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Abstract

This paper studies multi-agent optimal contracting with cost synergies. We model 
synergies as the extent to which effort by one agent reduces his colleague’s 
marginal cost of effort. An agent’s pay and effort depend on the synergies he 
exerts, the synergies his colleagues exert on him and, surprisingly, the synergies 
his colleagues exert on each other. It may be optimal to “over-work” and “over-in-
centivize” a synergistic agent, due to the spillover effect on his colleagues. This 
result can rationalize the high pay differential between CEOs and divisional man-
agers. An increase in the synergy between two particular agents can lead to a 
third agent being endogenously excluded from the team, even if his own synergy 
is unchanged. This result has implications for optimal team composition and firm 
boundaries.
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1 Introduction

Firms are systems of agents working together to create value. A key feature of firms

is the presence of synergies across the different agents, whereby effort by one agent

affects the productivity and cost of effort of other agents. The presence of synergies is

often thought to be a central reason for the formation of firms and a key determinant

of firm boundaries, as in the classic paper by Alchian and Demsetz (1972).

Despite the prominence of synergies inside a firm, most models studying the optimal

pay and effort levels of executives or employees involve a single agent.1 In particular,

the predictions of single-agent models are sometimes used to evaluate whether executive

compensation is set efficiently or instead results from rent extraction. However, since a

key part of a manager’s job involves interacting with and influencing other employees,

we need to understand how the synergies between a manager and his colleagues affect

how he should be compensated. This paper proposes an optimal contracting model

that examines managerial effort and pay, in a setting with multiple agents who exert

synergies on each other. In our theory, agents are hired by a principal to work on the

production of a joint output. Each agent chooses an effort level, which increases the

probability that the project will succeed, but is also costly for the agent. The novel

aspect of our model is that one agent’s effort may reduce his colleagues’ marginal cost

of effort. We use the term Influence to capture the extent of this reduction. In our

model, the sum of the unidirectional influence parameters between two agents is key

for the analysis, and we refer to this sum as Synergy.

The key aspect of our modeling of influence and synergy is that an agent’s effort re-

duces the marginal private cost of other agents’ effort. This is equivalent to specifying

that the agent’s effort increases the marginal private benefit other agents derive from

their effort. However, it is different from specifying that an agent’s effort affects the

marginal benefit that other agents’ efforts have for the production of the joint output.

As we explain below in our literature review, this is where our paper differs from most

existing literature that considers interactions among agents in the production of a joint

output. There are three main interpretations of this modeling approach. First, many

effort decisions in reality reduce the marginal cost of effort of one’s colleagues. For

example, if the CEO develops a corporate culture that embraces change, it is easier for

a divisional manager to implement a new workforce practice. If a manager gives clear

instructions and task delineation, it is easier for a rank-and-file employee to be produc-

tive. Second, effort by one agent increases his colleague’s marginal cost of shirking, as

1We will review the literature on multi-agent contracting below.
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in a peer pressure situation. Third, one agent’s effort augments his colleague’s private

benefit from effort. For example, the private benefit that an academic derives from

coming into the office increases in the extent to which his colleagues do so.

The structure of synergies within a firm is complex. Synergistic relationships are

typically asymmetric. A CEO has a greater impact on a divisional manager than the

other way round. The managing director of an investment bank staying in the office late

pressures analysts to do so also, but the reverse is not true. Moreover, the number of

synergistic relationships may vary across agents. A CEO likely exhibits synergies with

each of his divisional managers, but a pair of divisional managers might not exhibit

synergies with each other.

To capture these complexities, we build a rich framework that allows for effort to

be continuous, the optimal effort level to be endogenous, influence to be asymmetric

across a given pair of agents, and agents to differ in the number of colleagues with

whom they enjoy synergies. We analyze the effect of synergies on optimal pay and

effort for a synergistic agent and his colleagues, thus deriving implications for total

pay and effort across an organization, and relative pay and effort across agents. The

model highlights the complex system of factors that determine an agent’s optimal ef-

fort and pay. These depend on the synergies he exerts on other agents, the synergies

they exert on him, and, surprisingly, the synergies between agents not involving him.

Throughout, we highlight how incorporating synergies injects several new and interest-

ing forces that affect optimal pay and effort. In particular, considering these forces –

and ultimately, how agents interact with each other within an organization – leads to

new rationalizations for various features of real-world contracts that might otherwise

seem puzzling.

We start with a model with N agents and general cost functions, to illustrate our

influence concept in a broad setting. The N agents all exhibit risk neutrality and

limited liability, and contribute to a joint production process that can either succeed

or fail. We study the optimal effort levels implemented by the principal, and the wages

she offers each agent in the case of success. Without influence, the optimal effort level is

a tradeoff between the benefits of effort (increased productivity) and its costs (increased

wages). With influence, two additional forces enter the effort determination equation.

First, the cost of inducing effort is reduced due to the influence that the agent enjoys

from his colleagues. Second, the benefit to the principal of inducing effort is increased:

effort not only has a direct effect on output, but also reduces the agent’s colleagues’

cost of effort and thus makes it easier to incentivize them. The size of this benefit is
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represented by the cross-partial derivative of his colleagues’ cost function – the extent

to which their marginal cost of effort is reduced by an increase in his own effort. Both

of these forces will tend to increase the optimal effort level. Introducing synergies also

causes two additional forces to enter into the wage determination equation. On the

one hand, a higher optimal effort level will tend to increase the required wage. On the

other hand, the influence that an agent enjoys from his colleagues will reduce his cost

of effort and thus the wage.

While the general model is useful to highlight the underlying forces, it is difficult

to solve due to the complex structure of interactions among the agents. Hence, as is

common in the literature, we specialize the model to a setup of a linear production

function and quadratic cost functions, which yields significant tractability. We first

consider a two-agent model before moving on to a three-agent model. In the two-agent

model, two forces affect the relative effort levels of the agents. It would seem that

the more influential agent should work harder, as his effort is more useful because

it reduces his colleague’s cost function. However, there is a force in the opposite

direction: the principal takes advantage of this reduced cost by inducing more effort

from his colleague. In our model, these two effects cancel out and both agents exert the

same effort level. While this cancellation is specific to our functional forms, the general

point is that an agent’s optimal effort level is increasing not only in his influence on his

colleague, but also in his colleague’s influence on him. Indeed, in our framework, the

common synergy is a sufficient statistic for the optimal effort. That is, optimal effort

depends on the individual influence parameters only up to their sum.

While effort levels are equal, wages are not. The more influential agent receives a

higher wage upon success. This differential arises even though both agents exert the

same effort level, and have the same direct productivity. Instead, higher pay is optimal

because it causes the agent to internalize the externalities he exerts on his colleague.

When choosing his effort level, each agent takes his colleague’s action as given, and so

he does not take into account the impact on his colleague’s cost of effort. A higher

wage causes him to internalize this influence and increase his effort, as desired by the

principal. An increase in the common synergy leads to the principal implementing

a higher effort level, and offering higher total wages. The result is consistent with

the high level of equity incentives in start-up firms, including to junior employees.

In start-ups, job descriptions are blurred and workers interact frequently with each

other. Thus, even if they have little direct effect on output, junior employees can

have a significant indirect effect through aiding their colleagues. An increase in agent
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i’s influence parameter always increases i’s wage, but the effect on j’s wage is more

nuanced. We derive clear conditions under which j’s wage increases, and conditions

under which it decreases.

We then extend the analysis to three agents, which allows us to study differences

in synergies across pairs of agents. In this setting, a “synergy component” refers to

the sum of the bilateral influence parameters between a pair of agents. There are

three synergy components, one for each pair of agents. If the synergy components are

sufficiently close to each other, all agents exert strictly positive effort, and the ratio

of the effort (and thus wage) levels depends on the relative magnitude of all three

synergy components. For example, if agent 1 exhibits more synergies with agent 3

than does agent 2, then 1 will exert a higher effort level than 2. Note that the relative

effort levels depend on the total synergies between each pair of agents, rather than the

unidirectional influence parameters. Even an uninfluential agent may work hard, if he

is easily influenced.

A natural application of the three-agent model is where one synergy component

is close to zero – for example, if two divisional managers exhibit synergies with the

CEO but not each other. The two non-synergistic agents can then be aggregated into

one and the model approximates the two-agent case. Thus, the CEO exerts almost

the same effort level as the two divisional managers combined, and so his level of pay

is also higher than each divisional manager. Bebchuk, Cremers, and Peyer (2011)

interpret a high level of CEO pay compared to other senior managers as inefficient rent

extraction, but we show that it can be optimal because the CEO occupies a central

position within the firm, and so his actions influence many other agents. Kotter (2013)

shows empirically that the rise of CEO pay can be linked to the IT revolution, which

induced firms to hire more workers who perform non-routine tasks. Linking his results

to our model, he notes that CEOs have a greater role in reducing workers’ cost of effort

when they perform non-routine tasks, and so the increase in CEO pay is consistent

with the desire to cause them to internalize this externality. Another trend, related

to our model, that can explain the recent increase in CEO pay is the improvement in

communication technologies, which enlarged a CEO’s scope of influence.2

Another interesting case of the three-agent model is when one synergy component

becomes very large compared to the other two. The model then collapses to the

two-agent setting, and one agent is excluded from the team. Thus, the third agent’s

participation depends on circumstances outside his control – in contrast to standard

2Garicano and Rossi-Hansberg (2006) also show how improvements in communication technologies
lead to increased wage inequality within an organization, and provide supporting evidence.
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models in which an agent’s effort level depends only on parameters specific to him

(such as his own cost and productivity). Even if the third agent has the same direct

productivity as his two colleagues and enjoys strictly positive synergies with them, if

the synergy component between his two colleagues increases sufficiently, the principal

will optimally exclude him and produce using only the first two agents. Their strong

synergies mean that they are cheaper to incentivize, despite the third agent being on

the flat part of his convex cost function. This result has interesting implications for

the optimal composition of a team – if two agents enjoy sufficiently high synergies with

each other, there is no gain in adding a third agent, even if he has just as high direct

productivity as the first two. Similarly, if the agents are interpreted as divisions of a

firm, the model has implications for firm boundaries. Conventional wisdom suggests

that a division should be divested only if it does not exhibit synergies with the rest of

the conglomerate. Here, even if a division enjoys strictly positive synergies, it should

still be divested if its synergies are lower than those enjoyed by the other divisions. It

is relative, not absolute, synergies that matter.

1.1 Literature Review

As noted above, our study builds on the literature on multi-agent principal-agent prob-

lems. Holmstrom (1982) considers two team-based settings. Where agents contribute

to a joint output, a free-rider problem exists. Where each agent has his own output

measure, the principal uses relative performance evaluation. There are no synergies in

either costs or production.3 A rich literature, summarized by Bolton and Dewatripont

(2005, Chapter 8), has built on both of these settings, analyzing questions such as

collusion, mutual monitoring, and the optimal hierarchical structure. In our paper, we

study a setting where agents contribute to a joint output. As was argued in the litera-

ture before us, this is applicable to many real-world situations where the output of each

individual agent or each division in the organization cannot be measured well. The

new feature of our model is cost synergies. There are three branches of the literature

on multi-agent contracting that are related to our approach.

