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1 Introduction

The informativeness principle states that all signals that are informative about agent
effort should be included in a contract. This principle is believed to be the most
robust result from the moral hazard literature. For example, Bolton and Dewatripont’s
(2005) textbook states that this literature has produced very few general results, but
the informativeness principle is one of the few results that is general. Due to its
perceived robustness, the principle has had substantial impact in several fields, such
as compensation, insurance, and regulation. For example, several researchers have
empirically tested the efficiency of CEO pay by examining whether there are informative
signals that are not included in contracts (Bertrand and Mullainathan (2001); Bebchuk
and Fried (2004)).

The original formulation of the informativeness principle, due to Holmström (1979)
and Shavell (1979), assumes the validity of the first-order approach (“FOA”): that
the agent’s incentive constraint can be replaced by its first-order condition. As a
consequence, only the likelihood ratio involving adjacent efforts is relevant. Thus, any
signal that affects the local likelihood ratio – i.e. is locally informative – has positive
value.

Generalizations of the informativeness principle assume either the FOA (e.g. Gjes-
dal (1982), Amershi and Hughes (1989), Kim (1995), Christensen, Sabac, and Tian
(2010)) or that the agent chooses between two actions only (e.g. Hart and Holmström
(1987), Laffont and Martimort (2002), Bolton and Dewatripont (2005)). However, as is
well-known, the FOA is generally not valid.1 Assuming only two actions has a similar
effect to using the FOA, as it means that only one incentive constraint binds, but is
unrealistic.

The failure of the FOA is not simply a technical curiosity; there are many real-life
situations where a single local incentive constraint does not ensure global incentive

1Rogerson (1985) derives the most well-known sufficient conditions for the validity of the FOA in
the single-signal case. As Jewitt (1988) points out, these assumptions are so strong that they are not
satisfied by any standard distribution. Moreover, they are no longer sufficient if the principal observes
multiple signals, which is needed to analyze the informativeness principle (as the principal observes
output and an additional signal). Jewitt (1988), Sinclair-Desgagné (1994), Conlon (2009), Jung and
Kim (2015), and Kirkegaard (2017) obtain sufficient conditions for the validity of the FOA in the
multiple-signal case, and Kirkegaard (2017) does so in the multidimensional effort case. Grossman
and Hart (1983) and Araujo and Moreira (2001) introduce alternative methods to solve principal-agent
models when the FOA fails.
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compatibility. Many agent decisions cannot be ordered, such as the choice of a corpo-
rate strategy, factory location, or whom to hire or promote, and so the FOA is not even
well-defined. This is especially troublesome in multitask settings, where the agent can
deviate in several different directions. For example, an academic can choose whether
to reallocate time away from research to teaching, service, or leisure.

Even with ordered actions, non-local deviations may bind if actions have increasing
returns to scale. An academic who normally goes to the office on a weekday may
contemplate working from home on that day, rather than only contemplating working
one fewer minute in the office. The probability of discovering a blockbuster drug,
writing a best-selling book or an impactful paper, or launching a successful marketing
campaign, is likely convex in effort (within some range): increasing effort from low to
moderate has little effect on the probability, but increasing it from high to very high
has a disproportionate impact. Holmström’s (2017) survey of the literature concludes:
“[m]uch attention was paid to problems with the First-Order Approach (...). But it is
evident by now that the one-dimensional effort model as such has serious shortcomings.”

Given the significance of the informativeness principle, it is important to understand
whether it remains relevant where the FOA is invalid. As a preliminary step, we show
that the original definition, which only takes into account deviations to adjacent efforts,
may not be relevant: a locally informative signal will have zero value if the agent is most
tempted to deviate to a non-local effort level. Our main contribution is to introduce
a stronger notion of informativeness and study whether it is sufficient for a signal to
have value. This notion is global informativeness : that a signal affects the likelihood
ratio between the principal’s preferred effort and all other effort levels.

Surprisingly, we show that even global informativeness does not always ensure that
a signal has positive value. These situations arise if multiple incentive constraints si-
multaneously bind, which is not uncommon when there are more than two effort levels
(more formally, it arises for an open set of parameters). The standard argument for
conditioning the contract on an informative signal is that the principal can relax a bind-
ing incentive constraint by transferring payments from states with low likelihood ratios
to states with high likelihood ratios. If multiple incentive constraints simultaneously
bind, this transfer may tighten another constraint by the same margin and so the cost
of the optimal contract is unchanged. However, these examples are knife-edge in that
they require the shadow prices of all binding constraints to coincide. Accordingly, we
prove that, except for a set of parameters with measure zero, any globally informative
signal has positive value.
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We also show that global informativeness is the weakest sufficient condition for a
signal to have value without making assumptions on the utility function, such as the
cost of effort. Put differently, if one does not want to impose restrictions on the utility
function, global informativeness is also necessary.2

2 Preliminaries

This is a preliminary section that reviews the informativeness principle, as originally
formulated by Holmström (1979), and shows that it may not apply if the FOA is invalid.

There is a risk-neutral principal (“she”) and a risk-averse agent (“he”). The agent
chooses an unobservable action e ∈ E , which we refer to as “effort”. Effort affects output
q ∈ Q and a signal s ∈ S, both of which are observable and contractible. We refer to a
pair (q, s) as a state. In Section 3, we will assume that the action, output, and signal
spaces are finite; for now, to achieve comparability with Holmström (1979), we allow
them to be intervals of the real line as well.

While Holmström (1979) assumes additive separability, we follow Grossman and
Hart (1983) and generalize to the following utility function:

Assumption 1. The agent’s Bernoulli utility function over income w and effort e is

U (w, e) = G (e) +K (e)V (w) . (1)

(i) K (e) > 0 for all e; (ii) V : W → R is continuously differentiable, strictly in-
creasing, and strictly concave, and W = (w,+∞) is an open interval of the real line
(possibly with w = −∞); and (iii) U(w1, e1) ≥ U(w1, e2) =⇒ U(w2, e1) ≥ U(w2, e2)

for all e1, e2 ∈ E and all w1, w2 ∈ W.

The agent has utility function (1) if and only if his preferences over income lotteries
are independent of his effort. Conditions (i) and (ii) state that the agent likes money
and dislikes risk. Condition (iii) requires preferences over known effort levels to be
independent of income. When K (e) = K̄ for all e, the utility function is additively
separable between effort and income as in Holmström (1979). When G (e) = 0 for all

2Our necessity result is in the spirit of the monotone comparative statics literature (see, e.g., Athey
(2002)). Formally, it states that if the set of admissible utility functions is large enough, then no weaker
condition is sufficient for a signal to have value.
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e, it is multiplicatively separable.3 The agent’s reservation utility is U .
Note that we do not require effort to be ordered. Therefore, our model allows

for the standard interpretation of e as effort, which reduces utility and improves the
output distribution, and more general cases where the action cannot be ordered, such
as the choice of different corporate strategies or between multidimensional tasks, where
the effect of the action on the agent’s utility and the output distribution need not be
perfectly negatively correlated. More specifically, when the action space is finite (as we
assume throughout), there is no loss of generality in assuming that it lies on the real
line. Therefore, as long as we retain the assumption of a finite action space, our model
can accommodate multidimensional actions. Since there are no well-known conditions
that justify the FOA when actions are multidimensional, it is particularly important
to obtain results that hold beyond the FOA in this case.4

As Grossman and Hart (1983) show, the principal’s problem can be split in two
stages. First, she finds the cheapest contract that induces each effort level. Second,
she determines which effort level to induce. This paper focuses on the first stage:
whether the principal can use the signal s to reduce the cost of implementing a given
effort level e∗.5 Given an implementable effort level e∗, there will always exist a benefit
function for the principal such that e∗ is the optimal effort level (i.e. solves the second
stage). Thus, if the informativeness principle holds (fails) for a given effort level e∗,
there will exist a benefit function for which it holds (fails) in the general problem.

