multiplied by one hundred. Standard errors are in parentheses.

Parameter Estimates: Large Public Firms
TO LE MH Weighted

α 0.778 0.808 0.741 0.775
(0.001) (0.001) (0.001) (0.001)

f 0.704 0.776 0.670 0.717
(0.943) (0.112) (0.028) (0.024)

ρz 0.834 0.779 0.834 0.818
(0.001) (0.001) (0.001) (0.002)

σz 0.292 0.305 0.364 0.320
(0.002) (0.001) (0.002) (0.003)

δ 0.169 0.126 0.188 0.161
(0.001) (0.001) (0.001) (0.001)

ψ 0.130 0.132 0.162 0.141
(0.005) (0.001) (0.001) (0.003)

η 0.312 0.329 0.260 0.300
(0.005) (0.006) (0.003) (0.003)

ξ 0.600 0.600
(0.007) (0.014)

θ 0.727 0.733
(0.005) (0.011)

λ 0.039 0.039
(0.000) (0.002)

Weight TO 0.610
(0.013)

Weight LE 0.327
(0.010)

Weight MH 0.063
(0.014)

Obj. Fun. 2.805 5.233 26.536 1.460



Table 3
Estimation: Small Public Firms

The table reports parameter estimates for the trade-off (TO), limited enforcement (LE), and moral
hazard (MH) models using empirical policy functions. All models are estimated on bottom terciles
of Compustat firms sorted by size. α denotes the curvature of the production function, f the fixed
production cost, ρz the persistence of the profitability shock, σz the volatility of the profitability
shock, δ the depreciation rate, ψ the capital adjustment cost parameter, η the size of the iid shock
to profits, ξ the recovery rate parameter in the trade-off model, θ the tangibility parameter in
the limited enforcement model, and λ the diversion parameter in the moral hazard model. The
rightmost column reports results from an estimation in which the incidence of the TO friction
(”Weight TO”), LE friction (”Weight LE”), and MH friction (”Weight MH”) is jointly estimated
on the sample. Obj. Fun. denotes the goodness of fit measures as the minimized criteria for the
empirical policy function estimation, multiplied by one hundred. Standard errors are in parentheses.

Parameter Estimates: Small Public Firms
TO LE MH Weighted

α 0.765 0.764 0.772 0.767
(0.004) (0.002) (0.002) (0.004)

f 0.897 0.837 0.880 0.871
(0.641) (0.130) (0.011) (0.032)

ρz 0.813 0.774 0.775 0.788
(0.004) (0.002) (0.003) (0.003)

σz 0.313 0.312 0.286 0.304
(0.006) (0.004) (0.002) (0.003)

δ 0.182 0.182 0.187 0.184
(0.002) (0.003) (0.001) (0.003)

ψ 0.155 0.151 0.139 0.148
(0.004) (0.003) (0.001) (0.004)

η 0.263 0.250 0.230 0.247
(0.007) (0.012) (0.001) (0.003)

ξ 0.547 0.558
(0.013) (0.015)

θ 0.647 0.647
(0.011) (0.019)

λ 0.021 0.021
(0.000) (0.003)

Weight TO 0.388
(0.014)

Weight LE 0.440
(0.011)

Weight MH 0.173
(0.014)

Obj. Fun. 5.108 4.552 11.453 2.340



Table 4
Estimation: Private Firms

The table reports parameter estimates for the trade-off (TO), limited enforcement (LE), and moral
hazard (MH) models using empirical policy functions. All models are estimated on a sample
of private firms from Orbis. α denotes the curvature of the production function, f the fixed
production cost, ρz the persistence of the profitability shock, σz the volatility of the profitability
shock, δ the depreciation rate, ψ the capital adjustment cost parameter, η the size of the iid shock
to profits, ξ the recovery rate parameter in the trade-off model, θ the tangibility parameter in
the limited enforcement model, and λ the diversion parameter in the moral hazard model. The
rightmost column reports results from an estimation in which the incidence of the TO friction
(”Weight TO”), LE friction (”Weight LE”), and MH friction (”Weight MH”) is jointly estimated
on the sample. Obj. Fun. denotes the goodness of fit measures as the minimized criteria for the
empirical policy function estimation, multiplied by one hundred. Standard errors are in parentheses.