First, some papers have focused on agency problems under production complemen-

tarities, where agents improve each other’s marginal effect on the joint output. Che and

Yoo (2001) study a repeated setting, where an agent can punish a shirking colleague

by shirking himself in the future. Kremer (1993) analyzes maximum complementari-

3In the individual-output model, there is no interaction between the agents; in the joint-output
model, the only interaction stems from a joint production function where efforts are perfect substitutes.
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ties in production, when failure in one agent’s task leads to automatic failure of the

joint project, although agents do not make an effort decision. Winter (2004) adds a

binary effort choice and shows that it may be optimal to give agents different incen-

tive schemes even if they are ex ante homogenous. Extending this framework further,

Winter (2006) studies how the optimal contract depends on the sequencing of agents’

actions, and Winter (2010) shows how it depends on the information agents have about

each other. Gervais and Goldstein (2007) analyze optimal contracting in a model with

production complementarities and overconfidence. Sakovics and Steiner (2012) study

optimal subsidies under production complementarities.

We show in Section 5 that production complementarities are inherently different

from the cost synergies modeled in our paper. With cost synergies, effort by one agent

reduces his colleague’s marginal cost of effort, and the principal wishes an influential

agent to work harder. The agent does not take into account this externality when

choosing effort because he is paid according to output. Influence affects a colleague’s

cost of effort but not output. Thus, the principal must increase wages so that each agent

internalizes his influence and increases effort. In contrast, the agent does internalize

any increase in production complementarity because such a change affects output.

Since the agent is more productive, he may automatically exert the new, higher, effort

even without any change in the contract. Thus, our paper differs from this branch of

the literature in that an agent’s effort affects his colleagues’ marginal cost of effort,

and not the marginal effect of their effort on the joint output. This difference is

crucial for the implications on optimal pay and how it may increase with synergies.

More generally, our synergies arise whenever agents affect their colleagues via non-

contractible variables, and not via the measured joint output. We give various examples

of where this will be relevant throughout the paper.

Second, there are papers where an agent’s action affects his colleagues not by im-

pacting the joint output, but instead by making them more productive. In particular,

Itoh (1991) and Ramakrishnan and Thakor (1991) study a multi-tasking problem where

an agent can take one action that increases an agent’s own output, and a separate ac-

tion that increases his colleague’s productivity. We consider a single team output, and

allow each agent to take a single action which both improves output and reduces his

colleague’s marginal cost. We believe that this approach more accurately describes

many real world situations. As noted above, in many cases it is difficult to measure

individual outputs. Moreover, it is difficult to separate actions between those that

solely help one’s colleagues and those that solely help the agent himself. As we discuss
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later, many actions have both effects. Perhaps more importantly, our focus is on the

questions which are at the center of debate in the literature on agency problems and

executive compensation – the optimal level of effort and pay – and we provide a new

explanation for observed patterns in executive pay. Prior literature focuses on more

specific questions in organizational design. Itoh (1991) studies the conditions under

which it is optimal for the principal to induce the helping action rather than only the

productive action. Ramakrishnan and Thakor (1991) study whether cooperation or

competition is optimal for the principal.

Third, there are other models of contracting with externalities. Kandel and Lazear

(1992) study peer pressure, whereby an agent’s effort affects the utility of other agents.

Their focus is on showing how to model a peer pressure situation, rather than solving for

the optimal contract. In Segal (1999), agents exert externalities on each other through

their impact on reservation utilities rather than cost functions. The agents’ actions are

observable participation decisions rather than unobservable effort; there is no output

or production function. Bernstein and Winter (2012) also focus on a participation

decision, and study heterogeneity in externalities. Studying unobservable effort choice

(out of a continuum) rather than a zero-one observable participation decision makes

our model more applicable to the theory of firms and leads to several new results on

the effect of synergies on absolute and relative effort levels and on executives’ and

employees’ pay.4

Finally, while our paper studies the “bright side” that arises when agents interact

with each other, there is a literature on the “dark side”. Milgrom (1988), Milgrom and

Roberts (1988), and Bagwell and Zechner (1993) consider a quite different notion of

“influence”: wasteful influence costs that agents exert to sway management decisions in

their favor, or entrench themselves. Separately, while the pay disparities in our model

are an efficient consequence of differences in influence, the literature on tournaments

(e.g. Lazear and Rosen (1981)) suggests that they are efficient to incentivize agents.

The paper proceeds as follows. Section 2 illustrates our influence concept in a

general model. We specialize the framework to particular functional forms in the two-

agent model of Section 3 and the three-agent model of Section 4. Section 5 discusses

the difference between cost synergies and production complementarities and Section 6

concludes. Appendix A contains proofs, Appendix B analyzes negative influence, and

Appendix C considers production complementarities in addition to cost synergies.

4Dessein, Garicano, and Gertner (2010) study the optimal allocation of tasks under economies of
scale, which they refer to as synergies. This is a different concept from the synergy in our paper,
where effort by one agent reduces another’s cost of effort.

8



2 The Influence Concept

The goal of this section is to illustrate our notion of influence in a general model, to show

how it affects the principal’s choice of both effort and wages. There is a risk-neutral

principal (“firm”), and N risk-neutral agents (“workers”) indexed i = 1, 2, . . . N . Each

agent is protected with limited liability, has a reservation utility of zero, and exerts an

unobservable effort level

pi ∈ [0, 1] i = 1, 2, . . . N.

The agents’ efforts affect the firm’s output, r ∈ {0, 1}, which is publicly observable

and contractible. We will sometimes refer to r = 1 as “success” and r = 0 as “failure”.

The probability of success is:

Pr(r = 1) = P (p1, . . . , pN) = P (p) , (1)

where p ≡ (p1, ..., pN) is a vector of the effort levels of each agent i. As is standard,

we assume that Pi > 0 and Pii < 0 ∀ i. We also specify Pij = 0, i.e. no production

complementarities, to ensure that our results are driven by the cost synergies that are

the focus of the model. In Section 5 we discuss the difference between production

complementarities and cost synergies.

The key feature of our model is that each agent’s cost of effort Ci (p) depends not

only on his own effort level pi, but also the effort levels exerted by his colleagues. We

specify agent i’s overall cost function as:

Ci (p) = gi (pi) Πj 6=ihji (pj) i = 1, 2, . . . N. (2)

The function gi (pi) represents agent i’s individual cost function, and depends on

only his own effort level. As is standard, we assume that g′i (·) > 0 and g′′i (·) > 0. The

function hji (pj), where h′ji (·) < 0, represents j’s influence on i, and captures the extent

to which effort by j reduces the cost of effort by i. Due to the multiplicative formulation

in (2), j’s effort reduces not only i’s total cost of effort, but also his marginal cost and

thus his effort incentives. The production function P and the cost functions Ci are

common knowledge before contracting takes place.

Turning to the contract, it is automatic that each agent i will be paid zero upon

failure. The principal chooses the optimal wage wi ≥ 0 to pay agent i upon success,

that maximizes her expected output net of wages. After wages have been chosen,

each agent i, observing the entire wage profile, selects his effort pi to maximize his
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expected utility, given by his wage minus his cost of effort. Agents choose their efforts

simultaneously, and their effort levels constitute a Nash Equilibrium.

Before we move to the analysis, we discuss a number of features of the setup. We first

address the interpretation of agent i’s taking a single effort decision that simultaneously

increases output and reduces his colleagues’ cost of effort. This modeling choice applies

to many real-world situations. First, cost synergies may be an inherent feature of the

team setting. By choosing an appropriate corporate strategy, the CEO both improves

firm value and provides clear direction for divisional managers, reducing their cost

of effort. In a coauthored paper, a clear model from the theorist both improves the

paper and also provides clean testable implications for the empiricist, reducing his cost

of effort. Second, effort by one agent to improve output will increase his colleagues’

marginal cost of shirking. One example is a peer pressure situation, where productive

agents “shame” their colleagues into working harder, as modeled by Kandel and Lazear

(1992) and documented empirically by Falk and Ichino (2006) and Mas and Moretti

(2009). Another example is that greater monitoring effort by a manager makes it

increasingly costly for his subordinates to shirk; under this interpretation, “dictatorial”

managers (e.g. Steve Jobs) can be seen as influential. Third, an agent’s effort can

increase his colleagues’ private benefits from exerting effort. Indeed, an alternative

interpretation is that the cost function Ci contains elements of private benefit. For

example, the extent to which a marketing manager enjoys selling a product or derives

positive reputation from his customers from doing so will depend on the production

team’s efforts in improving product quality. Thus, one can think of a setup where

each agent suffers cost gi(pi) for choosing effort pi, but then receives private benefit

gi (pi) (1 − Πj 6=ihji (pj)). As we make clear in Section 5, the crucial aspect of our

modeling approach is that influence affects a non-contractible variable – either other

agents’ private costs or private benefits – and not only the firm’s output, which is

contractible.

A second feature is that agent i sets his effort pi without observing his colleagues’

effort levels, only correctly expecting them in equilibrium. Since i’s cost of effort

depends on his colleagues’ effort levels, this implies that agent i chooses his own effort

without observing the implied cost, only correctly expecting it in equilibrium. The

model also applies to the case in which agents choose their efforts sequentially, but

each agent does not observe the efforts already taken by other agents when choosing his

own. For example, when deciding on the marketing strategy, the marketing manager

does not know how costly it will be for him to implement, as this depends on the
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production team’s efforts. These efforts affect product quality, and some dimensions

of quality may not be immediately visible to the marketing manager when deciding his

strategy.

Third, due to the combination of risk neutrality and limited liability, the agent

is always paid zero upon failure. Thus, if the principal wishes to increase agent i’s

incentives, she will raise his success payoff wi, but cannot accompany this increase

with a reduction in the agent’s failure payoff (as this is bounded below by zero). Thus,

an increase in wi augments not only the agent’s incentives (the sensitivity of pay to

performance) but also expected pay (the level of pay, often referred to as the “wage” in

empirical studies). Thus, in terms of empirical implications, all results pertaining to wi

are predictions for the level as well as the sensitivity of pay. The model will continue to

generate predictions for both levels and sensitivities under risk aversion and unlimited

liability. While the principal can now accompany a rise in the success payoff wi with

a reduction in the failure payoff, the increase in the sensitivity of pay will cause the

agent to demand a risk premium, again augmenting the level of pay.

2.1 Determining Efforts and Wages

The principal solves for the optimal vector of effort levels, p∗ = (p∗1, ..., p
∗
N):

max
{pi},{wi}

P (p1, . . . , pN)

(
1−

∑
i

wi

)
= PM, (3)

subject to the N incentive compatibility (IC) conditions for each agent i:

pi ∈ arg max
pi

wiP (p)− Ci (p) i = 1, 2, . . . N. (4)

Assuming that the first-order approach is valid, we can replace each incentive compat-

ibility constraint (4) by the corresponding first-order condition:

wiPi(p)− Ci
i (p) = 0, (5)

and so any incentive-compatible wage satisfies

wi =
Ci
i

Pi
.

We first illustrate how the influence concept affects the principal’s choice of effort
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levels. The effect of increasing pi on her objective function (3) is given by:

∂

∂pi
|p∗PM = Pi

(
1−

∑
i

wi

)

− P ∂wi
∂pi

− P
∑
j 6=i

∂wj
∂pi

(6)

The partial derivative with respect to pi consists of three components. The first is

the increase in firm value from augmenting pi, due to increased production, multiplied

by the principal’s share after paying wages to all agents. The second is the increased

wage that the principal needs to pay agent i to induce this higher effort level. Since

wi =
Ci

i

Pi
, this increase is positive, due to the convexity of the cost function (Ci

ii > 0) and

the concavity of the production function (Pii < 0 ). The first component represents a

benefit to the principal and the second component a cost. Both components also exist

in models without influence, and the optimal effort level is a trade-off between them.

