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Shareholders would like managers to maximize the equity value of the firm. Therefore, it

seems that executive compensation contracts should pay the manager only according to the

stock price. However, real-life contracts are typically based on additional signals of perfor-

mance. For example, Bettis et al. (2018) find that 70% of large U.S. firms pay their executives

with performance-vesting equity, where the number of securities granted depends on perfor-

mance relative to a threshold. Out of these firms, 86% use at least one accounting threshold,

and so the CEO’s pay depends on more than just the stock price. Similarly, Murphy’s (2013)

survey reports that companies use a variety of financial and non-financial performance measures

when determining CEO bonuses.

The main theoretical justification for including additional performance measures is Holm-

ström’s (1979) informativeness principle. This principle states that any signal should be in-

cluded in a contract if it provides incremental information about the agent’s effort, over and

above that already conveyed in output. Incorporating such a signal allows the principal to

provide the same incentives at lower cost. While the principle has been highly influential, it

does not show how informative signals should be used. Two questions are critical for principals

to be able to incorporate signals into real-life contracts. First, which dimensions of the contract

should a signal affect? For example, with performance-vesting options, a signal could affect

either the strike price, the number of vesting options, or both. In practice, however, only the

number of options and not the strike price depend on performance. Is this practice optimal?

Second, which way should performance affect the relevant dimensions? In practice, “good”

performance measures that indicate high effort always increase the number of vesting options.

While intuitive, is this practice actually optimal?

This paper addresses these open questions in a general optimal contracting model with risk

aversion and continuous effort. We study how a contract based on output (such as the stock

price) should be modified when the principal also has access to an additional signal (such as

accounting performance). In order to have practical implications for real-life contracts, we

extend the original Holmström (1979) model to incorporate limited liability, which applies

to almost all compensation contracts – the payment made to a manager cannot be negative.

Explicitly modelling this restriction is needed, otherwise the model might indicate that a signal

should affect the contract for outputs where limited liability binds, and so the contract cannot

actually respond to the signal.

In the most general model, where the only assumption on the output distribution is the

monotone likelihood ratio property, the optimal contract involves a threshold output level.

The manager receives zero for outputs below the threshold and a strictly positive amount

above it. This amount is increasing in output but will be typically nonlinear. Indeed, many
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real-life contracts involve a threshold, such as performance-vesting stock or options, bonuses,

or dismissal contracts where the agent is fired if output falls below a certain level. This is

a generalization of Innes (1990) who showed that, with risk neutrality, limited liability, and

a monotonicity constraint, the optimal contract pays zero below a threshold and increases

linearly above it.

We use our model to understand how the signal realization optimally affects the threshold.

It may seem intuitive that signals that indicate managerial effort – such as high accounting

performance – should reduce the threshold and thus increase the payment (the “individual

informativeness effect”). However, this is not necessarily the case because the signal also has

a second effect. Not only may a signal itself indicate high or low effort, but it can also affect

the information the principal infers about effort from the output level (the “output inference

effect”).

To analyze the output inference effect in more detail, we assume that the output distribution

has both a location parameter (such as the mean of the distribution) and also a scale parameter

(such as the volatility). Many standard output distributions have both parameters, such as

the normal, skew-normal, logistic, Cauchy, and uniform distributions. Doing so allows us to

model the signal realization as affecting these parameters, and thus study how the threshold

varies with these parameters. We can now decompose the output inference effect into two

components. The first is the “location effect” – the signal indicates that the location of the

output distribution has shifted, i.e. that the entire distribution has moved to the left or to

the right. For example, consider the contract for the manager of an industry incumbent, and

let the signal be the number of competitors in that industry. A low number of competitors

is individually a good signal of effort, because it indicates that the incumbent has developed

good products that have driven out competition or deterred entry. However, this consideration

may be outweighed by the location effect – more competitors cause a leftward shift in the

distribution of the firm’s output, and so a given output is a more positive signal of effort.

The second component of output inference is the “precision effect”. The signal also indicates

how precise output is as a measure of effort. This precision, in turn, depends on two parameters

– the aforementioned scale parameter, which captures the distribution’s volatility, and the

impact parameter, which captures the extent to which effort increases the distribution’s location

or mean. For example, a signal that indicates low volatility, or that effort has a high impact

on output, suggests high precision.

Unlike the location effect, where the directional impact on the threshold is unambiguous

(signals that indicate a leftward shift in the distribution decrease the threshold), signals that

indicate high precision may increase or decrease it. The direction of the effect depends on how
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high the “original” threshold was. If it is high, the manager is paid only if output is sufficiently

high to be good news about effort. If output is a precise measure of effort, even moderately

high output is a sufficiently strong indicator of effort to justify the manager being paid – the

threshold falls. In contrast, if the original output threshold is low, the agent is paid unless

output is sufficiently low to be bad news about effort. If output is a precise measure of effort,

even moderately low output is a sufficiently weak indicator of effort to justify the manager not

being paid – the threshold rises.