We first define what it means for a signal to have positive value. Let E(q,s) [·|e] denote
the conditional expectation with respect to the distribution of states and Eq [·|e] denote
the conditional expectation with respect to the (marginal) distribution of outputs.
When the principal uses the signal s, her cost of implementing effort e∗ is

Cs (e∗) ≡ min
w(q,s)

E(q,s) [w (q, s) |e∗] (2)

subject to the agent’s individual rationality (“IR”) and incentive compatibility (“IC”)
3Multiplicative separability is commonly used in macroeconomics (e.g. Cooley and Prescott

(1995)). In finance, Edmans, Gabaix, and Landier (2009) show that they are necessary and suffi-
cient to obtain empirically consistent scalings of CEO incentives with firm size.

4As an example of the former interpretation, effort e could refer to the number of hours worked.
As an example of the latter, e = 1 could refer to working 8 hours on project A, e = 2 to working 9
hours on project A, and e = 3 to working 8 hours on project B.

5Holmström (1979) avoids this issue by assuming that either the signal is informative for all effort
levels or for no effort level.
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constraints:

E(q,s) [U (w (q, s) , e∗) |e∗] ≥ Ū , (3)

E(q,s) [U (w (q, s) , e∗) |e∗] ≥ E(q,s) [U (w (q, s) , e) |e] ∀e. (4)

If the program has no solution, we take the cost of implementing e∗ to be +∞.
When the principal does not use the signal s, her cost of implementing e∗ is

Cns (e∗) ≡ min
w(q)

Eq [w (q) |e∗] (5)

subject to

Eq [U (w (q) , e∗) |e∗] ≥ Ū , (6)

Eq [U (w (q) , e∗) |e∗] ≥ Eq [U (w (q) , e) |e] ∀e. (7)

Let w∗ (q) be a solution of Program (5)-(7). Since w(q, s) = w∗ (q) satisfies the
constraints of Program (2)-(4) and costs Cns (e∗), it follows that Cs (e∗) ≤ Cns (e∗): a
signal cannot have negative value. The signal has positive value for implementing e∗ if
Cs(e∗) < Cns(e∗) and zero value if Cs(e∗) = Cns(e∗).

We now state Holmström’s original theorem.

Theorem. (Informativeness Principle): Assume that the utility function is additively
separable and that the FOA is valid. Suppose states are distributed according to a
continuously differentiable probability density function f (q, s|e). The signal has zero
value for implementing e∗ if and only if there exists a function φ for which

fe (q, s|e∗)
f (q, s|e∗)

= φ(q, e∗) (8)

for almost all q, s.

The left-hand side of (8) corresponds to the change in the likelihood ratio f(q,s|e∗+∆e)
f(q,s|e∗)

for infinitesimal changes in effort (∆e ≈ 0). Since only the local IC matters when the
FOA is valid, a signal has positive value for implementing e∗ if and only if it is locally
informative– it affects the likelihood ratio involving adjacent effort levels and is thus
informative about whether the agent has deviated locally. Thus, where the FOA is
valid, a signal has value if and only if it is locally informative. However, if the FOA is
invalid, the agent may be tempted to deviate to a non-adjacent effort level. Thus, even
if a signal is locally informative, it may have no value. In Example 1, we show that
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when effort has stochastic increasing returns to scale, non-local incentive constraints
bind, and local informativeness is not enough for a signal to have value.6

Example 1. The agent has additively separable utility, and we normalize effort to be
measured in cost units: K (e) = K̄ and G(e) = −e.7 The effort space is the unit
interval: E = [0, 1]. Suppose the principal wishes to implement effort e∗ = 1.

Conditional on effort e, states are distributed according to the probability density
function f(q, s|e). Let f̄(q|e) =

∫
f(q, s|e)ds denote the marginal distribution of output

and F̄ (q|e) denote the associated cumulative distribution function (“CDF”). Suppose
that f(q, s|e = 0) and f(q, s|e = 1) are both independent of s.

In Supplementary Appendix B.1, we show that the ICs regarding intermediate effort
levels (e ∈ (0, 1)) do not bind if f̄(q|e=1)

f̄(q|e=0)
is non-decreasing (the monotone likelihood

ratio property, “MLRP”) and F̄ (q|e) is concave in e for each q. Then, the only binding
constraint involves the global deviation from e = 1 to e = 0, so the relevant likelihood
ratio is f(q,s|e=1)

f(q,s|e=0)
, which is not a function of s. Therefore, a signal s may affect the local

likelihood ratio fe(q,e|ê)
f(q,e|ê) for almost all ê (including e∗ = 1) and still have zero value.

Example 1 builds on Rogerson (1985), who shows that if the distribution satisfies
the MLRP and the CDF is convex in effort, then only the local ICs bind, justifying the
FOA. MLRP is a standard condition that is satisfied by many standard distributions.
As Rogerson argues, convexity of the CDF can be interpreted as stochastic decreasing
returns to scale: as effort increases, the probability of observing an outcome below q

decreases at a decreasing rate. Our concavity condition is the opposite case, where the
probability of observing an outcome below q decreases at an increasing rate, and can
be interpreted as stochastic increasing returns to scale. This example shows that global
concavity of the CDF (in conjunction with MLRP) is sufficient to justify the use of
binary effort models.

Although MLRP is a standard assumption in moral hazard models, neither global
convexity (a sufficient condition for the FOA) nor global concavity (a sufficient con-
dition for the binding IC to be associated with a boundary effort level) are likely to
hold in practice. For example, as noted by Jewitt (1988), if output can be written
q = e+ ε for some random variable ε with density f , the CDF of q is convex (concave)

6Chaigneau, Edmans, and Gottlieb (2018) show that, if the agent is protected by limited liability,
informative signals may have zero value.

7With additive separability, as long as costs are increasing in effort, there is no loss of generality
in assuming that costs are measured in units of effort. In this case, any non-linearity in effort costs is
incorporated in the probability distribution.
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if and only if f is an increasing (decreasing) function. Most standard density functions
are neither everywhere increasing nor everywhere decreasing, so both global convexity
and global concavity are unlikely to hold – as discussed in the introduction, research
and marketing efforts likely involve regions of increasing returns to scale. Thus, we do
not know ex ante which ICs will bind, which motivates the stronger notion of global
informativeness that we will introduce in Section 3.

3 Informativeness Without The First-Order Approach

Although a large literature (mentioned in the introduction) has obtained sufficient
conditions for the FOA to hold, there is no general method for solving moral hazard
problems with continuous effort when the FOA fails. We therefore follow Grossman
and Hart (1983) in assuming that there are finitely many states and effort levels:
E ≡ {1, . . . , E}, X ≡ {q1, ..., qX}, and S ≡ {1, ..., S}.8 Finite effort levels allow us to
use Kuhn-Tucker methods to obtain necessary optimality conditions. The probability
of observing state (q, s) conditional on effort e is denoted peq,s, which we assume to be
strictly positive to ensure existence of an optimal contract (i.e. the distribution has full
support). Let h ≡ V −1 denote the inverse of the utility of money. Since V is increasing
and strictly concave, h is increasing and strictly convex. Defining uq,s ≡ V (wq,s), the
principal’s program can be written in terms of “utils”:

min
{uq,s}

∑
q,s

pe
∗

q,sh (uq,s) (9)

subject to
G (e∗) +K (e∗)

∑
q,s

pe
∗

q,suq,s ≥ Ū , (10)

∑
q,s

(
K (e∗) pe

∗

q,s −K (e) peq,s
)
uq,s ≥ G (e)−G (e∗) ∀ e ∈ E , (11)

where (10) and (11) are the IR and IC.
When the FOA cannot be applied, it seems that the definition of informativeness

simply needs to be extended to consider non-local deviations. Since we do not know
what effort level the agent will deviate to, being informative about every possible

8Since Holmström (1979) assumes the FOA, he is able to consider a continuum of efforts while
retaining tractability, because the FOA means that only the local incentive constraint is relevant. In
contrast, our model does not assume the FOA and so considers a finite action space.
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deviation (i.e. affects the likelihood ratio between e∗ and every other effort level)
would appear to be a sufficient condition for a signal to have positive value. We thus
define a globally informative signal as follows:

Definition 1. Let e∗ be an effort to be implemented and consider a distribution p over
states (q, s). The signal s is globally informative for e∗ if, for all e 6= e∗, there exist
se, s

′
e, qe with

peqe,se
pe∗qe,se

6=
pe
qe,s
′
e

pe
∗

qe,s
′
e

.