Note that in a model with influence, agent i’s cost function Ci (p), and thus the second

component, depends on hji(p
∗
j): the influence that agent i receives from his colleagues

reduces his marginal cost of effort, and thus the cost to the principal of inducing more

effort from him. Thus, the optimal effort level depends not only on an agent’s own

productivity Pi and cost of effort gi (functions specific to him), but also his colleagues’

influence functions (functions outside his control).

The third component is the change in the wage paid to i’s colleagues as a result of

augmenting pi. We have wj =
Cj

j

Pj
, and so

∂wj
∂pi

=
Cj
ij

Pj
=
g′j
(
p∗j
)
h′ij(p

∗
i )Πm 6=i,jhmj(p

∗
m)

Pj
, (7)

which is negative since h′ij(p
∗
i ) < 0. An increase in i’s effort reduces his colleagues’

costs of effort and thus the wage that the principal must pay to them. This component

is also specific to a model of synergy. It demonstrates an additional benefit of effort

that the principal must take into account, and will tend to increase i’s optimal effort

level: he becomes “over-worked” compared to a model without influence. Even though

the direct productivity of his effort is unchanged, his effort has an indirect benefit of

making it easier to incentivize his colleagues.
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In sum, an increase in pi has three effects: it increases output, raises the wage of

agent i, and reduces the wages of agent i’s colleagues. This third effect is specific to a

model of synergy. The decomposition shows that it may be optimal for the principal

to induce high effort from an agent even if the agent has little direct productivity on

output. While inducing effort requires the principal to pay the agent a higher wage,

this may be offset by the reduction in his colleagues’ wages.

We next study how influence affects the principal’s choice of wage levels. Agent i’s

wage is given by

w∗i =
Ci
i(p
∗
i )

Pi(p∗i )
=
gi (p

∗
i )

Pi (p∗i )
Πj 6=ihji (pj) .

Without influence, the wage is given by
gi(p∗i )
Pi(p∗i )

, the ratio of the marginal cost of effort

to its marginal productivity, both evaluated at the implemented effort level. Thus,

influence causes the wage to change in two ways. First, as shown in expression (6),

it affects the implemented effort level and thus the ratio
gi(p∗i )
Pi(p∗i )

. For example, if the

principal wishes to increase i’s effort due to his large influence on other agents, the

marginal productivity Pi (p
∗
i ) will be lower and the marginal cost gi (p

∗
i ) will be higher,

both requiring a higher wage w∗i . Second, an additional term Πj 6=ihji (pj) appears in

the wage determination equation, since the influence of agent i’s colleagues reduces

his marginal cost of effort. Thus, agent i’s wage, just like his effort, is affected by

his colleagues’ influence, in addition to functions specific to him. This effect tends to

reduce the wage, offsetting the first effect.

Overall, the general model serves the purpose of highlighting the underlying forces

at work. However, with general functional forms, the overall effect of influence on

wages can be highly complex. We thus move to specific functional forms to allow a

tractable study of the determination of effort and wages in a synergistic setting.

3 The Two-Agent Model

We now specialize the production function (1) to a standard linear function:

Pr(r = 1) =
p1 + p2

2
, (8)

and the individual cost function to a standard quadratic function:

gi(pi) =
1

4
p2i . (9)
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We thus specify both agents as having the same direct productivity on output and

the same individual cost function. Thus, any differences in efforts and wages will be

a result of differences in influence – the focus of our model – rather than in direct

productivity or individual cost.

The influence function is given by:

hji (pj) = 1− hjipj. (10)

The constant hji ∈ [0, 1) is an influence parameter that represents the extent to which

j’s effort reduces i’s cost of effort. For now we consider the case of non-negative

influence parameters; in Appendix B we allow for hji < 0.5

Agent i’s overall cost function is thus:

Ci (p) =
1

4
p2i (1− hjipj) . (11)

The cost function given by (11) yields us substantial tractability and allows us to

uncover several new forces, resulting from a synergistic setting, that might otherwise

be overlooked in less transparent specifications. We identify new effects that work in

different directions. Under alternative cost functions, the relative magnitudes of these

counteracting forces may be different, leading to potentially different overall effects on

the contract. However, while the magnitude of the effects is specific to our functional

form, the existence of these effects and the economic intuition behind them will continue

to hold with alternative functional forms.

The principal’s program now specializes to:

max
{pi},{wi}

p1 + p2
2

(1− w1 − w2) , (12)

s.t. pi ∈ arg max
pi

pi + pj
2

wi −
1

4
p2i (1− hjipj) , i = 1, 2. (13)

5Lazear (1989) models the related concept of “sabotage”. In his model, two agents have separate
outputs, and can take two actions: effort (which increases their own output) and sabotage (which
decreases their peer’s output). Taking as given a rank-order contract, where an agent’s wage depends
on whether his output is higher than his peer rather than the level of output, he shows that the
possibility of sabotage reduces the optimal wage differential. In our model, with a single output and
effort level, sufficiently negative influence leads to the principal optimally excluding one agent from
the team. We also solve for the optimal wage level and study how it differs across agents. In Lazear
(1989), the wage paid to the higher-ranked agent does not depend on the identity of the agent.
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Differentiating i’s utility function (13) gives his first-order condition as:

wi = pi(1− hjipj). (14)

Plugging this into the principal’s objective function (12) gives her reduced-form maxi-

mization problem as:

p∗1, p
∗
2 ∈ arg max

p1,p2

p1 + p2
2

(1− (p1 + p2) + p1p2(h12 + h21)) . (15)

We can now meaningfully define synergy:

Definition 1 Synergy s is defined as the sum of the influence parameters h12 + h21.

Definition 1 highlights the conceptual advantage provided by our cost function (11).

For any cost function, it is intuitive that each agent’s optimal contract will depend on

both his influence on his colleague and his colleague’s influence on him. Under our cost

function (11), these influence parameters aggregate in the principal’s reduced-form

maximization problem (15) and so we can define synergy as the sum of the individual

influence parameters. We can thus analyze the common synergy between agents in a

precise manner.

We make the following assumption to resolve cases in which the principal is indif-

ferent between two contracts:

Assumption 1 When computing the optimal contract, if the principal is indifferent

between two arrangements A and B, and A is preferred by all agents over B, then A is

chosen.

The optimal contract is characterized by Proposition 1:

Proposition 1 (Two agents.) (i) For all nonzero synergy, optimal efforts are equal:

p∗1(s) = p∗2(s) ≡ p∗(s). There exists a critical synergy level s∗ > 0 such that

p∗(s) =

2−
√
4−3s
3s

s ∈ (0, s∗)

1 s ≥ s∗.

Optimal effort p∗(s) is strictly increasing on (0, s∗] and explodes to 1 at s∗. When there

is no synergy, any combination of efforts that sum to 1
2

is optimal.
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Suppose synergy is subcritical (s < s∗). (ii) Total wages given success, w∗1 + w∗2,

and expected total wages
p∗1+p

∗
2

2
(w∗1 + w∗2) = p∗ (w∗1 + w∗2) are both increasing in synergy.

(iii) The more influential agent receives the higher wages upon success, i.e. w∗1 > w∗2
if and only if h12 > h21. (iv) The more influential agent receives higher utility.

Part (i) shows that there are two effects that determine the agents’ relative effort

levels. Suppose that agent i is more influential. On the one hand, i’s greater influence

tends to increase his optimal effort, relative to j’s, since his effort has greater cost

reduction benefits. However, there is an effect in the opposite direction: the principal

takes advantage of this cost reduction by increasing j’s effort. With our chosen func-

tional forms, the two forces exactly cancel out, so that both agents optimally exert

identical effort. More generally, synergy, which is a symmetric function of the influence

parameters, is a “sufficient statistic” for the optimal effort levels: an influence param-

eter matters only through its effect on total synergy. This result highlights the forces

that determine agents’ optimal effort levels – the influence an agent has on other agents

and the influence other agents have on him. An agent’s effort cannot be determined in

isolation; it is part of a system of efforts determined in equilibrium.

Part (ii) states that various wage measures are increasing with synergy. While

intuitive, these results are far from automatic. With greater synergies, it is efficient to

implement higher effort, which requires a higher wage holding all else equal. However,

it seems that there is a counteracting effect – when synergies are higher, each agent’s

cost of effort is lower, and so a lower wage is required to implement a given effort level.

Indeed, in a model with a single agent (and thus no synergies) under risk neutrality and

limited liability, the optimal contract involves paying the agent one-half of the firm’s

output, regardless of the agent’s cost of effort, because these two effects exactly offset.

Here, wages are unambiguously increasing in the synergy parameter s. The eco-

nomics are as follows. Consider a rise in synergy that arises from an increase in hij. The

principal wishes to induce more effort from agent i, but i’s greater influence does not

give him incentives to exert this greater effort level. He is paid according to output, and

so his incentives to exert effort depend on the effect of his effort on output. Changing

his influence parameter hij has no effect on his direct productivity: his marginal benefit

from effort is wi

2
and independent of hij. Thus, the principal increases wi to augment

agent i’s marginal benefit, and cause him to internalize this externality. Agent i is

“over-incentivized” compared to a model without influence. Importantly, this result

illustrates the difference between our approach of modeling the complementarity be-

tween the agents in the cost function (or private benefit function), and an alternative
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approach of modeling it in the production function. Under the latter, the complemen-

tarity would affect the agent’s marginal productivity and be internalized even under

the original contract. Thus, wages may be independent of the complementarity. We

will return to this point in Section 5.

That incentives rise in synergy is a potential explanation for why high equity in-

centives are sometimes given to junior employees, even if these employees have a small

direct effect on output. High equity incentives are optimal if they have a significant

impact on their colleagues’ costs – for example, an efficient analyst in a private equity

firm reduces the cost of a director going to a meeting by producing accurate briefing

materials. Synergies are likely particularly high in small and young firms, where job

descriptions are often blurred and interactions are frequent. This may explain why

incentive-based pay is particularly high in start-ups. Hochberg and Lindsey (2010)

document systematic evidence of broad-based option plans, which Kim and Ouimet

(2013) find increase productivity only in firms with few employees. While this result is

consistent with our model as synergy potential is likely greatest in small firms, it is also

consistent with the idea that free-rider problems are least severe in such firms.6 Rajan

and Wulf (2006) show that, after firm reorganizations that move divisional managers

closer to the CEO, the divisional manager receives higher pay and higher incentives.

This change may reflect the fact that the divisional manager and CEO now enjoy

greater synergies with each other.

Parts (i) and (ii) show that effort and total wages only depend on total synergy,

rather than the individual influence parameters. Part (iii) shows that the individual

influence parameters do affect the relative pay of each employee. The more influential

agent receives the higher wage. This result holds even though both agents exert the

same effort and have the same direct productivity. Instead, the wage differential is

driven by two mutually reinforcing effects. Since the more influential agent exerts a

greater externality, his wage must be higher to induce him to internalize his externality.