Overall, the precision effect leads to less extreme thresholds: low thresholds rise and high

thresholds fall. The output threshold for a given signal realization in turn depends on the

exogenous parameters of the model. Moreover, contrary to intuition, we also show that the

impact and scale parameters do not always have the opposite effect on the threshold.

Having studied how the signal affects the threshold, we then study how it affects the slope of

the contract above the threshold. So that we can define the contract’s slope in an unambiguous

manner, we specialize the model to the case in which the optimal contract is linear above the

threshold. Doing so allows our model to have implications for performance-vesting options

where the number of options ultimately received by the manager depends on performance.

The contract is now an option; the threshold is the strike price, and the (linear) slope is the

number of vesting options. Despite its popularity, we are unaware of any theories that study

under what conditions performance-based vesting is optimal, and what performance signals

should be used. We start by deriving the first set of sufficient conditions for options to be

the optimal contract when the agent is risk-averse – log utility, normally-distributed output,

limited liability on the manager, and a sufficiently convex cost of effort.

We show that the effect of a signal on the number of vesting options depends only on the

precision effect, and not the individual informativeness or location effects. This is because

the number of vesting options determines the slope of the contract. In turn, differences in

slopes across signal realizations depend only on how precise output is as an indicator of effort.

This result suggests that the common practice of making vesting depend on signals such as

accounting and stock price performance (either for the firm in question or peer firms) may

be suboptimal. Such signals are informative about either the manager’s effort and/or the

location of the output distribution but are unlikely to affect output precision. Thus, they

should optimally affect the overall level of pay, not the sensitivity of pay to performance, and

change the strike price rather than the number of vesting options.

In practice, option strike prices are sometimes reset, although on a discretionary basis

rather than the resetting being specified in the contract. Such resetting typically involves

a lowering of the strike price, and follows poor stock price performance (Brenner, Sundaram,
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and Yermack (2000)). Acharya, John, and Sundaram (2000) theoretically justify such practices

based on the need to restore future effort incentives when options fall out of the money. Our

paper shows that contractual repricing of stock options can be optimal to reward or punish past

effort. Unlike the number of vesting options, which depends only on the precision effect, the

strike price depends also on the individual informativeness and location effects. The location

effect means that it may sometimes be optimal to lower the strike price upon a signal that

individually conveys bad news about effort (such as a high number of competitors), contrary

to conventional wisdom that such repricing necessarily results from rent extraction.

This paper is related to the theoretical literature on pay-for-performance, surveyed by

Holmström (2017). A number of papers extend the original Holmström (1979) informativeness

principle and thus study whether, but not how, signals should be incorporated into optimal con-

tracts. Examples include Townsend (1979), Gjesdal (1982), Gale and Hellwig (1985), Amershi

and Hughes (1989), Allen and Gale (1992), Kim (1995), and Chaigneau, Edmans, and Got-

tlieb (2019). Similarly, the applied literature on pay-for-performance studies questions such as

whether agents should be paid for luck – i.e. whether signals of peer performance should affect

the contract – such as Oyer (2004), Axelson and Baliga (2009), Gopalan, Milbourn, and Song

(2010), Hoffmann and Pfeil (2010), and Hartman-Glaser and Hébert (2020)1 – rather than how

signals in general (not just signals of peer performance) should affect contracts.

More closely related is Marinovic and Varas (2019), who show that, if the manager can

manipulate output, performance-based vesting is always optimal to deter such manipulation.

We show that, even if the manager is unable to manipulate output, performance-based vesting

is optimal if the signal affects the precision of output as an effort measure, but not if the signal is

informative only along other dimensions. Many common performance signals should affect the

strike price rather than the number of vesting options. Also related is Chaigneau, Edmans, and

Gottlieb (2018), who study how volatility (although not individual informativeness, location,

or impact) affects the optimal contract. In their setting, there are no additional signals and the

contract is written after volatility is realized, so volatility affects the contract that is offered. In

contrast, we study how incentives are allocated across signal realizations – i.e. states of nature –

that are associated with different volatility. The contract is written before volatility is realized

and the contract is contingent on the signal realization, as is the case for performance-vesting

equity.

1Dittmann, Maug, and Spalt (2013) calibrate the cost savings from incorporating peer performance in
executive contracts, and Johnson and Tian (2000) compare the incentives provided by indexed and non-indexed
options.
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1 The Model

1.1 Setup

There are two parties, a principal (firm), and an agent (manager). The manager exerts

an unobservable effort level e ∈ [0, ē] and is protected by limited liability. Effort entails any

action that improves output but is costly to the manager, such as working rather than shirking,

choosing projects that generate cash flows rather than private benefits, or not extracting rents.

The manager’s cost of effort C(·) is strictly increasing, strictly convex, twice continuously

differentiable in [0, ē), with C ′(0) = 0 and lime↗ēC
′(e) = +∞. His utility over money u(·) is

strictly increasing, weakly concave, and twice differentiable. The manager has outside wealth

W̄ > 0 and reservation utility u.

Effort affects the probability distribution of output q and a signal s, which are both observ-

able and contractible. Output is continuously distributed with full support on (q,+∞), where

q is either −∞ or 0. To ensure that an optimal contract exists, we assume that the signal is

discrete, s ∈ {s1, ..., sS}. Note that the signal can have one or multiple dimensions.