Example 2 illustrates the distinction between local and global informativeness.

Example 2. There are three possible efforts E = {1, 2, 3}. Suppose that the principal
wishes to implement e = 3. The signal is locally informative for e = 3 if

p3
q,si

p2
q,si

6=
p3
q,sj

p2
q,sj

for some q ∈ X , si, sj ∈ S. The signal is globally informative for e = 3 if, in addition
to the previous condition, we also have

p3
q,sk

p1
q,sk

6=
p3
q,sl

p1
q,sl

for some q ∈ X , sk, sl ∈ S.
If the cost of choosing e = 2 is high enough, so that the binding IC will be the one

preventing the agent from choosing e = 1, a locally informative signal may have zero
value.

As an illustration of the setting described in Example 2, suppose that, as in Holm-
ström and Tirole (1997), the agent chooses between three actions: a good action
(e = 3), a bad action with a low private benefit (e = 2), and a very bad action
with a high private benefit (e = 1). (A high private benefit is isomorphic to a low cost
of effort). For example, e = 3 corresponds to investing in a project within the firm’s
expertise which is thus likely to succeed; e = 2 corresponds to shirking; and e = 1

corresponds to investing in a “pie-in-the-sky” project, which is unlikely to succeed and
wastes the firm’s cash, but allows the agent to explore his own research interests. The
principal wishes to implement e = 3, so we refer to a deviation to e = 2 as a local
deviation. A locally informative signal provides information about whether the agent
shirked, such as the amount of hours he spends in the office. However, such a signal
has no value if the relevant deviation is non-local (to e = 1) – the agent shows up to
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work in the office, but invests in the bad project. A globally informative signal would
be informative about deviations to both e = 2 and e = 1, i.e. a targeted audit that
determines whether the agent has invested in the project within the firm’s expertise.

In addition to demonstrating the difference between local and global informative-
ness, this example also shows that our framework applies to settings in which efforts
cannot be clearly ordered. The numberings of the different effort levels are arbitrary –
indeed, Holmström and Tirole (1997) do not use numbers but refers to the three actions
as e = G, e = b and e = B, respectively. Thus, it is not clear what action (investing
in the bad or very bad approach) corresponds to a local deviation, and so it is unclear
what deviation a “locally informative” signal is informative about. In contrast, our
notion of global informativeness holds regardless of how the actions are numbered.

We now show that, surprisingly, global informativeness is not sufficient to ensure
that a signal has positive value. We first note that a signal can only have value when
there are agency costs. Let w̄e denote the wage that gives the agent his reservation
utility if he exerts effort e:

w̄e = h

(
Ū −G (e)

K (e)

)
.

The principal can implement effort e∗ with no agency costs if, when she offers the
constant wage w̄e∗ that satisfies the IR with equality, all ICs are satisfied:

U(w̄e∗ , e
∗) ≥ U(w̄e∗ , e) ∀ e. (12)

We say that the first best is feasible for e∗ if condition (12) holds. Then the principal
uses a constant wage and so signals automatically have zero value. When utility is
either additively or multiplicatively separable, the first best is only feasible for the
least costly effort. With non-separable utility, however, it may be feasible for several
different effort levels (Grossman and Hart (1983)). (The first best is never achieved in
Holmström (1979) because he assumes additively separable utility and an interior e∗.)

There are three cases to consider, depending on how many ICs bind in program
(9)-(11). If no IC binds,9 the first best is feasible and so a globally informative signal
automatically has zero value. Lemma 1, proven in Supplementary Appendix B.1, states
that a globally informative signal has value whenever exactly one IC binds (as is the
case in Holmström’s (1979) original theorem):

9We say that a constraint is binding if removing it allows the principal to obtain a higher payoff.
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Lemma 1. Fix a utility function satisfying Assumption 1 and a distribution p, and let
e∗ be an effort for which the first best is not feasible. If exactly one IC binds, a globally
informative signal has positive value for implementing e∗.

The third case to consider is when multiple ICs bind. When there are at least three
states, it is not unusual for multiple ICs to bind. Formally, we show in Supplementary
Appendix B.2 that multiple ICs bind for a non-empty and open set of parameter values.
Since any non-trivial model with informative signals requires at least three states (at
least two outputs and at least two signals conditional on at least one output), it is
important to study the case of multiple binding ICs.

We start with an example showing that, if multiple ICs bind, a globally informative
signal can have zero value. Example 3 follows Holmström (1979) and the subsequent
literature in assuming additive separability:

Example 3. There are three effort levels, two outputs, and two signals: E = {1, 2, 3} ,
X = {0, 1}, and S = {0, 1}. Let K (1) = K (2) = K (3) = 1, G (1) = G (2) = 0,

G (3) = −1, and U = 0. Thus, e = 1 and e = 2 both cost zero and e = 3 costs one.
Conditional on e = 3, states are uniformly distributed: p3

q,s = 1
4
∀ q, s. For e ∈

{1, 2}, the conditional probabilities are:

p1
1,0 = p2

1,1 =
1

4
, p1

1,1 = p2
1,0 =

1

8
, p1

0,0 = p1
0,1 = p2

0,0 = p2
0,1 =

5

16
.

Note that the likelihood ratios between any two effort levels are not constant:

p3
1,1

p2
1,1

= 1 6= 2 =
p3

1,0

p2
1,0

,
p3

1,1

p1
1,1

= 2 6= 1 =
p3

1,0

p1
1,0

,
p2

1,1

p1
1,1

= 2 6= 1

2
=
p2

1,0

p1
1,0

.

Let e = 3 be the effort to be implemented. The principal’s program is

min
{uq,s}

h(u1,0) + h(u1,1) + h(u0,0) + h(u0,1)

subject to the IR and the two ICs, which can be rewritten as:

u1,0 + u1,1 + u0,0 + u0,1 ≥ 4 (13)

2u1,1 − (u0,0 + u0,1) ≥ 16 (14)

2u1,0 − (u0,0 + u0,1) ≥ 16. (15)

Even though the likelihood ratios between any two effort levels are not constant, the
signal has zero value: uq,0 = uq,1 for q ∈ {0, 1}. To see this, notice that when u0,0 6=
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u0,1, replacing both of them by u0,0+u0,1
2

keeps all constraints unchanged and reduces the
principal’s cost (because h is convex). Similarly, if u1,0 6= u1,1, replacing both of them
by their average u1,0+u1,1

2
preserves IR and IC while reducing the principal’s cost.

The intuition is as follows. For e = 2, the likelihood ratio at state (1, 0) is twice
as large as at (1, 1). To relax the second IC (15), we should increase u1,0 and decrease
u1,1. For e = 1, the likelihood ratio at state (1, 1) is twice as large as at (1, 0). To relax
the first IC (14), we should increase u1,1 and decrease u1,0. Since both the likelihood
ratios p31,0

p21,0
and p31,1

p11,1
and the costs of effort levels 1 and 3 coincide, the shadow prices of

both ICs are the same. Thus, the benefit from relaxing one IC exactly equals the cost
from tightening the other one. As a result, it is optimal for the agent’s utility not to
depend on the signal.