Moreover, since his colleague is less influential, he suffers a higher marginal cost of

effort, further increasing his required wage. Part (iii) leads to empirical predictions

6Note that our model can only explain equity compensation to non-C-level employees that exert
significant synergies on a sufficiently large number of people. If firms grant equity to non-synergistic
employees, this is likely for alternative reasons already in the literature. Oyer (2004) justifies broad-
based option plans from a retention perspective: options are worth more when employees’ outside
options are higher, persuading them to remain within the firm. Oyer and Schaefer (2005) find support
for both this explanation and the idea that option compensation screens for employees with desirable
characteristics. They do not test our synergy explanation, which is new. Bergman and Jenter (2007)
present theory and evidence that option plans are used to take advantage of employees’ irrational
overvaluation of their firm’s options.
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for within-firm differences in pay: more influential agents should receive higher wages,

even if they perform the same tasks. For example, senior faculty are paid more than

junior faculty even though they have the same formal job description; the former can

reduce the latter’s cost of effort through mentorship and guidance. Under the private

benefit interpretation, junior faculty derive utility from being part of a department

with influential senior faculty.

Part (iv) compares the utility of the two agents. The more influential agent receives

a higher wage, but also bears a higher cost since he is helped out less by his colleague.

The first effect is stronger, and so he enjoys higher utility.

Corollary 1 concerns the comparative static effects of changes in influence parame-

ters.

Corollary 1 (i) Suppose synergy is subcritical. An increase in either influence param-

eter increases optimal effort, total wages given success, and expected total wages. (ii)

Fix a subcritical synergy level. An increase in agent i’s relative influence (i.e. increas-

ing hij and lowering hji so that s is unchanged) increases both his relative and absolute

wage. Specifically,

w∗i
w∗j
,

w∗i
w∗i + w∗j

, w∗i and p∗w∗i all strictly increase.

Part (i) of Corollary 1 follows naturally from parts (i) and (ii) of Proposition 1.

Since an increase in one influence parameter, holding the other constant, raises the

total synergy level s, it will raise the effort levels of both agents, total wages, and

expected total wages. Part (ii) states that if agent i’s relative influence rises, i’s wage

goes up both in absolute terms and also relative to j’s wage.

The next Corollary considers the effect on absolute pay due to a rise in hij while

holding hji constant.

Corollary 2 Suppose synergy is subcritical. An increase in hij increases w∗i . An

increase in hij increases w∗j if and only if hji is sufficiently high. Specifically,

∂

∂hij
w∗j


> 0 hji ∈ ( 1

6p∗(s)
, s∗ − hij)

= 0 hji = 1
6p∗(s)

< 0 hji ∈ [0, 1
6p∗(s)

)

. (16)

Both p∗w∗i and p∗w∗j are increasing in hij.
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It is clear that an increase in hij augments w∗i , since total wages rise in synergy and

agent i’s share of total wages rises due to his greater relative influence. The effect on

w∗j is more subtle because there are two conflicting effects: total wages rise, but agent

j’s share of total wages falls. Corollary 2 provides an illuminating characterization

of which force dominates when. The principal can react to the increase in hij in two

ways. She can lower w∗j , taking advantage of the fact that j’s cost of effort has fallen

due to i’s greater influence, and so j does not need as high a wage to induce him to

work. Conversely, she can increase w∗j . Due to j’s influence on i, effort by j reduces i’s

marginal cost of effort and induces greater effort from him. An increase in hij means

that i’s effort is more useful to the principal, since it has a greater cost reduction

benefit. Thus, the principal may wish to increase w∗j to induce greater effort from j

and exploit this effect. Proposition 2 shows that the latter option is desirable if j’s

influence on i is particularly high.

Another way to view the intuition is as follows. The total effect the influence param-

eters have on the agents’ absolute effort levels unfolds through an “echo” mechanism

between the two agents. The influence of i on j raises i’s optimal effort level, which

reduces j’s cost of effort, which raises j’s optimal effort level, which, due to j’s influ-

ence on i, reduces i’s cost of effort, which raises i’s optimal effort level, and so on. In

this process, both influence parameters help increase each agent’s optimal effort. This

“echo” intuition explains why, as synergy increases, the common effort level increases

(part (i) of Proposition 1). For the echo mechanism to work well, both sides of the echo

– i.e. both influence parameters – need to be strong. Thus, if and only if hji is suffi-

ciently high, the principal wants to further increase w∗j to take advantage of the echo.

The threshold level for hji is 1
6p∗(s)

, which is decreasing in the common effort level and

thus the common synergy. The larger the synergy, the greater the echo potential, and

therefore the more willing the principal is to increase w∗j . Put differently, if the echo

is strong enough, the increase in hij causes such a large increase in total wages that

it outweighs the fall in j’s share of the wage pool. Separately, while the change in j’s

absolute wage depends on hji, the expected wage p∗w∗j unambiguously rises (regardless

of hji), due to the increase in the optimal effort level p∗.

Overall, this section demonstrates the importance of influence for pay and effort.

Agents’ efforts will be affected by the system of influence parameters; under an optimal

contract they will put more effort when these influences increase. Wages also depend

on the system of influences, and the more influential agent will be paid more to induce

him to internalize the externality he exerts. Hence, to evaluate whether observed pay

19



is efficient, it is important to take such influences into account. An agent may be paid

more simply because his work makes others more efficient and easy to incentivize.

A natural question to ask is whether influence is inherent to a person, or to his

position in the organization. Either may be true depending on the setting. The former

will apply to a manager with strong leadership skills that encourage his colleagues to

work hard, either through increasing their private benefit from working (employees

enjoy working for an inspirational leader) or, equivalently, reducing their cost of doing

so. Under this interpretation, influence can be considered a dimension of managerial

talent. In talent assignment models with moral hazard (e.g. Edmans, Gabaix, and

Landier (2009)), talent affects productivity and is thus internalized by the agent with-

out the need to modify the contract; here, influence affects colleagues’ cost functions

and so affects the optimal wage. Influence will be inherent to a position if an employee

occupies a central position in an organization that allows him to exert influence. He

may be in this position through historical accident or entrenchment, but even though

his high wages are a result of luck (occupying a central position) rather than rents to

talent, they are efficient.

4 The Three-Agent Model

We now extend the model to three agents. Under this setup, synergy will no longer

be a single parameter shared by all agents, but comprise of several dimensions that

vary across agents: in particular, one agent may enjoy synergies with both of his

colleagues, but his colleagues may not enjoy synergies with each other. We show that

these differences across synergy levels will lead not only to differences in wages as in

the two-agent model, but also differences in effort.

The production function (1) now becomes:

Pr(r = 1) =
p1 + p2 + p3

3
. (17)

We continue to assume a quadratic individual cost function and a linear influence
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function, so that agent i’s overall cost function is now given by:7

Ci (p) =
1

6
p2i

(
1−

∑
j 6=i

hjipj

)
. (18)

Differentiating agent i’s utility function (5) gives his first-order condition as:

wi(pi) = pi

(
1−

∑
j 6=i

hjipj

)
, (19)

and plugging this into the principal’s objective function (3) gives her reduced-form

maximization problem as:

p∗1, p
∗
2, p
∗
3 ∈ arg max

p1,p2,p3∈[0,1]

(p1 + p2 + p3)

3
(1− (p1 + p2 + p3) + Ap1p2 +Bp1p3 + Cp2p3) ,

(20)

where

A = h12 + h21 B = h13 + h31 C = h23 + h32.

We now generalize our synergy concept:

Definition 2 The synergy profile s is defined to be the vector (A,B,C). The quan-

tities A, B and C are the synergy components of the synergy profile. The size of

s is defined to be s = ||(A,B,C)||.

Each synergy component is an analog of the synergy scalar s in the two-agent model.

In the three-agent model, there are three relevant synergy components for each of the

three pairs of agents, which together form the synergy profile s.

The solution to the model is given by Proposition 2 below.

Proposition 2 (Three agents.) The optimal efforts are functions of the synergy pro-

file: (p∗1(s), p∗2(s), p∗3(s)). (i) If each synergy component is weakly smaller than the sum

of the other two, then every agent exerts effort and the direction of the synergy profile

determines the direction of the optimal effort profile. The optimal efforts satisfy

p∗1(s)

p∗2(s)
=
C

B

A+B − C
A+ C −B

;
p∗2(s)

p∗3(s)
=
B

A

A+ C −B
B + C − A

;
p∗3(s)

p∗1(s)
=
A

C

B + C − A
A+B − C

. (21)

7Note that there is a slight departure here from the general formulation in Section 2, as the
influences by other agents on agent i are added to each other and then multiplied by i’s individual
cost (instead of being multiplied with each other and then multiplied by i’s individual cost). This is
useful for tractability and does not change the spirit of the influence concept.
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A = K

B = K C = K

A = B + C

C = A+BB = A+ C

p∗1 = p∗2
p∗3 = 0

p∗2 = p∗3
p∗1 = 0

p∗1 = p∗3
p∗2 = 0

p∗1 ≥ p∗2 ≥ p∗3 p∗2 ≥ p∗1 ≥ p∗3

p∗1 ≥ p∗3 ≥ p∗2 p∗2 ≥ p∗3 ≥ p∗1

p∗3 ≥ p∗1 ≥ p∗2 p∗3 ≥ p∗2 ≥ p∗1

p∗1 = p∗2 + p∗3 p∗2 = p∗1 + p∗3

p∗3 = p∗1 + p∗2

Figure 1: The optimal efforts as a function of the synergy profile (A,B,C). A cross
section of the synergy profile space: A+B + C = K where K > 0 is some constant.

(ii) If a single synergy component is strictly larger than the sum of the other two, the

model reduces to the two-agent model. The third agent who does not enjoy the largest

synergy component exerts no effort and receives no wage. The other two agents’ effort

and wage levels are determined as in Proposition 1.

The simplex in Figure 1 illustrates the characterization in Proposition 2. It fixes

the sum of the synergy components A+B +C at a constant K and studies the effect

of changing their relative level. Part (i) of Proposition 2 states that, if the synergy

components are balanced so that no single component exceeds the sum of the other

two, the optimal effort profile is interior and given by equation (21). This equilibrium

is illustrated by the middle triangle, bounded by the three dots. For example, if and

only if B > C (i.e. the left-hand side of the triangle), we have p1 > p2: since agent 1

generates more synergies with agent 3 than does agent 2, 1 exerts more effort than 2.

Note that it is the total synergy between agents 1 and 3 (relative to the total synergy
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between 2 and 3) that determines the relative values of p1 and p2, not 1’s unidirectional

influence on 3, h13 (relative to 2’s unidirectional influence on 3, h23). It may seem that

p1 should only depend on h13 (and not h31) as only the former affects the usefulness

of 1’s effort. However, when h31 rises, 1’s cost function is lower and so it is cheaper

to implement a higher p1. The intuition is similar to the two-agent model: it is the

total synergy that matters, not one’s individual influence parameter. An agent works

hard either because he is influential, or because he is easily influenced. Hence, we have

p1 > p2 when B > C, rather than when h13 > h23.

On the one hand, this result extends the principle in the two-agent case, that

the optimal effort level depends on the common synergy, not the individual influence

parameters. On the other hand, the result contrasts the two-agent case, since all

agents no longer exert the same effort level. In the two-agent case, there is only one

synergy component and so one common effort level. Here, the existence of three synergy

components allows for asymmetry in effort levels between the three agents.

A natural application of the model is where one synergy component (say C) is

close to zero. For example, agent 1 is a CEO who shares synergies with two division

managers, agents 2 and 3, but the divisional managers share few synergies with each

other. Figure 1 shows that agent 1 exerts the highest effort. Essentially, agents 2 and

3 can be aggregated, and their combined effort level is close to that of agent 1.