The signal is distributed according to the probability mass function φse := Pr (s̃ = s|ẽ = e),

which is strictly positive and twice continuously differentiable in e. Output is distributed

according to the cumulative distribution function F (q|e, s), which is twice continuously differ-

entiable in q and e and has a strictly positive density f(q|e, s). The joint distribution of output

and the signal is f (q, s|e) := φsef (q|e, s). The likelihood ratio is defined as:

LRs(q|e) :=
∂f
∂e

(q, s|e)
f(q, s|e)

=
∂φse/∂e

φse
+

∂f
∂e

(q|e, s)
f(q|e, s)

, (1)

which we assume to be strictly increasing in output q (“MLRP”). We call ∂φse/∂e
φse

the likelihood

ratio of the signal, and
∂f
∂e

(q|e,s)
f(q|e,s) the likelihood ratio of output (conditional on the signal). For

simplicity, for all s we assume that limq↗+∞ LRs(q|e) = ∞, and limq↘−∞ LRs(q|e) = −∞
when the support is unbounded below.2

The firm has full bargaining power and offers the manager a schedule of payments {ws (q)}
conditional on each realization of (q, s). It maximizes expected output q minus the expected

payment. We follow Grossman and Hart (1983) and separate the principal’s problem into two

stages. The first stage determines the cost of implementing each effort. Given this cost, the

second stage determines which effort to implement.

2This assumption simplifies expressions by ruling out corner solutions, but is not important for any of our
results.
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The optimal schedule of payments {ws (q)} that implements effort ê solves:

min
{ws(q)}

∑
s

φsê

∫ +∞

q

ws (q) f(q|ê, s)dq (2)

subject to
∑
s

φsê

∫ +∞

q

u
(
W̄ + ws (q)

)
f(q|ê, s)dq − C(ê) ≥ u, (3)

ê ∈ arg max
e

∑
s

φse

∫ +∞

q

u
(
W̄ + ws (q)

)
f(q|e, s)dq − C(e), (4)

ws (q) ≥ 0 ∀q, s. (5)

The firm minimizes the expected payment (2) subject to the manager’s individual ratio-

nality (“IR”) (3), incentive compatibility (“IC”) (4), and limited liability constraints (“LL”)

(5). We say that the manager has “worked” if he exerts effort ê. Otherwise, we say that he

has “shirked”.

1.2 The Optimal Contract

The first-order approach (“FOA”) simplifies the analysis of moral hazard models with a

continuum of efforts by allowing a continuum of incentive constraints (equation (4)) to be

replaced by the local incentive constraint that prevents local deviations.3 Appendix B explains

how standard conditions used to justify the FOA with commonly-used output distributions

cannot be used in models with limited liability, and derives a new sufficient condition for the

validity of the FOA under limited liability. Henceforth, we assume that this condition holds;

we also consider contracts that implement ê > 0 (and thus the IC binds); if the principal wishes

to implement ê = 0, she trivially offers a flat wage. Let λ ≥ 0 and µ > 0 denote the Lagrange

multipliers associated with the IR (3) and IC (4), respectively. The optimal contract is given

by Lemma 1 below.

Lemma 1 (Optimal contract): Suppose the FOA is valid. The optimal contract to implement

ê > 0 satisfies:

ws (q) =

 u′−1
(

1
/(

λ+ µ
[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê,s)
f(q|ê,s)

]))
− W̄ if λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê,s)
f(q|ê,s)

]
≥ 1

u′(W̄ )

0 if λ+ µ
[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê,s)
f(q|ê,s)

]
< 1

u′(W̄ )

.

(6)

3See Chaigneau, Edmans, and Gottlieb (2019) for the informativeness principle without the FOA.
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Note that the IR may not bind in the optimal contract, in which case we have λ = 0. Due

to MLRP, the payment is increasing in the likelihood ratio, but cannot fall below zero due to

limited liability. Thus, the manager is only paid when the likelihood ratio exceeds a cutoff.

For each signal realization s, this cutoff for the likelihood ratio is associated with a threshold

output q∗s .
4 If output exceeds the threshold, it is sufficiently likely that the manager has

worked that the firm pays him a strictly positive amount. Again due to MLRP, the payment

is monotonically increasing in output, but it will typically be nonlinear.

Since the signal realization cannot affect the contract below the threshold, it can affect the

contract in two ways: it can affect the threshold, and it can affect the slope of the contract

above the threshold. Section 2 now analyzes these two channels in turn.

2 How Performance Signals Affect Contracts

2.1 Performance Signals and the Threshold

This section studies how the signal realization affects the threshold. Recall from equation

(1) that the likelihood ratio can be decomposed into two components: the likelihood ratio of

the signal (
∂φsê/∂e

φsê
) and the likelihood ratio of output (

∂f
∂e

(q|ê,s)
f(q|ê,s) ). A signal can therefore affect the

likelihood ratio, and thus the threshold, in two ways. First, it can be individually informative

about effort (through the likelihood ratio of the signal) – the “individual informativeness effect”.