Parameter Estimates: Private Firms
TO LE MH Weighted

α 0.569 0.605 0.630 0.692
(0.001) (0.002) (0.002) (0.001)

f 5.012 5.287 5.176 4.676
(0.064) (0.052) (0.736) (0.041)

ρz 0.796 0.745 0.745 0.867
(0.001) (0.001) (0.001) (0.001)

σz 0.240 0.309 0.309 0.373
(0.002) (0.001) (0.005) (0.002)

δ 0.089 0.058 0.058 0.083
(0.000) (0.001) (0.000) (0.001)

ψ 0.174 0.202 0.203 0.198
(0.005) (0.003) (0.003) (0.003)

η 0.486 0.423 0.391 0.527
(0.003) (0.004) (0.007) (0.001)

ξ 0.449 0.413
(0.001) (0.000)

θ 0.541 0.590
(0.014) (0.004)

λ 0.130 0.143
(0.002) (0.006)

Weight TO 0.329
(0.010)

Weight LE 0.100
(0.010)

Weight MH 0.571
(0.020)

Obj. Fun. 7.140 7.587 5.129 4.060



Table 5
Estimation: High versus Low Leverage Firms

The table reports parameter estimates for the trade-off (TO), limited enforcement (LE), and moral
hazard (MH) models using empirical policy functions. All models are estimated on the top and
bottom terciles of firms sorted by leverage. α denotes the curvature of the production function, f
the fixed production cost, ρz the persistence of the profitability shock, σz the volatility of the prof-
itability shock, δ the depreciation rate, ψ the capital adjustment cost parameter, η the size of the iid
shock to profits, ξ the recovery rate parameter in the trade-off model, θ the tangibility parameter
in the limited enforcement model, and λ the diversion parameter in the moral hazard model. The
rightmost column reports results from an estimation in which the incidence of the TO friction
(”Weight TO”), LE friction (”Weight LE”), and MH friction (”Weight MH”) is jointly estimated
on the sample. Obj. Fun. denotes the goodness of fit measures as the minimized criteria for the
empirical policy function estimation, multiplied by one hundred. Standard errors are in parentheses.

Parameter Estimates
High Leverage Firms Low Leverage Firms

TO LE MH Weighted TO LE MH Weighted

α 0.807 0.796 0.728 0.782 0.752 0.712 0.642 0.755
(0.000) (0.001) (0.001) (0.003) (0.004) (0.003) (0.024) (0.002)

f 1.252 1.194 1.247 1.197 0.661 0.796 0.706 0.795
(0.669) (0.014) (0.008) (0.078) (0.396) (0.029) (0.024) (0.059)

ρz 0.878 0.735 0.874 0.830 0.824 0.747 0.672 0.747
(0.001) (0.001) (0.001) (0.002) (0.002) (0.003) (0.004) (0.003)

σz 0.222 0.248 0.199 0.225 0.322 0.324 0.335 0.393
(0.000) (0.001) (0.000) (0.002) (0.003) (0.001) (0.014) (0.003)

δ 0.182 0.166 0.181 0.177 0.196 0.183 0.202 0.196
(0.000) (0.002) (0.001) (0.003) (0.001) (0.003) (0.015) (0.003)

ψ 0.105 0.122 0.116 0.128 0.156 0.132 0.109 0.132
(0.019) (0.001) (0.001) (0.002) (0.006) (0.001) (0.024) (0.003)

η 0.381 0.363 0.378 0.372 0.262 0.317 0.235 0.270
(0.003) (0.003) (0.003) (0.004) (0.009) (0.005) (0.012) (0.007)

ξ 0.858 0.866 0.412 0.413
(0.001) (0.006) (0.004) (0.007)

θ 0.866 0.868 0.252 0.252
(0.007) (0.018) (0.003) (0.007)

λ 0.017 0.017 0.077 0.077
(0.000) (0.001) (0.011) (0.009)

Weight TO 0.385 0.328
(0.005) (0.010)

Weight LE 0.265 0.343
(0.009) (0.008)

Weight MH 0.349 0.329
(0.007) (0.010)

Obj. Fun. 2.982 4.735 4.817 2.550 3.836 3.667 3.797 2.430



Table 6
Estimation: High versus Low Profitability Firms

The table reports parameter estimates for the trade-off (TO), limited enforcement (LE), and moral
hazard (MH) models using empirical policy functions. All models are estimated on the top and
bottom terciles of firms sorted by profitability. α denotes the curvature of the production function,
f the fixed production cost, ρz the persistence of the profitability shock, σz the volatility of the prof-
itability shock, δ the depreciation rate, ψ the capital adjustment cost parameter, η the size of the iid
shock to profits, ξ the recovery rate parameter in the trade-off model, θ the tangibility parameter
in the limited enforcement model, and λ the diversion parameter in the moral hazard model. The
rightmost column reports results from an estimation in which the incidence of the TO friction
(”Weight TO”), LE friction (”Weight LE”), and MH friction (”Weight MH”) is jointly estimated
on the sample. Obj. Fun. denotes the goodness of fit measures as the minimized criteria for the
empirical policy function estimation, multiplied by one hundred. Standard errors are in parentheses.