Part (ii) of Proposition 2 shows that, when the synergy between two agents is

sufficiently strong relative to the other two synergies, then the model collapses to the

two-agent model of Proposition 1. Intuitively, if the synergy between two agents is

sufficiently strong, then only these two matter for the principal – she ignores the third

agent and induces zero effort from him. This “corner” result (captured by the three

triangles that surround the middle triangle in Figure 1) is striking because the third

agent has the same direct effect on the production function (17) as the other two,

and enjoys strictly positive synergies, yet is completely ignored. Moreover, it means

that even if there is no change to the synergies between agent 3 and his colleagues,

an increase in the synergies between agents 1 and 2 can lead to him being excluded.

Thus, 3’s participation depends not only on his own synergies with others, but also

on the synergy components that do not involve him. This result demonstrates again

the general principle that agents’ efforts depend on the complex system of influences

within the organization. It can happen that an agent is expected to work more or less

for reasons that are not directly related to him.

That the third agent is excluded seems surprising, since we have a convex cost
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function and the marginal cost of effort for agent 3 is zero. Thus, it may seem cheaper

to increase agent 3’s effort from 0 to ε than to increase the effort of agents 1 and 2

from p − ε to p. The key to the intuition is that it is not the marginal cost of effort

that is relevant but the marginal increase in wage that the principal needs to offer to

induce effort. From (19), the wage wi(pi) = pi

(
1−

∑
j 6=i hjipj

)
is linear, rather than

convex, in the effort level. It is true that the principal has to pay agents 1 and 2 more

than 3 in absolute terms, due to the convex cost of effort, but the marginal increase

in the wage is the same for all agents. Even though the marginal cost of effort is high

for agents 1 and 2, the marginal benefit of effort for them is also high since they are

already receiving a wage (and thus a share of output); thus only a small increase in

the wage is required. For agent 3, the marginal cost of additional effort is low, but the

marginal benefit is also low since he currently has no share of output. Thus, without

synergies, it is just as costly to increase effort by agent 3 from 0 to ε as it is to increase

effort by agents 1 and 2 from p− ε to p. With synergies, it is more beneficial to induce

effort from agents 1 and 2 rather than 3.

Another way to view the intuition is that increased synergy between 1 and 2 raises

firm value, and thus the cost to the principal of giving 3 equity to induce effort from

him. It becomes so expensive to induce effort from 3 that the principal chooses not

to do so. The source of the conflict is that all agents are paid from a common output.

This result would not be generated by a model in which agents had individual outputs

(e.g., Itoh (1991)) as agent 3 could be incentivized from his own output.

The above result has interesting implications for the optimal composition of a team.

If two agents exhibit sufficiently high synergies with each other, there is no benefit in

adding a third agent to the team, even if he has just as high direct productivity as the

existing two agents and has positive synergies with them. Moreover, the agents can be

interpreted as divisions of a firm, in which case Proposition 2 has implications for firm

boundaries. If two divisions exhibit sufficiently strong synergies with each other, it may

be optimal to divest a third division even if it exhibits positive synergies with the first

two. Conventional wisdom is that any division that enjoys positive synergies should be

included within a firm. Here, it is relative, not absolute, synergies that determine firm

boundaries. The empirical implication is that a decision to divest (or not acquire) a

division might not be driven by the low synergies generated (or potentially generated)

by this division, but rather by the strong synergies between other divisions.8

8This implication assumes that it is not possible to compensate the division based only on its own
performance, but only according to the performance of the overall conglomerate. While divisional
profit measures are typically available, there is only a stock price for the overall conglomerate. The

24



When one of the agents is excluded, Proposition 1 completely characterizes optimal

effort as a function of synergy. When all three agents exert effort, the effect of the

synergy profile on the optimal effort profile is similar to the two-agent results, as we

describe in the next corollary.

Corollary 3 Suppose every agent exerts effort. Fix a direction of the synergy profile.

There exists a critical synergy size threshold s∗ such that, if s is subcritical then the

optimal effort profile is interior, and the size of the optimal effort profile is a strictly

increasing function of synergy size. At the critical synergy size s∗, the optimal effort

profile explodes so that at least one agent is now applying effort 1.

Analogous to part (i) of Proposition 1, Corollary 3 states that, when synergy size

increases, effort by each agent becomes both more useful and easier to incentivize, and

so it is optimal for the principal to implement a higher effort profile. When synergies

become sufficiently strong, the principal implements the maximum effort level of 1 for

at least one agent.

Corollary 4 turns from the optimal effort profile to the optimal wage profile. It

shows that, when all three agents exert effort, the comparative statics of the relative

and absolute sizes of the wages are similar to the two-agent results.

Corollary 4 (i) Suppose every agent exerts effort and synergy is subcritical. Total

wages given success and expected total wages are strictly increasing in s up to the

critical synergy size s∗.

(ii) Fix a synergy profile such that the optimal effort profile is interior. An increase

in agent i’s relative influence (i.e., increasing at least one element of {hij}j 6=i and

decreasing some elements of {hji}j 6=i so that s is unchanged) increases both his relative

and absolute wage. Specifically,

w∗i∑
j w
∗
j

, w∗i and p∗w∗i all strictly increase,

and
w∗i
w∗j

weakly increases for all j and strictly increases at least one j.

(iii) Suppose further that the influence between any pair of agents is symmetric.

Then the ratios of optimal wages coincide with the ratios of optimal efforts.

stock price incorporates many additional pieces of information than profits, such as growth prospects;
consequently, managerial pay is tied much more tightly to the stock price than profits (e.g., through
stock and options, which are much larger than bonuses).
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Part (i) of Corollary 4 is analogous to part (ii) of Proposition 1: total wages depend

on the total synergy across all agents. While total synergy determines total wages, the

influence parameters determine relative wages: part (ii) of Corollary 4 is analogous to

part (iv) of Proposition 1. An increase in one agent’s influence augments his wage in

both absolute and relative terms. Moreover, if the influence parameters are symmetric

across all pairs of agents, the entire wage profile can be fully solved: part (iii) states

that the ratios of optimal wages coincides with the ratios of optimal effort.

Overall, these results reinforce the idea that influential agents should be paid more

so that they internalize their externalities and increase their colleagues’ productivity.

An agent’s pay should not be evaluated solely based on his direct productivity, but

also on his effect on the productivity of other agents.

Given these results, the model can potentially explain why CEOs earn significantly

more than other senior managers. Bebchuk, Cremers, and Peyer (2011) argue that this

is due to inefficient rent extraction by the CEO, but our theory suggests that it may be

optimal since the centrality of the CEO leads to him exhibiting greatest synergies. High

wages for the CEO lead his colleagues to anticipate that he will work harder, in turn

inducing them to exert greater effort themselves. Kotter (2013) shows that the rise in

CEO pay coincides with the IT revolution which led firms to hire more skilled workers,

on whom CEOs have greater influence through mentorship. Higher pay induces the

CEO to internalize this externality.9 More generally, the model shows that a CEO’s

wage depends on the scope of the firm under his control, i.e. the number of agents (or

divisions) with which he exhibits synergies and the strength of these synergies. The

increase in communication technology over the past few decades has plausibly increased

the CEO’s influence, consistent with the rise in CEO pay over the same period. In

the talent assignment models of Rosen (1981, 1982), Gabaix and Landier (2008), and

Terviö (2008), where there is no agency problem, CEO pay is increasing in firm size

because the most talented managers run the largest firms and command the highest

wages. Here, wages are determined by incentive rather than assignment considerations.

Wages increase with firm size because CEOs of large firms exert influence over a greater

number of colleagues, and so it is efficient to induce higher effort from them.

9Kale, Reis, and Venkateswaran (2009) study another reason for why high pay for the CEO may
be efficient – to provide tournament incentives for other senior managers as in the model of Lazear
and Rosen (1981). They find that the pay differential between the CEO and other senior managers
is positively related to firm performance. Aggarwal, Fu, and Pan (2011) use the pay differential as a
proxy for incentives for non-CEO executives to monitor the CEO, as in the model of Acharya, Myers,
and Rajan (2011).
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5 Cost Synergies vs Production Complementarities

A key feature of our model is that an agent’s effort reduces the marginal cost of effort of

his colleague – or alternatively increases the colleague’s marginal private benefit from

his own effort. This feature generates the synergies in our model. To what extent is

this different from modeling complementarities in the production function so that an

agent’s effort increases the marginal productivity of his colleagues’ effort?

One might be tempted to posit an equivalence between cost synergies and produc-

tion complementarities. In a single-agent model with separable utility, changing the

agent’s marginal productivity by multiplying the production function by a constant

factor is indeed isomorphic to changing his marginal cost by dividing the cost func-

tion by the same factor. However, in a multi-agent world, we show there is a subtle

but significant economic difference between the two: cost synergies are fundamentally

different from production complementarities because the former represent a true ex-

ternality, but the latter do not. Loosely speaking, since contracts are contingent upon

output but cannot be made contingent on effort costs (or private benefits), agents nat-

urally internalize the effects of their efforts on production but not on costs (or private

benefits).

To illustrate, consider a two-agent model with production complementarities but

no cost synergies. The production function is given by

Pr(r = 1) = a
p1 + p2

2
+ b
√
p1p2,

where b parameterizes the complementarity. The principal maximizes:(
a
p1 + p2

2
+ b
√
p1p2

)
(1− w1 − w2) , (22)

and agent i’s objective function is:(
a
pi + p∗j

2
+ b
√
pip∗j

)
wi −

1

4
p2i . (23)

The solution is given in Proposition 3 below.

Proposition 3 (Complementaries in production function, two agents.)

(i) The optimal effort profile is p∗1 = p∗2 = a+b
4

.

(ii) To implement an arbitrary effort profile (p1, p2), the principal offers wages w1 =
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p1

a+b
√

p2
p1

and w2 = p2

a+b
√

p1
p2

.

(iii) At the optimal effort profile (p∗1, p
∗
2), the principal offers wages w∗1 = w∗2 = 1

4
.

Part (i) shows that the optimal effort profile is increasing in the production com-

plementarity b, just as in the core model where it was increasing in the cost synergy

s. Part (ii) demonstrates a counteracting effect absent from the core model. For a

given effort level pi, the wage required to implement this effort level is decreasing in

b. Since the production complementarity term b
√
p1p2 is shared across agents, an in-

crease in the production complementarity Pij (through raising b) also augments agent

i’s marginal productivity Pi, as can be seen from i’s objective (23). Since agent i takes

into account his increased productivity, he does not need as high a wage to induce a

given effort level. Indeed, part (iii) shows that, under the current functional forms,

these two effects exactly cancel out: while a rise in b increases the optimal effort level,

it also reduces the wage required to induce a given effort level, so the overall wage is

unchanged. Since i fully internalizes his increased productivity, he will exert the new,

higher, optimal effort level even under the original contract.

With other functional forms, it may be that the two effects do not exactly cancel

out. The point that is robust to functional forms is that the second effect always exists

(not that it exactly cancels out the first effect): changing production complementarities

will, in general, elicit effort responses from the agents even if the contract is unchanged.

The same cannot be said about influence parameters in our cost synergies model. It is

this missing internalization by the agents in our cost synergies model that drives the

non-trivial comparative statics with respect to synergy.