Second, it can affect the information the principal infers about effort from output (through

the likelihood ratio of output) – the “output inference effect”. For example, even if effort does

not affect economic conditions, and so economic conditions are uninformative about effort,

economic conditions will affect the likelihood ratio if they affect the information output provides

about effort – e.g., if a given output level is more indicative of effort in recessions than booms.

To further analyze these effects, we now parametrize the output distribution. This allows us

to model the signal realization as affecting the distribution’s parameters, and thus study how

the threshold varies with these parameters. Specifically, we consider output distributions in

the location-scale family. Such distributions have a scale parameter σs which can be interpreted

as the distribution’s volatility, and a location parameter hs which gives the “location” of the

distribution – for example, for the normal distribution, the location parameter is its mean. We

assume that the location parameter depends on effort, where h′s(e) > 0 for all e (higher effort

shifts the distribution rightward). Thus, there exists a function g(·) such that we can rewrite

4This threshold may be zero if output has support on [0,∞).
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the density as:

f(q|e, s) ≡ 1

σs
g

(
q − hs(e)

σs

)
. (7)

Without loss of generality, let hs(e) = ξs + ζsΥ(e) and normalize Υ(ê) = 0 and Υ′(ê) = 1, so

that hs(ê) = ξs and h′s(ê) = ζs > 0. We refer to ξs as the equilibrium location parameter and

ζs as the impact parameter; the latter captures the effect of effort on output. Using equation

(7), the likelihood ratio of output can be rewritten:

∂f
∂e

(q|ê, s)
f(q|ê, s)

= − ζs
σs

g′
(
q−ξs
σs

)
g
(
q−ξs
σs

) . (8)

We assume that the likelihood ratio of output in equation (8) is continuously differentiable

in q, σs, ξs, and ζs. An output distribution with location and scale parameters that satisfies

MLRP has a single peak (see the proof of Proposition 1), which we denote by qPs . As can be

seen in equation (8), the likelihood ratio of output is zero at the peak.5

Proposition 1 studies how the signal realization affects the threshold q∗s above which the

manager gets paid. It holds “all else equal across signals” – we are comparing the threshold

under two different signal realizations si and sj that differ along only one dimension (e.g. the

impact parameter ζs); all other dimensions are constant. Note that we are not undertaking

comparative statics (e.g. changing ζs across all signals) that would change the contracting

environment.

Proposition 1 (Effect of signal on threshold): All else equal across signals:

(i) If
∂φ

si
ê /∂e

φ
si
ê

>
∂φ

sj
ê /∂e

φ
sj
ê

, then q∗si ≤ q∗sj . Higher individual informativeness decreases the

threshold.

(ii) If ξsi > ξsj , then q∗si ≥ q∗sj . Higher equilibrium location parameter increases the threshold.

(iii) If ζsi > ζsj and q∗s > qPs (q∗s < qPs ) for s ∈ {si, sj}, then q∗si ≤ q∗sj (q∗si ≥ q∗sj). A higher

impact parameter decreases the threshold if thresholds are above the peak, and increases

the threshold if they are below the peak.

(iv) If σsi > σsj and q∗s < min
{
qPs , ξs

}
(q∗s > max

{
qPs , ξs

}
) for s ∈ {si, sj}, then q∗si ≤ q∗sj

(q∗si ≥ q∗sj). For symmetric distributions, we have qPs = ξs, so the conditions simplify to

5At the peak of the distribution, we have f ′(q|ê, s) = 0. From equations (7) and (8), this is where the
likelihood ratio is zero; by MLRP, this point is unique.
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q∗s < (>)qPs . A higher scale parameter decreases the threshold if thresholds are below the

peak, and increases the threshold if they are above the peak.

Part (i) is the individual informativeness effect. If
∂φ

si
ê /∂e

φ
si
ê

>
∂φ

sj
ê /∂e

φ
sj
ê

, then signal realization

si is individually more indicative of high effort than sj. Thus, the threshold should be lower

under si than sj. This is the intuitive effect mentioned previously – if the signal is individually

good news about effort, a lower minimum output is required for the manager to be paid. For

example, signal s could be accounting profits, with si representing higher profits than sj. High

profits indicate high effort and thus increase the payment.

The output inference effect is given by parts (ii)-(iv) and can be decomposed into two

components. The first is the “location effect” and captured by part (ii). If sj is associated

with a lower equilibrium location parameter ξsj than si, then it indicates that the output

distribution has shifted to the left. Due to MLRP, this shift means that achieving any given

output level is more indicative of working than shirking. Thus, a lower minimum output is

required for the manager to be paid. For example, let s be industry performance where sj

represents a downturn and si an upswing. If achieving an output level is more indicative of

effort in a downturn, the threshold should be lower – the intuition behind relative performance

evaluation.