Intuitively, this result requires the shadow prices of the binding ICs to exactly
coincide. If we perturb either the probabilities or the utility function slightly, the
benefit from relaxing each constraint will differ. We can then improve the contract
by increasing utility in the state with the highest likelihood ratio under the effort
associated with the IC with the highest shadow cost. This intuition suggests that
counterexamples such as the one in Example 3 are non-generic. We now prove that
this is indeed the case.

Theorem 1, proven in Appendix A, is the main result of our paper. It states that,
generically, globally informative signals have positive value for implementing e∗. To
establish results that can be applied to settings with additive and multiplicative separa-
bility, we hold either K or G fixed in our economy parametrization. Therefore, we refer
to an economy as either a vector of parameters {K(e), pes,q}s,q,e (which holds {G(e)}e
fixed), or a vector of parameters {G(e), pes,q}s,q,e (which holds {K(e)}e fixed). While
our result can be easily shown for economies parameterized by K, G, and p, we do not
do so because, in this case, additively or multiplicatively separable utility functions are
non-generic. One might thus have the concern that, even if our results held generically,
they may not hold in the important cases of additive and multiplicative separability.
This is not the case, however: the result from Theorem 1 holds for generic separable
utility functions as well as generic utility functions satisfying (1) more broadly.

Theorem 1. (Value of Globally Informative Signals) Fix an effort e∗ for which the
first best is not feasible. For all economies except for a set of Lebesgue measure zero, a
globally informative signal has value for implementing e∗.

While Theorem 1 gives a sufficient condition for a signal to add value generically,

12



Proposition 1 now shows that Theorem 1 contains the weakest sufficient condition
possible, unless one imposes additional restrictions on the utility function. Thus, global
informativeness is a necessary condition for a signal to add value without restricting
the utility function. Formally, for any (possibly non-adjacent) effort levels, there exists
a non-degenerate set of utility functions for which the signal has positive value if and
only if the likelihood ratio between these efforts is non-constant.

Proposition 1. Suppose the signal is not globally informative for e∗. For any vector
K, there exists a set of economies {G, p} with strictly positive Lebesgue measure for
which the signal has zero value in implementing e∗.

Taking a constant vector K, we find that Proposition 1 also holds if we restrict
ourselves to additively separable utility functions.

Finally, Holmström’s (1979) informativeness principle is an “if and only if” result.
The less surprising part shows that (locally) uninformative signals have zero value
(“necessity”). The more interesting part shows that every (locally) informative signal
has positive value (“sufficiency”). The contribution of our paper is to generalize the
sufficiency part, which, as we showed, only holds generically. For completeness, we now
present the generalization of the necessity part. The proof, in Supplementary Appendix
B.1, is a straightforward adaptation of Holmström (1979) to settings in which the FOA
is not valid and utility is not additively separable.10

Proposition 2. Fix a utility function satisfying Assumption 1, let (q, s) be either
continuously or discretely distributed, and let f(q, s|e) denote either the probability
density function or the probability mass function. Suppose f(q,s|e)

f(q,s|e∗) = φe∗(q, e) for all e
and almost all (q, s) under e∗. Then, the signal has zero value in implementing e∗.

4 Conclusion

This paper extends the informativeness principle to settings in which the FOA is not
valid. This extension requires us to introduce the notion of global informativeness,
which states that a signal is informative about all effort levels, not just adjacent ones.
We show that even global informativeness does not ensure that a signal has positive

10Our proof works not only for the discrete model of this paper, but also for continuous outputs
and effort levels. While we show that incorporating an additional uninformative signal is undesirable,
Grossman and Hart (1983, Proposition 13) show the related result that increasing the noise of an
existing signal is undesirable.

13



values, if multiple incentive constraints bind with the same shadow price. While multi-
ple constraints simultaneously binding is not knife-edge, them having the same shadow
price is, so global informativeness is generically sufficient for a signal to have positive
value. Moreover, if one does not wish to impose additional restrictions on the utility
function, it is also necessary for a signal to have positive value.
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A Proofs

A.1 Proof of Theorem 1

The proof will use the following corollary of Sard’s Theorem:

Corollary 1. Let X ⊂ Rn and Ξ ⊂ Rp be open, F : X × Ξ→ Rm be continuously dif-
ferentiable, and let n < m. Suppose that for all (q;χ) such that F (q;χ) = 0, DF (q;χ)

has rank m. Then, for all χ except for a set of Lebesgue measure zero, F (q;χ) = 0 has
no solution.

For simplicity, suppose that only two ICs bind; it is straightforward but notationally
cumbersome to generalize the analysis for more than two binding ICs. Without loss of
generality (renumbering effort levels if necessary), let e∗ = 3 denote the implemented
effort, and let e = 1 and e = 2 denote the two effort levels with binding ICs. By
assumption, the first best is not feasible for e∗ = 3. The principal’s program is

min
uq,s

qX∑
q=q1

S∑
s=1

pe
∗

q,sh (uq,s) (16)

subject to G (e∗) +K (e∗)

qX∑
q=q1

S∑
s=1

pe
∗

q,suq,s ≥ Ū , (17)

G (e∗) +K (e∗)

qX∑
q=q1

S∑
s=1

pe
∗

q,suq,s ≥ G (e) +K (e)

qX∑
q=q1

S∑
s=1

peq,suq,s ∀ e.

(18)

Following the parametrization of an economy, we keep eitherG ≡ (G(3), G(2), G(1))

or K ≡ (K(3), K(2), K(1)) constant (where bold letters denote vectors). Accordingly,
we introduce the vector Θ, where either Θ = K (if G is being held constant) or Θ = G

(if K is being held constant). Here, we consider the case in which the IR (17) binds.
The case where it does not bind is analogous and presented in Supplementary Appendix
B.1.

The (necessary) first-order condition with respect to uq,s is

−pe∗q,sh′ (uq,s)− µ1K(1)p1
q,s − µ2K(2)p2

q,s + λK (e∗) pe
∗

q,s = 0 ∀ q, s, (19)

where µ1 and µ2 are the Lagrange multipliers on the ICs for deviations to e = 1 and
e = 2, respectively, and λ is the Lagrange multiplier on the IR.
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For the agent’s payments to be independent of the signal, the system of equations
(17), (18), and (19) must have as a solution uq,s = uq ∀ q, s. Combining these equations,
they can be written as F (u, µ1, µ2, λ; Θ,p) = 0, where

F

 u︸︷︷︸
X

, µ1, µ2, λ︸ ︷︷ ︸
3

; Θ︸︷︷︸
3

, p︸︷︷︸
3XS

 ≡



p3
1,1h

′ (u1) + µ1K(1)p1
1,1 + µ2K(2)p2

1,1 − λK(3)p3
1,1

...
p3

1,Sh
′ (u1) + µ1K(1)p1

1,S + µ2K(2)p2
1,S − λK(3)p3

1,S
...

p3
X,1h

′ (uX) + µ1K(1)p1
X,1 + µ2K(2)p2

X,1 − λK(3)p3
X,1

...
p3
X,Sh

′ (uX) + µ1K(1)p1
X,S + µ2K(2)p2

X,S − λK(3)p3
X,S∑X

q=1 uqK(3)
∑

s p
3
q,s +G(3)− Ū∑X

q=1 uqK(2)
∑

s p
2
q,s +G(2)− Ū∑X

q=1 uqK(1)
∑

s p
1
q,s +G(1)− Ū



.

The rest of the proof verifies that the derivative of F has full row rank so we can apply
Corollary 1, where q = (u, µ1, µ2, λ) and χ = (Θ,p). We write this derivative as

DF =

[
AXS×X CXS×3 DΘ H3

XS×XS H2
XS×XS H1

XS×XS

B3×X 03×3 EΘ J3
3×XS J2

3×XS J1
3×XS

]
.