Indeed, in the cost synergies model, the principal maximizes:

pi + pj
2

(1− pi (1− hjipj)− pj (1− hijpi)) (24)

and agent i’s objective function is:

pi + p∗j
2

wi −
1

4
p2i
(
1− hjip∗j

)
. (25)

To implement an arbitrary effort profile (pi, pj), the principal offers agent i a wage of

wi = pi(1− hjipj). (26)

Differentiating the principal’s objective (24) with respect to pi shows that, when

i’s influence hij increases, the principal wishes to implement a higher effort level pi.
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However, inspecting the agent’s objective (25) shows that agent i does not consider

hij when choosing his effort level: this term does not appear in his objective function

(unlike the production complementarity b in (23)). An increase in hij has no effect on

i’s direct productivity: the only effect is on j’s cost of effort which is noncontractible,

and so i does not consider it when choosing effort. Unlike the production complemen-

tarity term which is shared across agents, the cost function 1
4
p2j (1− hijpi) is specific

to agent j, so a change in the cost synergy Cij (through raising hij) does not affect

i’s marginal cost Ci. Therefore, the wage required to induce a given effort level from i

is independent of his cost influence hij (see equation (26)). As a result, implementing

the higher effort level pi require the principal to increase i’s wage. The same is not

true for the production complementarity model, where the higher effect on production

is internalized by agent i.

Overall, this section shows that the implications of cost synergies are quite different

from production complementarities. An interesting question is whether the effect of

cost synergies changes when they exist together with production complementarities.

Appendix C shows that the addition of production complementarities does not change

the implications generated by cost synergies.

6 Conclusion

This paper has studied the effect of synergies on optimal effort levels and wages in a

team-based setting. We model synergies as effort by one agent reducing the cost, or

increasing the private benefit, of effort by a colleague. This notion is fundamentally

different from production complementarities and leads to a number of new results.

In a general model, the existence of synergies generates additional forces that the

principal must consider in the contracting problem. The optimal effort level will, in

general, be higher due to two forces: effort from a given agent is cheaper to induce

since he enjoys synergies from his colleagues, and more valuable to the principal due

to the positive influence his effort has on others. The optimal wage level also changes,

both due to the different optimal effort level, and also because synergy reduces the

agent’s marginal cost of effort.

The standard setting of a linear production function and quadratic cost function

allows us to derive additional results. With two agents, each agent’s optimal effort

level depends not only on his productivity, cost, and influence, but also his colleague’s

influence. In fact, optimal efforts depends on the two influence parameters only up

29



to their sum, which we define as the common synergy shared between the two agents.

Since synergy is symmetric over influence, both agents exert the same effort. Wages,

however, differ across agents with the more influential agent receiving higher pay. Total

wages increase with the total level of synergy: since synergy is a true externality,

agents do not take it into account when choosing their effort level, and so must be

“over-incentivized” to cause them to internalize it. This result suggests that it may be

optimal to grant rank-and-file employees strong equity incentives, even if their direct

effect on output is low. An increase in one agent’s influence parameter augments his

own effort and pay. Interestingly, such an increase raises his colleague’s pay if and only

if his colleague is sufficiently influential.

With three agents, optimal effort levels differ and depend on the total synergies an

agent enjoys with his colleagues rather than his unidirectional influence. If synergies

between two agents are sufficiently strong, it is optimal for the principal to focus

entirely on these agents and ignore the third. This result has implications for the

optimal composition of a team and optimal firm boundaries – if synergies between two

agents (divisions) become sufficiently strong, it is efficient to discard the third agent

(division) even if his (its) own parameters do not change. Agents that exert synergies

over a greater number of colleagues receive higher pay, consistent with the wage premia

CEOs enjoy over divisional managers.
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A Proofs

We first start with a maximization problem which we will make repeated use of in these

proofs. Consider the following maximization problem where a, b ≥ 0:

max
x∈[0,1]

x(1− bx+ ax2).

Let x∗(a, b) denote the set of argument solutions.

Lemma 1 (i) If b ≤ 1
2
, then x∗(a, b) = 1.

(ii) If b > 1
2
, then there exists a threshold a∗(b) > 0 such that

x∗(a, b) =


b−
√
b2−3a
3a

a < a∗(b)

{ b−
√
b2−3a
3a

, 1} a = a∗(b)

1 a > a∗(b)

.

Proof. We first define some notation. Let U(x, a, b) = x(1− bx+ ax2) and xloc(a, b) =
b−
√
b2−3a
3a

.

First let b ≤ 1
2
. If a = 0, it is clear that x∗(0, b) = 1. If a > 0, then

∂

∂x
U(x, a, b)|x=1 = 1− 2bx+ 3ax2|x=1 = 1− 2b+ 3a > 0. (27)

To show x∗(a, b) = 1, it suffices to show there is no local maximum of U(x, a, b) on

(0, 1). By the quadratic formula, a local maximum exists (anywhere) if and only if

b2 − 3a = 3a(b · b
3a
− 1) > 0. Since b ≤ 1

2
, this implies b

3a
> 2. In addition, b

3a
is the

inflection point of U(x, a, b). Since U(x, a, b) is a positive cubic, the inflection point lies

above the local maximum. Thus, since ∂
∂x
U(x, a, b) > 0 for x = 1 (from (27)), and the

inflection point is not reached until x = b
3a
> 2, the local maximum must be between

x = 1 and x = b
3a

. Thus, we must also have ∂
∂x
U(x, a, b) > 0 for all x < 1. Thus, there

is no local maximum of U(x, a, b) on (0, 1).

Now consider b > 1
2
. We have the following facts:

Fact 1: xloc(a, b) is strictly increasing in a on [0, b
2

3
]. This follows from the fact that

b−
√
b2 − 3a is convex while 3a is linear and both are equal to zero when a = 0.

Fact 2: By the envelope theorem,

d

da
U
(
xloc(a, b), a, b

)
=
[
xloc(a, b)

]3
< 1 when xloc(a, b) < 1.
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Fact 3: On the other hand,

∂

∂a
U(1, a, b) = 1.

Fact 4: For all sufficiently low a, x∗(a, b) = xloc(a, b). To see this, notice since

lima↓0 x
loc(a, b) = 1

2b
< 1, so for all sufficiently low a, the local maximum is in the

interval (0, 1). Of course when a = 0, the local maximum is the global maximum. By

continuity, the fact is true.

Clearly, whenever xloc(a, b) > 1 or does not exist, then x∗(a, b) = 1. Therefore,

suppose xloc(a, b) ≤ 1 and exists. Fact 1 implies that the set of a that satisfy these two

conditions is of the form [0, ã] where ã ≤ b2

3
. We wish to show that U

(
xloc(a, b), a, b

)
and U(1, a, b) satisfy the single crossing property on the interval [0, ã]. ã is the upper

bound on the interval of a’s such that xloc(a, b) ≤ 1 and exists. Thus, there are two

cases to consider. First, we could have xloc(ã, b) = 1, in which case the functions

U
(
xloc(a, b), a, b

)
and U(1, a, b) cross at a = ã. Second, we could have xloc(ã, b) < 1.

Note that at a = ã, the function U (x, a, b) must have a single critical point. If it had

two critical points, we could increase a. An increase in a “flattens” out the cubic by

bringing the value of the local minimum and local maximum closer, but since there are

two critical points to begin with, this can be done without violating the requirement

that at least one critical point, xloc(a, b), exists. An increase in a also raises xloc(ã, b)

(from Fact 1), but since xloc(ã, b) < 1, this can be done without violating the constraint

that xloc(a, b) ≤ 1. Since a can be increased without violating the constraints that

xloc(a, b) ≤ 1 and exists, ã would not meet the requirement of being the upper bound

on the interval of a’s such that these constraints are satisfied. By contrast, if U (x, a, b)

has a single critical point, a cannot be increased further as the function would then

have no critical points. Since U (x, a, b) has a single critical point, it is non-decreasing

in x. Thus, xloc(ã, b) < 1 implies U
(
xloc(ã, b), ã, b

)
< U(1, ã, b). Facts 2 and 3 imply

that
∂U(xloc(a,b),a,b)

∂a
< ∂U(1,a,b)

∂a
, and we also have U

(
xloc(0, b), 0, b

)
< U(1, 0, b). Thus,

the functions U
(
xloc(a, b), a, b

)
and U(1, a, b) must cross at some point a∗(b) ∈ [0, a].

Finally, Fact 4 implies that on [0, a∗(b)), x∗(a, b) = xloc(a, b).

Lemma 2 (i) If b > 1
2

then x∗(a, b) is strictly increasing on [0, a∗(b)).

(ii) If b ∈ (1
2
, 1] then

b−
√
b2−3a∗(b)
3a∗(b)

= 1 and x∗(a, b) smoothly increases up to 1.

(iii) If b > 1 then
b−
√
b2−3a∗(b)
3a∗(b)

< 1 and x∗(a, b) explodes up to 1 upon reaching the

critical threshold a∗(b).
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Proof. The first claim follows from Fact 1 in the proof of Lemma 1. For the third

claim, note xloc(a, b) is only defined when a ≤ b2

3
and xloc( b

2

3
, b) = 1

b
. Fact 1 then implies

the b > 1 claim. For the second claim, now suppose b ≤ 1. Then xloc( b
2

3
, b) = 1

b
≥ 1 and

it is also the inflection point. In general the inflection point is b
3a

. Thus as 1 decreases

from b2

3
, the inflection point is increasing. In particular, it remains above 1. However,

the only way that we can have U (1, a∗ (b) , b) > U
(
1, xloc (a∗ (b)) , b

)
(i.e. an explosion)

is if both xloc(a∗(b), b) and the inflection point are both strictly smaller than 1. Thus,

there is no explosion.

Lemma 3 If b > 1
2

then the quantities bx∗(a, b) − ax∗2(a, b) and x∗(a, b)(bx∗(a, b) −
ax∗2(a, b)) are both increasing on [0, a∗(b)).

Proof. On [0, a∗(b))

∂

∂x
U(x, a, b)|x∗(a,b) = 1− 2bx∗(a, b) + 3ax∗2(a, b) = 0

⇒ ∂

∂a
U(x∗(a, b), a, b) = −2bx∗1(a, b) + 6ax∗(a, b)x∗1(a, b) + 3x∗2(a, b) = 0 (28)

Now
∂

∂a
bx∗(a, b)− ax∗2(a, b) = bx∗1(a, b)− 2ax∗(a, b)x∗1(a, b)− x∗2(a, b)

Equation (28) then implies

∂

∂a
bx∗(a, b)− ax∗2(a, b) =

b

3
x∗1(a, b) > 0

This shows bx∗(a, b)− ax∗2(a, b) is increasing. Since x∗(a, b) is positive and increasing

as well, so x∗(a, b)(bx∗(a, b)− ax∗2(a, b)) is also increasing.

Proof of Proposition 1

The principal’s objective function is p1+p2
2

(1− (p1 + p2) + p1p2s). We first wish to

prove that p1 = p2. Fix a givenX = p1+p2. The term p1p2s is maximized, for a givenX,

by setting p1 = p2. The other terms in the objective function are all terms in X. Thus,

we have p1 = p2 = p. This allows us to apply Lemmas 1 and 2 with x = p1+p2
2

= p;

parts (i) and (ii) are essentially transcriptions of these two Lemmas, respectively. The

only difference is that at the critical synergy level, we now discriminate between the

two optimal efforts in accordance with Assumption 1.

For part (iii), note if i is more influential than j then hij > hji. This implies:

w∗i (s) = p∗(s)(1− hjip∗(s)) > p∗(s)(1− hijp∗(s)) = w∗j (s).
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For part (iv), the first-order condition yields: w1 = p1 (1− h21p2). Thus, agent 1’s

utility is given by:

U1 = p1 (1− h21p2)
(
p1 + p2

2

)
− 1

4
p21 (1− h21p2)

=
3

4
p2 (1− h21p)

where p = p1 + p2, and similarly U2 = 3
4
p2 (1− h12p). Hence U1 > U2 if and only if

h12 > h21.