The second component of output inference is the “precision effect”. This effect is driven by

two parameters of the output distribution: the impact parameter ζs (captured by part (iii))

and the scale parameter σs (captured by part (iv)). While relative performance evaluation

would suggest that individually uninformative signals only have value if they shift the output

distribution (i.e. have a location effect), the precision effect means that, surprisingly, a signal

can affect the contract even if it is neither individually informative nor shifts the output

distribution. However, unlike the location effect, where the impact of ξs is independent of the

level of the thresholds, the precision effect depends critically on the thresholds.

The intuition is as follows. Low σs and high ζs mean that output is driven more by effort

than luck. Thus, they are good news about effort when combined with high output, as they

indicate that this high output is likely due to high effort rather than good luck. In contrast,

they are bad news when combined with low output, as they indicate that this low output is

likely due to low effort rather than bad luck. This contrasts the location effect, where a signal

associated with a low equilibrium location parameter ξs is unambiguously good news about

effort.

When the output threshold is high across signal realizations, the manager is paid only if

output is sufficiently high to be good news about effort. When output is driven more by effort

10

Electronic copy available at: https://ssrn.com/abstract=2488144



than luck, even moderately high output is sufficiently good news about effort to warrant the

manager being paid – the threshold falls. Put differently, when the threshold is high, only

high output levels are relevant. It does not matter that a low output level is less indicative

of effort since, due to the high threshold, the manager receives zero anyway. When the output

threshold is low across signal realizations, the manager is paid unless output is sufficiently low

to be bad news about effort. When output is driven more by effort than luck, even moderately

low output is sufficiently bad news about effort to warrant the manager not being paid – the

threshold rises. The output thresholds in turn depends on the exogenous parameters of the

model. For example, Appendix C shows that, if the participation constraint is non-binding

and so the only goal of the contract is to provide incentives, an increase in the marginal cost

of effort lowers the thresholds.

Another way to understand the precision effect is as follows. Concentrating incentives in

states where output is driven more by effort than luck can yield the same overall incentives at

a lower cost. Thus, the principal should provide more incentives in states where output is more

precise. Whether “more incentives” corresponds to a higher or lower threshold depends on how

high the threshold is to begin with. When the threshold is high, even if the manager works and

achieves moderately good performance, he will not be paid; thus, reducing the threshold allows

moderately good performance to be rewarded and thus increases incentives. However, if the

threshold is low to begin with, the manager is paid even upon moderately poor performance.

Raising the threshold means that moderately poor performance is no longer rewarded and

thus increases incentives. In turn, increasing incentives in this state allows to lower incentives

in other states when output is a less precise signal of effort, which either better insures the

manager (lowering the cost of the contract if the IR binds) or diminishes his agency rent (if

the IR does not bind).

Corollary 1 applies result (iv) of Proposition 1 to the case of a skew-normal output distri-

bution and a non-binding participation constraint, to demonstrate how skewness affects the

impact of the scale parameter on the threshold. In addition to location and scale parame-

ters, the skew-normal distribution also has a “shape” parameter, which measures its skewness.

Where the shape parameter is zero, the skew-normal distribution becomes a normal distribu-

tion.

Corollary 1 Let the agent have a low reservation utility, u ≤ u
(
W̄
)
− C(ê), so that the

participation constraint is non-binding, and suppose that the output distribution is skew-normal.

For a given signal s, the threshold q∗s is increasing in the scale parameter if the signal is weakly

bad news about effort (
∂φsê
∂e
≤ 0) and the output distribution has nonnegative skewness.

11

Electronic copy available at: https://ssrn.com/abstract=2488144



Intuitively, when the only purpose of the contract is to provide incentives, the manager is

paid only if q and s are sufficiently good news about effort. When the signal s is (weakly) bad

news, the likelihood ratio of output must be positive at the threshold q∗s , to offset the bad news

of the signal s. Since the likelihood ratio of output is zero at the peak, the threshold exceeds

the peak due to MLRP. Moreover, for positively-skewed skew-normal distributions, the peak

is above the location parameter so that q∗s > max
{
qPs , ξs

}
. Then, point (iv) of Proposition 1

implies that the threshold is higher for signals with a higher scale parameter.

Summing up the results of this section, a signal can affect the threshold even if it is not

individually informative about effort. If the signal suggests that the entire output distribution

has improved for reasons other than managerial effort, such as good industry performance, then

all output levels are less indicative of effort and so the threshold rises. If the signal indicates

that output is a more precise measure of effort, such as low industry volatility, then thresholds

generally become less extreme – a previously high (low) threshold becomes lower (higher).

Before closing, we discuss three technical but important points. The first is to reiterate that

none of the results in Proposition 1 are comparative statics, i.e. we are not changing underlying

parameters such as the individual informativeness of the signal
∂φsê/∂e

φsê
or its location ξs. Such

changes will, in general, change the Lagrange multipliers associated with the optimization

program in equations (2)-(5) and thus have an ambiguous effect on the contract. Instead, our

results are unique to an analysis of how the contract depends on the signal realization. We

are holding constant the contracting setting, and showing how the contract depends on signal

realizations that are associated with different parameters.