Matrices AXS×X and B3×X are, respectively, the derivative of the first XS equations
and the last three equations (IR and ICs) with respect to u:

AXS×X =


h′′(u1)P3

1 0 ... 0

0 h′′(u2)P3
2 ... 0

...
...

...
0 0 ... h′′(uX)P3

X


B3×X =

 K(3)P3
1 · 1S K(3)P3

2 · 1S ... K(3)P3
X · 1S

K(2)P2
1 · 1S K(2)P2

2 · 1S ... K(2)P2
S · 1S

K(1)P1
1 · 1S K(1)P1

2 · 1S ... K(1)P1
S · 1S

 ,
where Pe

q =
(
peq,1, ..., p

e
q,S

)′ and 1S ≡ (1, 1, ..., 1) is the vector of ones with length S.
The derivative of the first XS and last three equations with respect to the multipliers
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µ1, µ2, and λ are, respectively,

CXS×3 =



K(1)p1
1,1 K(2)p2

1,1 −K(3)p3
1,1

...
K(1)p1

1,S K(2)p2
1,S −K(3)p3

1,S
...

K(1)p1
X,1 K(2)p2

X,1 −K(3)p3
X,1

...
K(1)p1

X,S K(2)p2
X,S −K(3)p3

X,S


(20)

and the null matrix 03×3. The derivative of the first XS and last three equations with
respect to {G(3), G(2), G(1)} are, respectively, 0XS×3 and the identity matrix I3. Thus,
if K is constant, Θ = G, and we have DΘ = DG = 0XS×3, and EΘ = EG = I3.

The derivatives with respect to {K(3), K(2), K(1)} are, respectively:

DK =



−λp3
1,1 µ2p

2
1,1 µ1p

1
1,1

...
−λp3

1,S µ2p
2
1,S µ1p

1
1,S

...
−λp3

X,1 µ2p
2
X,1 µ1p

1
X,1

...
−λp3

X,S µ2p
2
X,S µ1p

1
X,S


EK =


∑X

q=1 uq
∑

s p
3
q,s 0 0

0
∑X

q=1 uq
∑

s p
2
q,s 0

0 0
∑X

q=1 uq
∑

s p
1
q,s


Thus, if G is constant, Θ = K, and we have DΘ = DK, and EΘ = EK.

The derivatives with respect to
(
p3
q,s

)
are:

H3
XS×XS =


[h′ (u1)−K(3)λ] IS 0S×S ... 0S×S

0S×S [h′ (u2)−K(3)λ] IS ... 0S×S
...

... . . . ...
0S×S 0S×S ... [h′ (uX)−K(3)λ] IS


and

J3
3×XS =

 u1K(3)1S ... uXK(3)1S

0S ... 0S

0S ... 0S

 .
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The derivatives with respect to (p2
q,s) and (p1

q,s) are, respectively:

H2
XS×XS =


µ2K(2)IS 0S×S ... 0S×S

0S×S µ2K(2)IS ... 0S×S
...

... . . . ...
0S×S 0S×S ... µ2K(2)IS

 = µ2K(2)IXS

J2
3×XS =

 0S ... 0S

u1K(2)1S ... uXK(2)1S

0S ... 0S


and

H1
XS×XS = µ1K(1)IXS

J1
3×XS =

 0S ... 0S

0S ... 0S

u1K(1)1S ... uXK(1)1S

 .
Note thatDFP =

[
H3
XS×XS H2

XS×XS H1
XS×XS

J3
3×XS J2

3×XS J1
3×XS

]
hasXS+3 rows and 3XS columns.

SinceXS+3 < 3XS, it suffices to show thatDFP has full row rank: for any y ∈ RXS+3,

y︸︷︷︸
1×(XS+3)

× DFP︸ ︷︷ ︸
(XS+3)×3XS

= 0︸︷︷︸
1×3XS

=⇒ y = 0︸︷︷︸
1×(XS+3)

.

Let DFPi
=

[
H i
XS×XS

J i3×XS

]
. First, expanding y ×DFP2 = 0 gives:

µ2K(2)y1 + u1K(2)yXS+2 = ... = µ2K(2)yS + u1K(2)yXS+2 = 0

µ2K(2)yS+1 + u2K(2)yXS+2 = ... = µ2K(2)y2S + u2K(2)yXS+2 = 0
...

µ2K(2)yS(X−1)+1 + uXK(2)yXS+2 = ... = µ2K(2)yXS + uXK(2)yXS+2 = 0.

Dividing through by K(2) > 0 and rearranging gives:

µ2y1 = ... = µ2yS = −u1yXS+2 (21)

µ2yS+1 = ... = µ2y2S = −u2yXS+2

...

µ2yS(X−1)+1 = ... = µ2yXS = −uXyXS+2.
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Similarly, expanding y ×DFP1 = 0 yields

µ1K(1)y1 = ... = µ1K(1)yS = −u1K(1)yXS+3 (22)

µ1K(1)yS+1 = ... = µ1K(1)y2S = −u2K(1)yXS+3

...

µ1K(1)yS(X−1)+1 = ... = µ1K(1)yXS = −uXK(1)yXS+3.

with K(1) > 0. Recall that µ1 ≥ 0 and µ2 ≥ 0 with at least one of them strict. Thus,

y1 = ... = yS =: ȳ1

yS+1 = ... = y2S =: ȳ2

...

yS(X−1)+1 = ... = yXS =: ȳX .

From equation (21), we have:

µ2ȳ
1 = −u1yXS+2

...
µ2ȳ

X = −uXyXS+2.

(23)

Second, recall that DF(µ1,µ2,λ) =

[
CXS×3

03×3

]
, where CXS×3 is described in (20).

Thus, y ×DF(µ1,µ2,λ) = 0 gives∑
q,s

ȳqK(1)p1
q,s = 0,

∑
q,s

ȳqK(2)p2
q,s = 0,

∑
q,s

ȳqK(3)p3
q,s = 0 ∀q. (24)

Multiplying both sides of the first equation in (24) by µ2 ≥ 0:

µ2

∑
q,s

ȳqK(1)p1
q,s = K(1)

∑
q,s

(µ2ȳ
q) p1

q,s = 0. (25)

However, from equation (23), we have

K(1)
∑
q,s

(µ2ȳ
q) p1

q,s = −yXS+2K(1)
∑
q,s

uqp
1
q,s = −yXS+2(Ū −G(1)), (26)

where the last equality follows from the IC for e = 1. Let G(1) 6= Ū (the set of
parameters for which Ū = G(1) have zero Lebesgue measure). Then, (25) and (26)
imply yXS+2 = 0. Applying this logic to the second equation in (24) gives yXS+3 = 0.
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Third, recall from equations (21) and (22) that, ∀ q,

µ2ȳ
q = −uqyXS+2 and µ1ȳ

q = −uqyXS+3.

Moreover, µ1 ≥ 0 and µ2 ≥ 0 with at least one of them strict. Since yXS+2 = yXS+3 = 0,
we have µ1ȳ

q = µ2ȳ
q = 0. Since either µ1 6= 0 or µ2 6= 0, this implies ȳq = 0 ∀ q.

Fourth, expanding y ×DFP3 = 0 gives:

y1 [h′ (u1)−K(3)λ] + yXS+1u1K(3) = 0,
...

yS [h′ (u1)−K(3)λ] + yXS+1u1K(3) = 0,

yS+1 [h′ (u2)−K(3)λ] + yXS+1u2K(3) = 0,
...

y2S [h′ (u2)−K(3)λ] + yXS+1u2K(3) = 0,
...

yS(X−1)+1 [h′ (uX)−K(3)λ] + yXS+1uXK(3) = 0,

...

yXS [h′ (uX)−K(3)λ] + yXS+1uXK(3) = 0.