Proof of Corollary 1

Part (i) is a direct application of Lemma 3. For part (ii), holding synergy fixed,

an increase in agent i’s relative influence means both increasing hij and decreasing hji.

This causes both an increase in w∗i and a decrease in w∗j .

Proof of Corollary 2

We use a dot to denote the derivative with respect to hij.

ẇ∗j = ṗ∗ − 2hijp
∗ṗ∗ − p∗2

p∗ ∈ arg max
p
p(1− 2p+ s∗p2)⇒ 1− 4p∗ + 3sp∗2 = 0⇒ −4ṗ∗ + 6sp∗ṗ∗ + 3p∗2 = 0

A linear combination of the two gives us

ẇ∗j =
1

3
ṗ∗ (6hijp

∗ − 1)

Since ṗ∗ > 0, this means that, when s < s̄, ẇ∗j and 6hijp
∗ − 1 have the same sign.

Equation (16) follows immediately. Turning to the expected wage, we have:

˙p∗w∗j = 2p∗ṗ∗ − 3hijp
∗2ṗ∗ − p∗3

−4ṗ∗ + 6sp∗ṗ∗ + 3p∗2 = 0⇒ p∗
(
−4ṗ∗ + 6sp∗ṗ∗ + 3p∗2

)
= 0

A linear combination of the two gives us

˙p∗w∗j = 3hijp
∗2ṗ∗ +

1

2
p∗3 > 0.

Proof of Proposition 2
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Holding total effort constant,

p∗1(s), p∗2(s), p∗3(s) ∈ arg max
p1,p2,p3∈[0,1]

Ap1p2 +Bp1p3 + Cp2p3. (29)

The first-order conditions which characterize interior solutions to this convex problem

are captured by

Ap∗2(s) +Bp∗3(s) = Ap∗1(s) + Cp∗3(s) = Bp∗1(s) + Cp∗2(s). (30)

Part (i) is then easily deduced.

Without loss of generality, suppose A > B ≥ C and A > B + C. Looking at the

convex problem of equation (29), it is clear that p∗3 = 0. The principal’s maximization

problem then becomes symmetric in p1 and p2 and there is nontrivial synergy between

agents 1 and 2. Part (ii) then follows from the two-agent case.

Proof of Corollary 3

Since the maximization problem of equation (29) is convex, the optimal effort profile

will satisfy the ratios of equation (21) so long as:

1. Each synergy component is strictly smaller than the sum of the other two.

2. The restriction of each effort being no greater than 1 is nonbinding.

Condition 1 is assumed in this corollary and condition 2 holds if synergy is suffi-

ciently small. Suppose then that synergy is small. Let p denote the highest effort of

the optimal effort profile. Then there exists 1 ≥ α ≥ β > 0 such that the other two

effort levels are αp and βp. Assume without loss of generality that agent 1’s effort is

highest, agent 2’s effort is α times agent 1’s effort and agent 3’s effort is β times agent

1’s effort. Then the principal’s maximization problem becomes

p∗ ∈ arg max
p∈[0,1]

(1 + α + β)p
(
1− (1 + α + β) p+ (Aα +Bβ + Cαβ) p2

)
.

The corollary now follows from Lemma 1.

Proof of Corollary 4

Statement (i) follows from Lemma 3.

Holding the synergy profile fixed, an increase in agent i’s relative influence means

both an increase of at least one element of {hij}j 6=i and a corresponding decrease of
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some elements in {hji}j 6=i. This causes an increase in w∗i and a decrease in at least one

element of {w∗j}j 6=i provided the effort profile is interior. Moreover, since (p1, p2, p3) is

a function of the synergy profile only, it is unaffected by changes in relative influence

and so p∗ is unchanged. Statement (ii) now follows.

For (iii), recall the optimal wage for agent i is

w∗i (p
∗
i ) = p∗i

(
1−

∑
j 6=i

hjip
∗
j

)
.

Equation (30) and the corollary’s assumption about the influence parameters imply

that the quantity inside the parentheses is the same for all i. The result now follows

immediately.

Proof of Proposition 3

The principal solves:

max
p1,p2,w1≥0,w2≥0

(
a
p1 + p2

2
+ b
√
p1p2

)
(1− w1 − w2),

subject to

pi ∈ arg max
p∈[0,1]

(
a
p+ p−i

2
+ b
√
pp−i

)
wi −

1

4
p2, i = 1, 2.

We prove the Proposition using a series of lemmas.

Lemma 4 Given wages w1 and w2, the agents’ effort levels satisfy

pi =


0 if wi = 0,(
a+ b

√
p−i

pi

)
wi if wi > 0 and (a+ b

√
p−i)wi < 1,

1 if (a+ b
√
p−i)wi ≥ 1,

for i = 1, 2.

Proof. Let

fi(p) =

(
a
p+ p−i

2
+ b
√
pp−i

)
wi −

1

4
p2, i = 1, 2,

denote agent i’s expected utility function. Then, the first and second order derivatives

are

f ′i(p) =

(
a

2
+
b

2

√
p−i
p

)
w1 −

1

2
p, i = 1, 2,
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f ′′i (p) = −1

4

(
b

p

√
p−i
p
w1

)
− 1

2
< 0, i = 1, 2.

Since fi is strictly concave and [0, 1] is a compact set, there is a unique maximizer

p. Moreover, if f ′i(0) ≤ 0, then p = 0. If f ′i(1) ≥ 0, then p = 1. Otherwise, if

f ′i(0) > 0 > f ′i(1), then there is a unique p ∈ (0, 1) given by the first-order condition.

Specifically, note that f ′i(0) = 0 if wi = 0, and for wi > 0,

0 ≥ f ′i(0) =

(
a

2
+
b

2
lim
p↓0

√
p−i
p

)
wi =

1
2
awi if p−i = 0,

+∞ if p−i > 0,

so p = 0 if wi = 0;

0 ≤ f ′i(1) =

(
a

2
+
b

2

√
p−i

)
wi −

1

2
,

so p = 1 if wi ≥ 1
a+b
√
p−i

; and, finally, in all other cases, the first-order condition implies

that p ∈ (0, 1) satisfies

p =

(
a+ b

√
p−i
p

)
wi.

We will now substitute the wages into the principal’s problem, so that it becomes

a function of the effort levels pi only.

Lemma 5 The principal’s problem reduces to

(p∗i , p
∗
2) ∈ arg max

0≤p1≤1,
0≤p2≤1

(
a
p1 + p2

2
+ b
√
p1p2

)1−

 p1

a+ b
√

p2
p1

+
p2

a+ b
√

p1
p2

 .
with optimal success wages given by

w∗i =


0 p∗i = 0,

p∗i

a+b

√
p∗−i
p∗
i

, 0 < p∗i ≤ 1.
(31)

Proof. Let W p
i = {wi ≥ 0 : pi = p}. By Lemma 4, W 1

i = [ 1
(a+b

√
p−i)

,∞). Since

Pr(r = 1) is a nonnegative constant for all wi ∈ W 1
i , and 1 − w1 − w2 is decreasing

in wi, it is enough to limit consideration to the smallest element in W 1
i , which is

pi
(a+b

√
p−i)

evaluated at pi = 1. By Lemma 4, W 0
i = {0}, so wi = 0 for pi = 0, and

wi = pi

(a+b
√

p−i
pi

)
for each p ∈ (0, 1). Hence, we can replace wi in the objective function
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with wi = pi

(a+b
√

p−i
pi

)
, where we take wi = 0 for pi = 0 since limpi↓0

pi

(a+b
√

p−i
pi

)
= 0.

Equation (31) is part (ii) of Proposition 3. It now remains to prove parts (i) and

(iii). To solve the problem of Lemma 5, we introduce the following functions. Let

f(p, q) = g(p, q)(1− h(p, q)), (32)

where the functions C1 and C2 are defined by

g(p, q) = a
p+ q

2
+ b
√
pq, (33)

h(p, q) =
p

a+ b
√

q
p

+
q

a+ b
√

p
q

, (34)

with h(0, z) = h(z, 0) = z
a
.

Then, the reduced problem is equivalent to solving

max
0≤p1≤1,
0≤p2≤1

f(p1, p2). (35)

Remark 1 Note that this problem (35) is not concave. For example, let a = 1
10

, b = 9
10

,

and consider p ∈ { 1
500
, 1
50
, 1
5
} for q = 9

10
. Then, f( 1

500
, 9
10

) ≈ −0.443, f( 1
50
, 9
10

) ≈
−0.475, and f(1

5
, 9
10

) ≈ −0.357. So, 1
500

< 1
50

< 1
5
, but f( 1

500
, 9
10

) > f( 1
50
, 9
10

) <

f(1
5
, 9
10

), which violates concavity. Nevertheless, this problem does have a unique global

maximum, which we demonstrate below.

The next few lemmas help establish that the solution involves symmetric effort

levels, p1 = p2.

Lemma 6 For all p, q ≥ 0, there exist x, y ≥ 0 such that the functions C1 and C2 in

(33) and (34) satisfy

g(p, q) = g(x, x) and h(p, q) = h(y, y).

Namely,

x =
a

a+ b

p+ q

2
+

b

a+ b

√
pq, (36)

y =
a+ b

2

 p

a+ b
√

q
p

+
q

a+ b
√

p
q

 , (37)
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g(x, x) = (a+ b)x, (38)

and

h(y, y) =
2y

a+ b
. (39)

Proof. The result follows by substitution of (36) into (33) and (37) into (34).

Lemma 7 The functions C1 and C2 are homogeneous of degree one. Namely, for all

p, q ≥ 0, and for all α ≥ 0, we have g(αp, αq) = αg(p, q) and h(αp, αq) = αh(p, q).

Proof. The result follows immediately from (33) and (34).

Lemma 8 For all p, q ≥ 0, the values x and y defined in Lemma 6 satisfy x ≤ y.

Moreover, x < y if p 6= q.

Proof. Let β = b
a+b

. Then, x ≤ y if and only if

(1− β)
p+ q

2
+ β
√
pq ≤ 1

2

 p

(1− β) + β
√

q
p

+
q

(1− β) + β
√

p
q

 . (40)

Note that both sides of (40) are zero for p = q = 0. Moreover, if p = 0, then condition

(40) reduces to
1

2
(1− β)q ≤ 1

2

1

1− β
q,

which always holds since 0 < 1 − β < 1 < 1
1−β . A similar property holds for p when

q = 0, so x ≤ y when either p = 0 or q = 0.

Now, suppose that p, q > 0. Multiplying both sides of (40) by 2√
pq

yields the

equivalent condition

(1− β)

(√
p

q
+

√
q

p

)
+ 2β ≤

√
p
q

(1− β) + β
√

q
p

+

√
q
p

(1− β) + β
√

p
q

(41)

Let

w =

√
p

q
+

√
q

p
.

Note that w ≥ 2 for all p, q > 0. This lower bound on w follows by substitution of

α =
√

p
q

and minimization:

min
p,q>0

√
p

q
+

√
q

p
= min

α>0
α +

1

α
= 2,
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which follows because α + 1
α

is a strictly convex function on α > 0 that is minimized

at α = 1 on α > 0.