This difference contrasts our analysis with Chaigneau, Edmans, and Gottlieb (2018), who

study how the optimal contract is affected by volatility, but not impact, location, or individual

informativeness. Moreover, their volatility analysis is quite different. In their setting, there

are no additional signals and the contract is written after volatility is realized, so volatility

affects the contract that is offered. They show that a change in volatility ex ante affects

the contract by altering the manager’s incentives. In contrast, we study how incentives are

allocated across signals – i.e. states of nature – that are associated with different output

volatility. What matters instead is how the volatility associated with a given signal affects

output informativeness. The contract is written before volatility (and other variables affected

by the signal) is realized, and the contract is contingent on the signal – as is the case for

performance-vesting equity.

Second, Proposition 1 contains “ceteris paribus” results where signal realizations si and sj

vary along only one dimension. For example, part (ii) shuts down the individual informativeness

effect, considering signal realizations that affect the location parameter ξs but not individual
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informativeness
∂φsê/∂e

φsê
. In reality, signal realizations may differ on multiple dimensions, and the

location effect may counteract the individual informativeness effect. If industry performance is

increasing in effort – for example, the manager’s effort improves consumers’ perception of the

entire sector – then, one might think that high industry performance should be associated with

a lower threshold, as it individually indicates high effort. However, this may be outweighed by

the location effect: achieving a certain output is easier in an upswing. Thus, the threshold may

be higher in an industry upswing, but Proposition 1 does not allow us to study this question

analytically. Section 2.2 imposes more structure on the output distribution and allows us to

analytically compare thresholds when signals differ across more than one dimension.

Third, even though the intuition behind the precision effect suggests that the effects of

the impact and scale parameters should be in opposite directions, this is not always the case.

For the impact parameter, what determines whether a threshold is “high” or “low” is how

it compares with the peak of the distribution. A higher impact parameter corresponds to a

steeper likelihood ratio of output: the ratio is more positive above the peak and more negative

below the peak; at the peak it is zero and thus unaffected by the impact parameter.6 Figure 1

illustrates. The solid line corresponds to ζsj = 1 and the dotted line to ζsi = 2. The left-hand

side considers a positive cutoff for the likelihood ratio of output. Thus, the initial threshold q∗sj
is above the peak qPs , which is where the ratio is zero and the lines cross the x-axis. A higher

impact parameter means that the new likelihood ratio of output at the initial threshold is even

more positive, and so it equals the cutoff at a lower output level – thus the new threshold

q∗si is lower. The right-hand side considers a negative cutoff, where the initial threshold q∗sj
is below the peak. A higher impact parameter corresponds to a lower likelihood ratio at q∗sj ,

and so the likelihood ratio equals the cutoff at a higher output level – thus the new threshold

q∗si is higher. (We abuse language slightly by referring to “initial” and “new” parameters even

though we are not conducting comparative statics but comparing parameters under different

signal realizations.)

While the impact parameter changes the effect of effort on the output distribution, by

construction it does not change the equilibrium output distribution. Recall that hs(ê) = ξs:

the location of the distribution is independent of ζs at the equilibrium effort level. Thus, the

effect of the impact parameter depends on the threshold compared only with the distribution’s

peak, not its location.

In contrast, the scale parameter does change the equilibrium output distribution, spreading

it out around the equilibrium location parameter – low output below the equilibrium location

6Recall that the likelihood ratio of output is given by equation (8). By definition, the (single) peak is such
that g′ = 0, and MLRP ensures that g′ < (>)0 below (above) the peak.
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Figure 1: In both figures, the solid line is the likelihood ratio of output for a skew-normal
distribution where location, scale, and impact parameters are all 1 and the shape parameter is
2. The peak of the distribution is qPs ≈ 1.531. The dotted line is the likelihood ratio of output
of the same distribution but with impact parameter 2.

parameter is a less negative signal of effort and high output is a less positive signal of effort.

As a result, the effect of the scale parameter depends on two factors – the threshold compared

to both the peak qPs and the equilibrium location parameter ξs as shown in part (iv). For

symmetric distributions, the peak and location are the same, but for asymmetric distributions

they are different. If the threshold is above (below) both the peak and location, a lower scale

parameter corresponds to a higher (lower) likelihood ratio at the threshold. However, if the

threshold is between these two points, the threshold could rise or fall. As a result, the scale

parameter does not always have an opposite effect on the threshold to the impact parameter.

2.2 Option Repricing and Performance-Vesting

While Section 2.1 studied how a signal realization affects the threshold, we now study how

it affects the slope of the contract above the threshold. So that the contract’s slope can be

defined in an unambiguous manner, we specialize the model to the case in which the optimal

contract is linear above the threshold. As well as being theoretically clearer, this case is also

practically applicable as many real-life contracts are piecewise linear. Indeed, if q is the stock

price, the optimal contract is an option, and the slope above the threshold refers to the number

of vesting options. Then, the model provides guidance on performance-based vesting – how
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the number of vesting options should depend on the performance measure s. Appendix D

generalizes the analysis of the contract slope to the case of nonlinear contracts.