Parameter Estimates
High Profitability Firms Low Profitability Firms

TO LE MH Weighted TO LE MH Weighted

α 0.789 0.788 0.712 0.775 0.575 0.570 0.575 0.575
(0.003) (0.001) (0.001) (0.002) (0.001) (0.000) (0.002) (0.000)

f 0.528 0.617 0.607 0.585 6.092 6.563 6.388 6.376
(0.148) (0.014) (0.030) (0.034) (0.043) (0.060) (0.005) (0.052)

ρz 0.779 0.728 0.845 0.781 0.600 0.542 0.513 0.525
(0.002) (0.003) (0.001) (0.003) (0.005) (0.002) (0.008) (0.006)

σz 0.308 0.266 0.237 0.271 0.177 0.272 0.236 0.234
(0.001) (0.001) (0.001) (0.003) (0.002) (0.002) (0.004) (0.004)

δ 0.162 0.176 0.154 0.164 0.078 0.063 0.072 0.071
(0.001) (0.001) (0.000) (0.004) (0.001) (0.001) (0.000) (0.001)

ψ 0.134 0.117 0.139 0.130 0.058 0.089 0.071 0.084
(0.001) (0.003) (0.001) (0.005) (0.004) (0.001) (0.001) (0.003)

η 0.216 0.176 0.206 0.199 0.348 0.340 0.340 0.346
(0.004) (0.004) (0.001) (0.004) (0.004) (0.003) (0.008) (0.002)

ξ 0.532 0.533 0.651 0.651
(0.003) (0.013) (0.010) (0.033)

θ 0.668 0.669 0.699 0.720
(0.010) (0.011) (0.012) (0.047)

λ 0.035 0.035 0.148 0.143
(0.000) (0.003) (0.004) (0.002)

Weight TO 0.487 0.356
(0.006) (0.011)

Weight LE 0.391 0.195
(0.007) (0.008)

Weight MH 0.122 0.449
(0.005) (0.011)

Obj. Fun. 2.593 3.218 10.251 2.190 3.538 6.248 3.130 2.710



Table 7
Estimation: Full Compustat Sample

The table reports parameter estimates for the trade-off (TO), limited enforcement (LE), and moral
hazard (MH) models using empirical policy functions. All models are estimated on the full sample
of public firms from Compustat. α denotes the curvature of the production function, f the fixed
production cost, ρz the persistence of the profitability shock, σz the volatility of the profitability
shock, δ the depreciation rate, ψ the capital adjustment cost parameter, η the size of the iid shock
to profits, ξ the recovery rate parameter in the trade-off model, θ the tangibility parameter in
the limited enforcement model, and λ the diversion parameter in the moral hazard model. The
rightmost column reports results from an estimation in which the incidence of the TO friction
(”Weight TO”), LE friction (”Weight LE”), and MH friction (”Weight MH”) is jointly estimated
on the sample. Obj. Fun. denotes the goodness of fit measures as the minimized criteria for the
empirical policy function estimation, multiplied by one hundred. Standard errors are in parentheses.

Parameter Estimates: Public Firms
TO LE MH Weighted

α 0.765 0.797 0.814 0.792
(0.001) (0.000) (0.000) (0.001)

f 0.666 0.823 0.849 0.786
(0.047) (0.030) (0.008) (0.027)

ρz 0.853 0.649 0.732 0.699
(0.001) (0.002) (0.001) (0.002)

σz 0.334 0.349 0.277 0.320
(0.000) (0.002) (0.000) (0.001)

δ 0.160 0.141 0.180 0.161
(0.000) (0.001) (0.000) (0.001)

ψ 0.135 0.195 0.165 0.170
(0.004) (0.002) (0.000) (0.005)

η 0.319 0.216 0.243 0.259
(0.002) (0.002) (0.001) (0.004)

ξ 0.577 0.578
(0.000) (0.006)

θ 0.706 0.711
(0.007) (0.011)

λ 0.028 0.028
(0.000) (0.010)

Weight TO 0.461
(0.007)

Weight LE 0.397
(0.006)

Weight MH 0.141
(0.006)

Obj. Fun. 2.879 3.779 18.388 1.980



Table 8
Model Comparison

The table reports the results of the Rivers and Vuong (2002) statistical tests to compare the trade-
off, limited enforcement, and moral hazard model on different subsamples of firms. TO denotes the
trade-off model, LE denotes the limited enforcement model, and MH the moral hazard model. Data
of public firms are from Compustat and cover an unbalanced panel of 39,433 firm-year observations
from 1965 to 2015. Data on private firms are from Orbis and cover an unbalanced panel of 83,823
firm-year observations from 2003 to 2012. Subsamples of small vs large, profitable vs unprofitable,
and high vs low leverage firms are obtained from Compustat. Firms are split according to firms
characteristic in correspondence to the top and bottom tercile respectively. Test statistics are in
parentheses. (***), (**) and (*) denote statistical significance at the one, five, and ten percent
levels respectively.