Since y1 = · · · = yXS = 0 and K(3) > 0, this implies that either u1 = · · · = uX (= 0) or
yXS+1 = 0. The former is impossible: such a contract either violates at least one IC, or
satisfies all ICs. In the latter case, the constant wage (determined by the binding IR)
would induce e∗, which contradicts the assumption that the first best is not feasible.
Thus, yXS+1 = 0, and so y ×DFP = 0⇒ y = 0. Hence, DFP has full row rank.

A.2 Proof of Lemma 1

Suppose that exactly one IC binds in Program (9)-(11) and let e∗ be an effort for
which the first best is not feasible. The necessary Kuhn-Tucker conditions from the
principal’s program yield, ∀ (q, s) in the support,

−h′ (uq,s) + µ

(
K (e∗)−K(e′)

pe
′
q,s

pe∗q,s

)
+ λK (e∗) = 0, (27)

where µ ≥ 0 is the multiplier associated with the binding IC. Subtracting these condi-
tions in states (q, s) and (q, s′) gives

h′ (uq,s)− h′ (uq,s′) = µK(e′)

(
pe
′

q,s′

pe
∗
q,s′
−
pe
′
q,s

pe∗q,s

)
. (28)
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If µ = 0, then (28) implies a constant wage, which contradicts our assumption that the
first best is not feasible.11 Therefore, µ > 0 and, because K (e) > 0 ∀ e, it follows from

(28) and the convexity of h that uq,s 6= uq,s′ whenever
pe
′

q,s′

pe
q,s′
6= pe

′
q,s

peq,s
.

A.3 Proof of Proposition 1

The proof is by construction. Suppose that the signal is not globally informative for
e∗. Then, there exists an effort e such that the likelihood ratio between efforts e and
e∗ is constant. It is easier to write the principal’s program in terms of “utils” uq,s. Let
the strictly convex function h ≡ V −1 denote the inverse utility function. Consider the
relaxed program that only takes into account the IC between effort levels e∗ and e:

min
uq,s

∑
q,s

pe
∗

q,sh(uq,s)

subject to
G(e∗) +K(e∗)

∑
q,s

pe
∗

q,suq,s ≥ Ū

and ∑
q,s

[
K(e∗)pe

∗

q,s −K(e)peq,s
]
uq,s ≥ G(e)−G(e∗)

Fix a vector K and let {u∗q,s} denote a solution to this program, which depends on
G(e) and G(e∗). Suppose that G(e) > G(e∗) so the IC of this relaxed program binds.
Since this is formally identical to the principal’s program in a two-effort model and the
likelihood ratio between e and e∗ is constant, {u∗q,s} is not a function of s.

It remains to be shown that the omitted ICs do not bind:

K(e∗)
∑
q,s

pe
∗

q,su
∗
q,s +G(e∗) ≥ K(ê)

∑
q,s

pêq,su
∗
q,s +G(ê) ∀ê /∈ {e, e∗}.

Let ū ≡ maxq,s{u∗q,s} and u ≡ minq,s{u∗q,s}, so that

K(e∗)
∑
q,s

pe
∗

q,su
∗
q,s +G(e∗) ≥ K(e∗)u+G(e∗)

and
K(ê)

∑
q,s

pêq,su
∗
q,s +G(ê) ≤ K(ê)ū+G(ê).

11Since the agent’s preferences over efforts are independent of income (Assumption (1iii)), effort e∗

can be implemented with the minimum constant wage w̄e∗ if and only if it can be implemented with
any other wage w ≥ w̄e∗ .
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Thus, the omitted ICs are satisfied for any vector G such that

G(ê)−G(e∗) ≤ K(e∗)u−K(ê)ū

for all ê.

A.4 Proof of Proposition 2

The proof follows similar steps to Holmström (1982) and uses a trick introduced by
Grossman and Hart (1983) to rewrite the principal’s program as a minimization subject
to linear constraints. Let the strictly convex function h ≡ V −1 denote the inverse utility
function and let F denote the cumulative distribution function (“CDF”) associated with
f . The principal’s program can be written in terms of “utils” as:

min
uq,s

∫
h (uq,s) dF (q, s|e∗)

subject to the IR and IC:

G (e∗) +K (e∗)

∫
uq,sdF (q, s|e∗) ≥ Ū ,

G (e∗) +K (e∗)

∫
uq,sdF (q, s|e∗) ≥ G (e) +K (e)

∫
uq,sdF (q, s|e) ∀e.

We will present the discrete case here. The continuous case is analogous. Suppose
that f(q,s|e)

f(q,s|e∗) = φe∗(q, e) ∀ q. Then, the IC can be written as:

∑
q

(K(e∗)−K(e)φe(q))

[∑
s

f(q, s|e∗)uq,s

]
≥ G(e)−G(e∗) ∀e.

Suppose (uq,s) satisfies IR and IC and, ∀ q, substitute each entry of the vector (uq,1, ..., uq,S)

by the expected value: Ūq ≡
∑

s f(q, s|e∗)uq,s. This new vector also satisfies IC and
IR. Since h is strictly convex, the principal’s payoff rises if uq,s is not constant in s.
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B Supplementary Appendix: Not for Publication

B.1 Additional Proofs

Proof of Example 1
For notational simplicity, let πeq,s ≡ f (q, s|e) denote the probability of state (q, s)

conditional on effort e, π̄eq ≡
∫
πeq,sds denote the marginal probability of output q, and

Π̄e
q denote the associated cumulative distribution function (“CDF”). Suppose that π1

q,s

and π0
q,s are both independent of s. As in Grossman and Hart (1983), it is convenient

to write the principal’s program in terms of “utils”. Ignoring intermediate effort levels,
the program is:

min
V

∫
h (V (q)) π̄1

qdq s.t.∫
V (q) π̄1

qdq ≥ U (29)∫
V (q)

(
π̄1
q − π̄0

q

)
dq ≥ 1, (30)

where h = V −1.
We wish to study conditions under which the solution to this relaxed program also

solves the original program – i.e. under which the following omitted ICs are satisfied:∫
S

∫
X

V (q)
(
π1
q,s − πeq,s

)
dqds ≥ 1− e, ∀e.

Using the marginal distributions, we can rewrite these constraints as

ξ(e) ≡
∫
X

V (q)
(
π̄1
q − π̄eq

)
dq − (1− e) ≥ 0.

Note that ξ(1) = 0 and, by the binding IC (30), ξ(0) = 0. Thus, it suffices to show
that ξ is concave.

Applying integration by parts to the solution of the relaxed program, we obtain∫
V (q)

(
π̄1
q − π̄eq

)
dq =

∫
V̇ (q)

(
Π̄e
q − Π̄1

q

)
dq,

where Π̄ is the CDF associated with π̄. Substituting back in the definition of ξ yields

ξ(e) =

∫
V̇ (q)

(
Π̄q
e − Π̄q

1

)
dq + e− 1.
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Since the likelihood ratio π̄1
q/π̄

0
q is non-decreasing in q, the solution of the relaxed

program is monotonic: V̇ ≥ 0. Then, since Π̄e
q is a concave function of e, ξ is concave.