We first derive sufficient conditions under which the optimal contract is an option. Lemma

2 shows this is the case under the standard assumptions of log utility, normally-distributed

output and limited liability. Formally, conditional on the signal s, let output q be normally

distributed with mean hs(e) and standard deviation σs. The manager has log utility, u (w) =

lnw. Supplementary Appendix G provides a sufficient condition for the validity of the FOA

under these assumptions7 (the condition in Appendix B cannot be applied since log utility is

unbounded).

From equation (1), the likelihood ratio under normal output is given by:

LRs(q) :=
∂f
∂e

(q, s|ê)
f(q, s|ê)

=
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

=
∂φsê/∂e

φsê
+

1
σ
√

2π

2h′s(ê)(q−hs(ê))
2σ2 exp

[
− (q−hs(ê))2

2σ2

]
1

σ
√

2π
exp

[
− (q−hs(ê))2

2σ2

]
=

∂φsê/∂e

φsê
+
ζs
σ2
s

(q − ξs) . (9)

The
∂φsê/∂e

φsê
term is the standard individual informativeness effect. In general, the output

inference effect
∂f
∂e

(q|ê,s)
f(q|ê,s) comprises the precision and location effects; under the normal distri-

bution (or any distribution with a linear likelihood ratio),
∂f
∂e

(q|ê,s)
f(q|ê,s) can be cleanly decomposed

into these two effects, allowing us to see the parameters that drive them. The precision effect

is given by the first component of the second term, ζs
σ2
s
. The signal s increases the precision of

output as a measure of effort through increasing the impact of effort on output ζs or reducing

the volatility of output σs. Here, since the normal distribution is symmetric, these parameters

do always have opposite effects. The location effect is given by the final component, ξs. The

signal affects expected output ξs and thus changes the location of the output distribution.

Lemma 2 below shows that the optimal contract gives the manager n∗s options with strike

price q∗s .

Lemma 2 (Optimal contract, log utility and normal output): The optimal contract under log

7The condition for the validity of the FOA in the case without an additional signal is remarkably simple: it
is C ′′(e) ≥ ē

σ2 for all e ∈ [0, ē]. For example, with a quadratic effort cost, C(e) = αe+ β
2 e

2, and the condition
is β ≥ ē

σ2 .
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utility and normally-distributed output consists of n∗s ≥ 0 options with a strike price of q∗s :

w (q) = n∗s max{q − q∗s , 0}. (10)

Given limited liability, the minimum payment is zero; given MLRP, this minimum payment

will be made for all outputs below a threshold. Above the threshold, the payment is positive

and determined so that the manager’s marginal utility is the inverse of a linear transformation

of the likelihood ratio (see Lemma 1). With log utility, marginal utility is the inverse of the

payment, and so the payment equals a linear transformation of the likelihood ratio. With

normally-distributed output, the likelihood ratio is linear in output, and so the payment is

linear in output. Overall, the payment is zero below a threshold and linear in output above

the threshold. This corresponds to an option contract, where the strike price is the threshold.

To our knowledge, Lemma 2 and our condition for the validity of the FOA in this setting

provide the first sufficient conditions for the optimality of options with a risk-averse manager.8

More generally, the linearity of the contract above the threshold, and thus the optimality of

the option contract, holds not only for the normal distribution but for any distribution that

has a linear likelihood ratio (for example, the gamma distribution).

Having derived the optimal contract in closed form, Proposition 2 studies how the signal

affects each dimension of the contract.

Proposition 2 (Effect of signal on vesting and strike price):

(i) The number of options received ex post by the manager n∗s is proportional to ζs
σ2
s
.

(ii) The strike price q∗s is given by:

q∗s = ξs +
σ2
s

ζs

(
K − ∂φsê/∂e

φsê

)
, (11)

where K ≡ W̄−λ
µ

.

8Jewitt, Kadan, and Swinkels (2008) show that the contract is “option-like” with risk aversion and agent
limited liability, in that incentives are zero for low output and positive for high output, but do not identify
conditions under which the increasing portion of the contract is linear. Hemmer, Kim, and Verrecchia (1999)
identify a linear likelihood ratio and log utility as leading to the contract having a linear portion, but do not
combine them with limited liability to obtain an option contract. In addition, Jewitt, Kadan, and Swinkels
(2008) assume the Rogerson (1985) conditions to guarantee the validity of the FOA, but these conditions do not
hold under the normal distribution; Hemmer, Kim, and Verrecchia (1999) assume the Jewitt (1988) conditions
but they do not hold under limited liability. We derive a general condition for the validity of the FOA that holds
in the setting of limited liability, normal output and log utility. The standard model justifying options under
moral hazard is Innes (1990), which requires the agent to be risk-neutral. In addition, under risk neutrality, the
manager is the residual claimant for q ≥ q∗, so that the number of options is fixed at 1 and does not depend
on the signal realization. Under risk aversion, this need not be the case.
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The intuition for the number of options is as follows. As in any principal-agent model,

pay is increasing in the likelihood ratio. The number of options represents pay-performance

sensitivity, and is thus increasing in the sensitivity of the likelihood ratio to output, dLRs(q)
dq

=
ζs
σ2
s
. As is standard, the strike price is the level of output that, if not reached, it is sufficiently

likely that the agent shirked that it is optimal to pay him zero. In this setting, the strike price

can be derived in closed form.