Now by substitution and simplification of the right-hand side of (41) into a single

ratio, we have x ≤ y if and only if

(1− β)w + 2β ≤ w
(1− β)− 2β 1

w
+ βw

(1− β)2 + β(1− β)w + β2
. (42)

Note that the left-hand side of (42) is a convex combination of 2 and w, and because

w ≥ 2, is at most w. The right-hand side of (42) is at least w. To see this, note that

because w ≥ 2 and β > 0,

1 + β(w − 2) ≥ 1 ≥ 2

w
,

which after multiplying by β and rearranging gives

β2w + β(1− 2β) ≥ 2β

w
.

Now, using the identities β2 = β − β(1− β) and β(1− 2β) = (1− β)− [(1− β)2 + β2],

we have

[β − β(1− β)]w + (1− β)− [(1− β)2 + β2] ≥ 2β

w
,

which can be rearranged as

(1− β)− 2β
1

w
+ βw ≥ (1− β)2 + β(1− β)w + β2.

This inequality implies that

(1− β)− 2β 1
w

+ βw

(1− β)2 + β(1− β)w + β2
≥ 1;

hence, the term multiplying w on the right-hand side of (42) is at least one. Thus,

the right-hand side of (42) is at least w and the left-hand side of (42) is at most w.

Therefore, x ≤ y for all p, q > 0. Furthermore, all of the above inequalities are strict if

p 6= q since w > 2, which leads to x < y.

Lemma 9 For all p, q ≥ 0, the function f in (32) satisfies

f(p, q) ≤ (a+ b)2

8
.
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Moreover, the inequality is strict for p 6= q.

Proof. First, note that f(0, 0) = 0, and that for all z ≥ 0,

f(0, z) = f(z, 0) =
1

2
az
(

1− z

a

)
,

which is strictly concave in z on z ≥ 0. Hence, the first-order condition yields the

optimal z = a
2

and

f(0, z) = f(z, 0) ≤ f
(a

2
, 0
)

=
a2

8
<

(a+ b)2

8
.

So, the result holds if p = 0 or q = 0. Now, suppose p, q > 0. The maximum value of

f along the ray {(αp, αq) : α ≥ 0} is given by

max
α≥0

f(αp, αq) = max
α≥0

αg(p, q)(1− αh(p, q)) =
1

4

g(p, q)

h(p, q)
.

The first equality follows by application of Lemma 7. The second equality follows from

the first-order condition, which gives α = 1
2h(p,q)

> 0 as the unique maximizer since the

objective is strictly concave on α ≥ 0.

By Lemma 6, there exist x, y ≥ 0 such that

max
α≥0

f(αp, αq) =
1

4

g(p, q)

h(p, q)
=

1

4

g(x, x)

h(y, y)
=

(a+ b)2

8

x

y
.

By Lemma 8, we have x
y
≤ 1, with the inequality strict for p 6= q. Thus,

f(p, q) ≤ (a+ b)2

8
,

with the inequality strict for p 6= q.

Lemma 10 The solution to the model in which the synergy is in the production func-

tion, not the cost function, is the following. The agents exert the same level of effort

p∗1 = p∗2 =
a+ b

4
,

and receive the same success wage

w∗1 = w∗2 =
1

4
,
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which results in optimal expected utility a+b
16

(1− a+b
4

) for each agent and optimal profit
(a+b)2

8
for the principal.

Proof. The reduced problem of (35) when p1 = p2 = p is

max
p≥0

f(p, p) = max
p≥0

g(p, p)(1− h(p, p)) = max
p≥0

(a+ b)p

(
1− 2p

a+ b

)
=

(a+ b)2

8
.

The second equality follows by Lemma 6. The third equality follows by the first order

condition of the function being maximized, which is strictly concave in p on p ≥ 0 and

has the unique maximizer p = a+b
4

. Hence, p1 = p2 = a+b
4

is the unique maximizer

among all symmetric effort levels, and by Lemma 9 it is the unique global maximizer

since it achieves an objective value that is strictly larger than that achieved by any

non-symmetric effort levels. The optimal success wages are obtained by (31).

Lemma 10 proves parts (i) and (iii), and so the Proposition is proven.

B Negative Influence Parameters

This Appendix extends the model to the case where the influence parameters hij can

be negative. We start with the two-agent model and then move to the three-agent

model.

B.1 The Two-Agent Model

Recall the principal’s reduced-form maximization problem is given by:

p∗1, p
∗
2 ∈ arg max

p1,p2

p1 + p2
2

(1− (p1 + p2) + p1p2(h12 + h21)) .

There are thus two cases to consider.

Case 1. h12 > 0 > h21, and h12 + h21 > 0.

By inspecting the maximization problem, we can see that the solution only depends

on the total synergy s and not the individual influence parameters hij. Since we have

s > 0, we are in the case of the core model and so Proposition 1 holds.

Case 2. h12 + h21 < 0.

Since we now have s < 0, by inspecting the maximization problem we can see that

the solution requires p∗1p
∗
2 = 0 and so one agent exerts zero effort. Since both agents

have the same direct productivity, it does not matter which agent this is. Without loss
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of generality, assume that p∗2 = 0. Then the principal solves:

p∗1 ∈ arg max
p1

p1
2

(1− p1) .

This is a single-agent model. The solution is standard, and is given by Proposition 4

below:

Proposition 4 (Substitute production function, two agents, negative synergy.) Sup-

pose that the total synergy s is negative. Then only one agent exerts strictly positive

effort; without loss of generality, assume this is agent 1. The analog of Proposition 1

is as follows:

(i) The optimal effort levels are given by p∗1(s) = 1
2
, p∗2(s) = 0.

(ii) The wage levels are given by w∗1 = 1
2

and w∗2 = 0, and are independent of s as

long as s < 0.

(iii) An increase in either influence parameter has no effect on effort and wages as

long as s < 0.

(iv) Since the principal is indifferent over which agent has the zero effort and wage

level, it is possible to have w1 > w2 for h12 < h21.

(v) For a fixed s < 0, changes in agent i’s relative influence have no effect.

(vi) As long as s < 0, changes in agent i’s absolute influence have no effect.

(vii) The agent who is exerting effort has the higher utility. Since the principal is

indifferent over which agent has the zero effort and wage level, it is possible that this

is the less influential agent.

We can summarize the above results as follows. Case 1 shows that, as long as the

total synergy is positive, the core model’s results continue to hold in the case where

one influence parameter is negative. It may seem surprising that the principal chooses

to hire (i.e., induce strictly positive effort from) an agent that exert negative influence.

However, again, it is the total synergy that matters for whether both agents exert

effort, so it does not matter if one influence parameter is negative as long as the total

synergy is positive. Case 2 shows that, if total synergy is negative, the principal only

wishes to hire one agent, and the individual influence parameters are irrelevant for the

choice of agent.

B.2 The Three-Agent Model

In the two-agent model, the solution depended on whether the total synergy (rather

than the individual influence parameters) was positive or negative. In the three-agent
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model, the solution depends on whether the synergy components are positive or nega-

tive. Without loss of generality, we will assume that A is the largest synergy component,

followed by B and then C. There are four cases to consider:

Case 1. A > B > C > 0.

If each synergy component is positive, we are in the case of the core model and Propo-

sition 2 continues to hold.

Case 2. A > B > 0 > C.

Here, one of the synergy components is negative. This ensures that there is a single

synergy component that is greater than the sum of the other two: A > B+C. We thus

obtain the corner solution of Proposition 2. Only the two agents who have the largest

synergy with each other exert effort, and the problem reduces to the 2 agent model.

Case 3. A > 0 > B > C

This case is similar to Case 2 in that we have A > B + C. We thus obtain the corner

solution of Proposition 2.

Case 4. 0 > A > B > C.

In this case, only one agent exerts effort. Since all three agents have the same direct

productivity, it does not matter which agent this is. Without loss of generality, assume

that p∗2 = p∗3 = 0. We are in a single agent model where p∗1 = 1
2

and the analogy of

Proposition 4 applies.

C Complementary Effort

In Sections 3 and 4, efforts were perfect substitutes in the production function. This

section considers a model in which agents’ efforts are perfect complements, i.e. the

probability of success depends on the minimum effort level undertaken by all agents,

and shows that the results are robust. The production function now becomes:

Pr(r = 1) = min (p1, p2, ..., pN) . (43)

We continue to assume a quadratic individual cost function:

hi(pi) =
κi
2
p2i .

Differentiating agent i’s utility function (5) gives his first-order conditions as:

p1 = p2 = . . . = pN ≡ p, (44)
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and

wi(p) = κip

(
1−

∑
j 6=i

hjip

)
. (45)

These first-order conditions already give us some preliminary results. Equation (44)

shows that all agents will exert the same effort level, as is intuitive given the perfect

complementarities production function (43). Equation (45) shows that agent i’s wage

is linear in his cost parameter κi, i.e. agents with more difficult tasks (higher κi) will

receive higher wages.

Plugging the first-order conditions (44) and (45) into the principal’s objective func-

tion (3) gives her reduced-form maximization problem as:

p∗ ∈ arg max
p

p

(
1−

∑
i

wi(p)

)
= arg max

p
p

(
1− p

∑
i

κi + p2
∑
i

(∑
j 6=i

hijκj

))
.

We define the following terms:

Definition 3 Synergy is defined to be the sum of each agent’s total influence:

s =
∑
i

(∑
j 6=i

hijκj

)
.

Difficulty is defined to be the sum of the cost parameters, κ ≡
∑

i κi.

Assumption 2 Difficulty κ > 1
2
.

This is a nontriviality assumption about the difficulty of the project being not too

low. It ensures that the problem has nontrivial solutions in agent efforts for at least

some realized levels of synergy.

The solution to the model is given by Proposition 5 below; the proof is essentially

the same as in Proposition 1.

Proposition 5 (Complementary production function.) (i) There exists a unique crit-

ical synergy threshold s∗ (κ) > 0 such that optimal effort is given by:

p∗(s) =

κ−
√
κ−3s
3s

s ∈ [0, s∗ (κ))

1 s ≥ s∗ (κ) .
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Optimal effort p∗(s) is strictly increasing on [0, s∗ (κ)]. Furthermore, if difficulty κ > 1,

then p∗(s) explodes to 1 when the critical synergy level s∗ (κ) is reached.

(ii) Total wages given success, w∗(s) =
∑

iw
∗
i (s), and expected total wages p∗(s)w∗(s)

are both strictly increasing on [0, s∗ (κ)].

(iii) Suppose synergy is subcritical. An increase in any influence parameter of any

agent will lead to increases in optimal effort, total payment given success and total

expected success payment.

(iv) Fix a subcritical synergy level. Suppose agent i’s relative influence increases,

i.e. his total influence increases while holding synergy constant. If the resulting decrease

in the total influence of the other agents is nondistortionary10 then there is an increase

in agent i’s relative and absolute wage. Specifically,

w∗i∑
j w
∗
j

, w∗i and p∗w∗i all strictly increase,

and
w∗i
w∗j

weakly increases for all j and strictly increases at least one j.

Proposition 5 shows that our model’s key results are robust to the nature of the

production function. Even though the perfect complements production function of this

section is the polar opposite of the perfect substitutes production function of Sections

3 and 4, the main insights regarding the effort and wage profiles remain unchanged. In

addition to demonstrating robustness to the specification of the production function,

this section also shows that the results naturally extend to the case of N agents.

As in Sections 3 and 4, an increase in total synergy leads to an increase in the im-

plemented effort levels, total pay and expected total pay; the intuition is the same. An

increase in a single agent’s influence parameters augments total synergy (thus leading

to the above effects) and his own pay in both relative and absolute terms.

10In other words, the decrease in the other agents’ total influence is achieved by simply multiplying
their influence parameters with a common scalar c < 1.
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