Proof of Theorem 1, non-binding IR
This appendix completes the proof of Theorem 1, by considering the case where the

IR (17) does not bind. We can thus ignore the IR from the principal’s program. The
first-order condition with respect to uq,s is

−pe∗q,sh′ (uq,s)−µ1

(
K(1)p1

q,s −K (e∗) pe
∗

q,s

)
−µ2

(
K(2)p2

q,s −K (e∗) pe
∗

q,s

)
= 0 ∀q, s. (31)

For the wage to be independent of the signal, the system of equations (18) and (31)
must have as a solution uq,s = uq ∀ q, s. We can write this system of equations using
the function F : RX(1+3S)+5 → RXS+2, where

F

u1, ..., uX︸ ︷︷ ︸
X

, µ1, µ2︸ ︷︷ ︸
2

; Θ︸︷︷︸
3

, pe1,1, ..., p
e
X,S︸ ︷︷ ︸

3XS



=



p3
1,1h

′ (u1) + µ1(K(1)p1
1,1 −K(3)p3

1,1) + µ2(K(2)p2
1,1 −K(3)p3

1,1)
...

p3
1,Sh

′ (u1) + µ1(K(1)p1
1,S −K(3)p3

1,S) + µ2(K(2)p2
1,S −K(3)p3

1,S)
...

p3
X,1h

′ (uX) + µ1(K(1)p1
X,1 −K(3)p3

X,1) + µ2(K(2)p2
X,1 −K(3)p3

X,1)
...

p3
X,Sh

′ (uX) + µ1(K(1)p1
X,S −K(3)p3

X,S) + µ2(K(2)p2
X,S −K(3)p3

X,S)∑X
q=1 uq

(
K(2)

∑
s p

2
q,s −K(3)

∑
s p

3
q,s

)
+G(2)−G(3)∑X

q=1 uq
(
K(1)

∑
s p

1
q,s −K(3)

∑
s p

3
q,s

)
+G(1)−G(3)



.

To apply Corollary 1, we need to show that DF has full row rank. It is given by:

DF =

[
AXS×X CXS×2 DΘ H3

XS×XS H2
XS×XS H1

XS×XS

B2×X 02×2 EΘ J3
2×XS J2

2×XS J1
2×XS

]
.

Matrices AXS×X and B2×X are, respectively, the derivative of the first XS equations
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and the last 2 equations (ICs) with respect to u:

AXS×X =


h′′(u1)P3

1 0 ... 0

0 h′′(u2)P3
2 ... 0

...
...

...
0 0 ... h′′(uX)P3

X

 ,

B2×X =

[
K(2)P2

1 · 1S −K(3)P3
1 · 1S ... K(2)P2

S · 1S −K(3)P3
X · 1S

K(1)P1
1 · 1S −K(3)P3

1 · 1S ... K(1)P1
S · 1S −K(3)P3

X · 1S

]
.

The derivatives with respect to the multipliers µ1 and µ2 are, respectively,

CXS×2 =



K(1)p1
1,1 −K(3)p3

1,1 K(2)p2
1,1 −K(3)p3

1,1
...

K(1)p1
1,S −K(3)p3

1,S K(2)p2
1,S −K(3)p3

1,S
...

K(1)p1
X,1 −K(3)p3

X,1 K(2)p2
X,1 −K(3)p3

X,1
...

K(1)p1
X,S −K(3)p3

X,S K(2)p2
X,S −K(3)p3

X,S


(32)

and the null matrix 02×2. The derivatives with respect to {G(3), G(2), G(1)} are,
respectively, 0XS×3 and

EG =

[
−1 1 0

−1 0 1

]
.

Thus, if K is constant, Θ = G, and we have DΘ = DG = 0XS×3 and EΘ = EG.
The derivatives with respect to {K(3), K(2), K(1)} are, respectively:

DK =



−µ1p
3
1,1 − µ2p

3
1,1 µ2p

2
1,1 µ1p

1
1,1

...
−µ1p

3
1,S − µ2p

3
1,S µ2p

2
1,S µ1p

1
1,S

...
−µ1p

3
X,1 − µ2p

3
X,1 µ2p

2
X,1 µ1p

1
X,1

...
−µ1p

3
X,S − µ2p

3
X,S µ2p

2
X,S µ1p

1
X,S


,

EK =

[
−
∑X

q=1 uq
∑

s p
3
q,s

∑X
q=1 uq

∑
s p

2
q,s 0

−
∑X

q=1 uq
∑

s p
3
q,s 0

∑X
q=1 uq

∑
s p

1
q,s

]
.

Thus, if G is constant, Θ = K, and we have DΘ = DK, and EΘ = EK.
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The derivatives with respect to
(
p3
q,s

)
,
(
p2
q,s

)
, and

(
p1
q,s

)
are, respectively:

H3
XS×XS =


[h′ (u1)−K(3)(µ1 + µ2)] IS 0S×S ... 0S×S

0S×S
. . . ... 0S×S

...
... . . . ...

0S×S 0S×S ... [h′ (uX)−K(3)(µ1 + µ2)] IS


J3

2×XS =

[
−u1K(3)1S ... −uXK(3)1S

−u1K(3)1S ... −uXK(3)1S

]
,

H2
XS×XS =


µ2K(2)IS 0S×S ... 0S×S

0S×S µ2K(2)IS ... 0S×S
...

... . . . ...
0S×S 0S×S ... µ2K(2)IS

 = µ2IXS,

J2
2×XS =

[
u1K(2)1S ... uXK(2)1S

0S ... 0S

]
and

H1
XS×XS = µ1K(1)IXS

J1
2×XS =

[
0S ... 0S

u1K(1)1S ... uXK(1)1S

]
.

Note thatDFP =

[
H3
XS×XS H2

XS×XS H1
XS×XS

J3
2×XS J2

2×XS J1
2×XS

]
hasXS+2 rows and 3XS columns.

Since XS + 2 < 3XS, it suffices to show that DFP has full row rank to establish that
DF has full row rank. We thus need to show that for any vector y ∈ RXS+2,

y︸︷︷︸
1×(XS+2)

× DFP︸ ︷︷ ︸
(XS+2)×3XS

= 0︸︷︷︸
1×3XS

=⇒ y = 0︸︷︷︸
1×(XS+2)

.

Let DFPi
=

[
H i
XS×XS

J i2×XS

]
. First, expanding y ×DFP2 = 0 gives:

µ2K(2)y1 + u1K(2)yXS+1 = ... = µ2K(2)yS + u1K(2)yXS+1 = 0

µ2K(2)yS+1 + u2K(2)yXS+1 = ... = µ2K(2)y2S + u2K(2)yXS+1 = 0
...

µ2K(2)yS(X−1)+1 + uXK(2)yXS+1 = ... = µ2K(2)yXS + uXK(2)yXS+1 = 0.
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Dividing through by K(2) > 0 and rearranging gives:

µ2y1 = ... = µ2yS = −u1yXS+1 (33)

µ2yS+1 = ... = µ2y2S = −u2yXS+1

...

µ2yS(X−1)+1 = ... = µ2yXS = −uXyXS+1.

Similarly, expanding y ×DFP1 = 0 yields

µ1K(1)y1 = ... = µ1K(1)yS = −u1K(1)yXS+2 (34)

µ1K(1)yS+1 = ... = µ1K(1)y2S = −u2K(1)yXS+2

...

µ1K(1)yS(X−1)+1 = ... = µ1K(1)yXS = −uXK(1)yXS+2

with K(1) > 0. Recall that µ1 ≥ 0 and µ2 ≥ 0 and at least one of them is strict. Thus,

y1 = ... = yS =: ȳ1

yS+1 = ... = y2S =: ȳ2

...

yS(X−1)+1 = ... = yXS =: ȳX .

From equation (33), we have:

µ2ȳ
1 = −u1yXS+1

...
µ2ȳ

X = −uXyXS+1

(35)

Second, recall that DF(µ1,µ2) =

[
CXS×2

02×2

]
. Thus, y ×DF(µ1,µ2) = 0 gives

∑
q,s

ȳq
[
K(1)p1

q,s −K(3)p3
q,s

]
= 0,

∑
q,s

ȳq
[
K(2)p2

q,s −K(3)p3
q,s

]
= 0, ∀q. (36)

Multiplying both sides of the first equation in (36) by µ2 ≥ 0:

µ2

∑
q,s

ȳq
[
K(1)p1

q,s −K(3)p3
q,s

]
= K(1)

∑
q,s

(µ2ȳ
q) p1

q,s −K(3)
∑
q,s

(µ2ȳ
q) p3

q,s = 0. (37)
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However, from equation (35), we have

K(1)
∑
q,s

(µ2ȳ
q) p1

q,s −K(3)
∑
q,s

(µ2ȳ
q) p3

q,s

= −yXS+1

[
K(1)

∑
q,s

uqp
1
q,s −K(3)

∑
q,s

uqp
3
q,s

]
= −yXS+1(G(3)−G(1)), (38)

where the last equality follows from the binding IC for e = 1. Let G(3) 6= G(1) (the
set of parameters for which G(3) = G(1) have zero Lebesgue measure). Then, (37)
and (38) imply yXS+1 = 0. Applying this logic to the second equation in (36) yields
yXS+2 = 0.