Comparison

TO vs LE TO vs MH LE vs MH Best Fit

Large TO∗∗∗ TO∗∗∗ LE∗∗∗ TO
(-3.42) (-30.42) (-99.67)

Small LE∗∗∗ TO∗∗∗ LE∗∗∗ LE
(3.05) (-4.92) (-4.16)

Private TO∗ MH∗∗∗ MH∗∗∗ MH
(-1.46) (2.77) (2.39)

High Leverage TO∗∗∗ TO∗∗∗ LE∗ TO
(-42.94) (-3.77) (-1.54)

Low Leverage LE∗ MH∗ LE∗ LE
(1.34) (1.38) (-1.62)

High Profitability TO∗∗∗ TO∗∗∗ LE∗∗∗ TO
(-2.73) (-9.35) (-32.27)

Low Profitability TO∗∗∗ MH∗∗ MH∗∗∗ MH
(-8.15) (3.77) (4.36)

All Public Firms TO∗∗∗ TO∗∗∗ LE∗∗∗ TO
(-2.19) (-21.84) (-121.95)
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Table 9
Model Comparison: Incidence of Financial Frictions

The table reports the test statistics of Wald statistical tests to compare the incidence of the
trade-off, limited enforcement, and moral hazard frictions on different subsamples of firms. TO
denotes the trade-off model, LE denotes the limited enforcement model, and MH the moral
hazard model. The parameters driving the incidence of the three frictions are denoted as ”Weight
TO”, ”Weight LE”, and ”Weight MH”, respectively. Data of public firms are from Compustat
and cover an unbalanced panel of 39,433 firm-year observations from 1965 to 2015. Data on
private firms are from Orbis and cover an unbalanced panel of 83,823 firm-year observations
from 2003 to 2012. Subsamples of small vs large, profitable vs unprofitable, and high vs low
leverage firms are obtained from Compustat. Firms are split according to firms characteris-
tic in correspondence to the top and bottom tercile respectively. (***), (**) and (*) denote
p-values less than one, five, and ten percent levels respectively in one-tailed tests in which
the alternative hypothesis is specified as the higher weight being larger than the smaller weight.

Null Hypothesis
Weight TO = Weight LE Weight TO = Weight MH Weight LE = Weight MH

Large 520.5∗∗ 976.9∗∗ 327.5∗∗

Small 11.5 137.7∗ 339.7∗∗

Private 9976.6∗∗∗ 123.5∗ 467.3∗∗

High Leverage 180.0∗ 28.8 62.2∗

Low Leverage 1.9 0.0 1.8

High Profitability 125.7∗∗ 3116.1∗∗ 1401.7∗∗

Low Profitability 201.0∗∗ 41.3 559.1∗∗

All Public Firms 55.5∗ 1603.7∗∗ 1549.4∗∗
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Table 10
Counterfactuals: Severity of Financing Constraints

The table reports values for Tobin’s Q from the following counterfactual exercise. For the subsam-
ples of large, small and private firms, data are simulated from all models under the benchmark
estimated parameters for the best fitting model, namely trade-off (TO) for large public firms,
limited enforcement (LE) for small public firms, and moral hazard (MH) for private firms. The
financing constraint parameters ξ in the trade-off model, θ in the limited enforcement model,
and λ in the moral hazard model are instead set to their estimated values for the corresponding
subsample. Tobin’s Q is computed as the market value of assets divided by the book value of assets.

Counterfactuals: Tobin’s Q
Large Firms Small Firms Private Firms

TO 1.88 2.35 2.03

LE 1.19 3.52 2.21

MH 1.02 1.00 3.91
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Table 11
Counterfactuals: Costs of Financial Constraints

The table reports values for Tobin’s Q for a set of counterfactuals. For the subsamples of large,
small, and private firms, data are simulated from the best fitting model. The best fitting models
are the trade-off model, TO, for large firms, the limited enforcement model, LE, for small firms,
and the moral hazard, MH, for private firms. We consider three specifications, denoted as
”Autarky”, ”Baseline”, and ”Unconstrained”. ”Autarky” refers to a model in which the firm has
no access to external financing, ”Baseline” to the estimated specification, and ”Unconstrained” to
a model in which the firm faces no financing frictions (i.e. the dividend non-negativity constraint
is relaxed). Tobin’s Q is computed as the market value of assets divided by the book value of assets.

Counterfactuals: Tobin’s Q
Large Firms: TO Small Firms: LE Private Firms: MH

Autarky 0.84 1.07 1.04

Baseline 1.88 3.52 3.91

Unconstrained 2.70 4.40 4.76
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……

Fig. 1. Timeline. This figure summarizes the timeline of decisions and states across our models.
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Panel A: Large Public Firms
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Panel B: Small Public Firms
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Panel C: Private Firms
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Fig. 2. Model Validation. The figure depicts the relation between the predicted empirical policy
functions for the sample of firms described in Section 4. Empirical policy functions are constructed
as described in Section 3, where the transformed state variables that are not plotted are fixed to
their average value in the sample. Model parameters are set to their estimated values. ’Data’ refers
to the real data, ’TO’ to the trade-off model, ’LE’ to the limited enforcement model, and ’MH’ to
the moral hazard model.
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B) Payout Versus Profitability
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Fig. 3. Model Identification–Large Public Firms. The figure depicts the relation between the
predicted empirical policy functions for the sample of large Compustat firms described in Section 4.
Empirical policy functions are constructed as described in Section 3, where the transformed state
variables that are not plotted are fixed to their average value in the sample. Model parameters are
set to their estimated values. ’Data’ refers to the real data, ’TO’ to the trade-off model, ’LE’ to the
limited enforcement model, and ’MH’ to the moral hazard model.
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Fig. 3. Model Identification–Small Public Firms. The figure depicts the relation between the
predicted empirical policy functions for the sample of small Compustat firms described in Section
4. Empirical policy functions are constructed as described in Section 3, where the transformed state
variables that are not plotted are fixed to their average value in the sample. Model parameters are
set to their estimated values. ’Data’ refers to the real data, ’TO’ to the trade-off model, ’LE’ to the
limited enforcement model, and ’MH’ to the moral hazard model.
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Fig. 4. Model Identification–Private Firms. The figure depicts the relation between the predicted
empirical policy functions for the sample of private firms described in Section 4. Empirical policy
functions are constructed as described in Section 3, where the transformed state variables that
are not plotted are fixed to their average value in the sample. Model parameters are set to their
estimated values. ’Data’ refers to the real data, ’TO’ to the trade-off model, ’LE’ to the limited
enforcement model, and ’MH’ to the moral hazard model.

67



about ECGI

The European Corporate Governance Institute has been established to improve corpo-
rate governance through fostering independent scientific research and related activities.

The ECGI will produce and disseminate high quality research while remaining close to 
the concerns and interests of corporate, financial and public policy makers. It will draw on 
the expertise of scholars from numerous countries and bring together a critical mass of 
expertise and interest to bear on this important subject.

The views expressed in this working paper are those of the authors, not those of the ECGI 
or its members. 

www.ecgi.org



ECGI Working Paper Series in Finance

Editorial Board

Editor  Ernst Maug, Professor of Corporate Finance, Mannheim  
 Business School, University of Mannheim

Consulting Editors Franklin Allen, Nippon Life Professor of Finance, Professor of  
 Economics, The Wharton School of the University of   
 Pennsylvania
 Julian Franks, Professor of Finance, London Business School
 Marco Pagano, Professor of Economics, Facoltà di Economia
 Università di Napoli Federico II
 Xavier Vives, Professor of Economics and Financial   
 Management, IESE Business School, University of Navarra

 Luigi Zingales, Robert C. McCormack Professor of   
 Entrepreneurship and Finance, University of Chicago, Booth  
 School of Business
Editorial Assistants Alison Schultz, University of Mannheim
 Julian Hanf, University of Mannheim
 Elena Lee, University of Mannheim

www.ecgi.org\wp



Electronic Access to the Working Paper Series

The full set of ECGI working papers can be accessed through the Institute’s Web-site 
(www.ecgi.org/wp) or SSRN:

Finance Paper Series  http://www.ssrn.com/link/ECGI-Fin.html 
Law Paper Series  http://www.ssrn.com/link/ECGI-Law.html 

www.ecgi.org\wp


	Cover Nikolov Schmid Steri
	final Nikolov Schmid Steri.pdf
	Cover Nikolov Schmid Steri.pdf
	nsssfc
	Cover Nikolov Schmid Steri