Third, recall from equations (33) and (34) that, ∀ q,

µ2ȳ
q = −uqyXS+1 and µ1ȳ

q = −uqyXS+2.

Moreover, µ1 ≥ 0 and µ2 ≥ 0 with at least one of them strict. Since yXS+1 = yXS+2 = 0,
we have µ1ȳ

q = µ2ȳ
q = 0. Since either µ1 6= 0 or µ2 6= 0, this implies ȳq = 0 ∀ q. Thus,

y ×DFP = 0 =⇒ y = 0, i.e., DFP has full row rank.

B.2 Multiple Binding ICs

This appendix shows that the case in which multiple ICs simultaneously bind is not
knife-edge. The problem of implementing effort e at minimum cost is:

min
{uq,s}

qX∑
q=q1

S∑
s=1

peq,sb (uq,s)

subject to

qX∑
q=q1

S∑
s=1

peq,suq,s − ce ≥ Ū

qX∑
q=q1

S∑
s=1

(
peq,s − pẽq,s

)
uq,s ≥ ce − cẽ ∀ẽ.

We study the case of three effort levels and three states. This is the simplest
environment to study multiple binding ICs. With two effort levels, there is only one
IC; with two states, wages are two-dimensional and, since the IR and at least one IC
must bind for any effort except the least costly one, we generically can only have one
binding IC.
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Let S = {1, 2, 3} and E = {1, 2, 3}, and take the utility function u (c) =
√
c+K,

where K > 0 allows for negative wages. The inverse utility function is then

h (u) = u2 −K.

Without loss of generality, let e = 2 denote the implemented effort. The program is:

min
{us}

∑
s=1,2,3

p2
su

2
s

subject to ∑
s=1,2,3

p2
sus ≥ c2∑

s=1,2,3

(
p2
s − p1

s

)
us ≥ c2 − c1∑

s=1,2,3

(
p2
s − p3

s

)
us ≥ c2 − c3

We know that IR binds. Substituting the binding IR into the two ICs, the IR and
two ICs now become: ∑

s=1,2,3

p2
sus = c2∑

s=1,2,3

p1
sus ≤ c1 (39)∑

s=1,2,3

p3
sus ≤ c3 (40)

An economy is parametrized by conditional distributions and costs: {pe1, pe2, ce}e=1,2,3

(pe3 is given by pe3 = 1 − pe2 − pe1). We claim that there exists an open neighborhood
of parameters in which both ICs (39) and (40) bind. To show this, we will study the
maximization program where we ignore one of them. If the ignored IC is satisfied at
the solution of this “relaxed program,” this solution solves the principal’s program. We
will show that, for some open set of parameter values, each of these two constraints
(39 and 40) fails to hold when it is ignored, so they both simultaneously bind.

First, consider the relaxed program where we omit (40). The Lagrangian is

L = −p2
1u

2
1 − p2

2u
2
2 − p2

3u
2
3 + λ

(
p2

1u1 + p2
2u2 + p2

3u3 − c2

)
+ µ

(
p1

1u1 + p1
2u2 + p1

3u3 − c1

)
,
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which has as first-order conditions the following linear system:

2u1 = λ+ µ
p1

1

p2
1

, 2u2 = λ+ µ
p1

2

p2
2

, 2u3 = λ+ µ
p1

3

p2
3

,

p2
1u1 + p2

2u2 + p2
3u3 = c2,

p1
1u1 + p1

2u2 + p1
3u3 = c1.

We will now combine the first three equations into one by eliminating λ. From the
first equation, we have 2u1 − µ

p11
p21

= λ. Substituting into the second and third and
combining yields the following linear system with three equations and three unknowns:

(
p12
p22
− p11

p21

) (
p11
p21
− p13

p23

) (
p13
p23
− p12

p22

)
p2

3 p2
2 p2

1

p1
3 p1

2 p1
1


 u3

u2

u1

 =

 0

c2

c1

 ,
which characterizes the solution of the relaxed program where we ignore (40).

Similarly, the solution of the relaxed program where we ignore (39) is given by:
(
p32
p22
− p31

p21

) (
p31
p21
− p33

p23

) (
p33
p23
− p32

p22

)
p2

3 p2
2 p2

1

p3
3 p3

2 p3
1


 u3

u2

u1

 =

 0

c2

c3

 .
It is easy to apply Cramer’s rule to obtain a closed-form solution.

Use the following vector notation: pe ≡ (pe1, p
e
2, p

e
3). Consider p1 = (0.1, 0.28, 0.62) ,

p2 = (0.2, 0.15, 0.65) , p3 = (0.3, 0.1, 0.6) , c1 = 0.75, c2 = 1, c3 = 0.5.
The matrix in the relaxed program where we omit (40) is:

A1 ≡


(
p12
p22
− p11

p21

) (
p11
p21
− p13

p23

) (
p13
p23
− p12

p22

)
p2

3 p2
2 p2

1

p1
3 p1

2 p1
1

 =

 1.3667 −0.4538 −0.9128

0.65 0.15 0.2

0.62 0.28 0.1

 .
The solution is  u3

u2

u1

 = (A1)−1

 0

c2

c1

 =

 1.0703

−0.3207

1.7620

 ,
where we used the fact that

(A1)−1 =

 0.2499 1.2813 −0.2813

−0.3596 −4.2829 5.2829

−0.5425 4.0478 −3.0478

 .
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Since A1 has full rank, the solution is continuous in its parameters (conditional prob-
abilities and costs) around these parameter values. Substituting in (40) gives

p3
3u3+p3

2u2+p3
1u1−c3 = 0.6×1.0703+0.1×(−0.3207)+0.3×1.7629−0.5 = 0.6387 > 0.

Thus, (40) fails to hold. Since the expression p3
3u3 + p3

2u2 + p3
1u1 − c3 is a continuous

function of conditional probabilities, utilities, and costs, and utility is itself a contin-
uous function of costs and probabilities, it follows that this expression is a continuous
function of probabilities and costs. Thus, for parameter values in a neighborhood of
the ones considered here, it is also the case that (40) fails to hold.

The matrix in the relaxed program where we omit (39) is:

A3 =


(
p32
p22
− p31

p21

) (
p31
p21
− p33

p23

) (
p33
p23
− p32

p22

)
p2

3 p2
2 p2

1

p3
3 p3

2 p3
1

 =

 −0.8333 0.5769 0.2564

0.65 0.15 0.2

0.6 0.1 0.3

 ,
which has inverse

(A3)−1 =

 −0.3545 2.0909 −1.0909

1.0626 5.7273 −4.7273

0.3545 −6.0909 7.0909

 .
The solution of the relaxed program is then u3

u2

u1

 = (A3)−1

 0

c2

c3

 =

 1.5455

3.3636

−2.5455

 .
Again, the solution is continuous in the parameters in a neighborhood of the parameters
selected here. Substituting in the omitted IC gives:

p1
3u3+p1

2u2+p1
1u1−c1 = 0.62×1.5455+0.28×3.3636+0.1×(−2.5455)−0.75 = 0.8955 > 0.

Thus, (39) fails to hold. As before, by continuity, this is true for all parameter values
in a neighborhood of the ones chosen here.

To summarize, for all parameter values in a neighborhood of the ones chosen here,
both ICs simultaneously hold. Thus it is not true that generically only one IC binds.
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