Note that Proposition 2 is different from Proposition 1 – part (ii) is not simply Proposition

1 applied to the case of log utility and normally-distributed output. Proposition 1 compared

signal realizations that differ only across a single dimension, e.g. either the impact parameter

ζs or the scale parameter σs, but not both. Moving to this setting allows Proposition 2 to

compare contracts analytically when signals differ across multiple dimensions. For example,

part (i) allows signal realizations to differ in both ζs and σs. In an economic expansion, not

only might effort have a greater effect on output ζs (e.g. if effort has a multiplicative effect on

firm value), but also volatility σs might be higher or lower. The ability to compare contracts

when signals differ across multiple dimensions will be important for the applications later in

this section.9

We now discuss the two parts of Proposition 2 in turn.

2.2.1 Performance-based vesting

Part (i) of Proposition 2 studies how a signal realization affects the number of options given

to the manager. A signal has value if it affects any component of the likelihood ratio in equation

(9):
∂φsê/∂e

φsê
(the individual informativeness effect), ζs

σ2
s

(the precision effect), or ξs (the location

effect). The existence of such a signal will, in general, alter the Lagrange multiplier µ and

thus scale up or down the number of options n∗s = µ ζs
σ2
s

received across all signal realizations.

However, part (i) shows that the number of options received will depend on the actual signal

realization only via the precision effect and not via the location or individual informativeness

effects.

The intuition is as follows. The number of vesting options represents pay-performance

9While we allow signal realizations to differ across multiple dimensions, it is important to reiterate that we
are holding the distribution of signals fixed. Proposition 2 would not arise under a comparative statics analysis
that compares contracts under different signal distributions, where the principal observes the parameters of the
distribution before writing the contract. Here, the contract is set before the signal is observed, and the agent
does not know the signal at the time he makes his effort decision. This is what allows the principal to efficiently
concentrate incentives (by giving more options) in states of the world where output is more informative. If
the agent already knew the state when he took his effort decision, to implement ê the principal would need to
provide the same incentives in all states: see Edmans and Gabaix (2011).
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sensitivity (“PPS”). Pay should be more sensitive to performance, i.e. the number of vesting

options should be higher, upon signals where output is a more precise measure of effort. This

arises if either effort has a greater effect on output (ζs is higher) or output is less volatile (σs

is lower). Proposition 2 derives PPS in closed form and shows how it depends on the ratio of

impact ζs to (the square of) scale σs. We can thus understand precisely how PPS varies with

parameters of the output distribution under various signal realizations.

To our knowledge, part (i) is the first theoretical justification of why performance-based

vesting may be optimal in a standard moral hazard model where the agent only makes an effort

decision. The only other justification of performance-based vesting of which we are aware is

Marinovic and Varas (2019), where the agent also takes a manipulation action, and the role of

performance-based vesting is to deter manipulation. In that model, performance-based vesting

is always optimal. Given the “performance-based vesting” terminology, one might think that

it will similarly always be optimal in an effort-only model, as long as the performance measure

is informative about effort. However, this is not the case, and we provide a framework to

understand under what conditions performance-vesting is optimal.

Specifically, it might seem that a signal that is individually indicative of effort (i.e. increases
∂φsê/∂e

φsê
) should lead to more vesting; indeed, current performance-vesting practices award more

equity after beating performance thresholds. However, Proposition 2 shows that positive sig-

nals of effort should increase the level of pay for all output realizations (reduce the strike price)

rather than the sensitivity of pay to output (increase the number of vesting options). Sim-

ilarly, one might think that a signal that indicates that high output is due to luck (i.e. the

output distribution has shifted to the right) should lead to less vesting – the intuition behind

relative performance evaluation. Indeed, Bettis et al. (2018) find that 48% of firms that use

performance-based vesting have at least one performance measure that is calculated relative

to peers. However, Proposition 2 shows that the equilibrium location parameter ξs (which is

affected by peer performance) changes the strike price, not the number of vesting options. In

sum, vesting should not depend on signals that do not affect output precision.

2.2.2 Strike price

Part (ii) of Proposition 2 turns to the second dimension of the contract, the strike price.

Unlike the number of vesting options, which depends only on the precision effect, the strike

price is driven by all three effects. The intuition is as follows. The individual informativeness

effect matters because it captures what a signal individually conveys about effort, regardless

of the output realization. The strike price affects the payment for all outputs above the strike
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price. Thus, what the signal individually conveys about effort affects the strike price – signals

that are more indicative of effort are associated with lower strike prices. The location effect

matters for a similar reason – if the signal indicates that the output distribution has shifted to

the left, a given output is more indicative of effort, and so the strike price should be lower.

As in Section 2.1, the precision effect can be either positive or negative. Equation (11)

shows that the effect of precision ζs
σ2
s

on the strike price q∗s depends on K ≶ ∂φsê/∂e

φsê
, which is

equivalent to q∗s ≶ ξs. If q∗s > ξs, i.e. strike prices are high across signal realizations, the

manager is only paid if output is high. If output is a more precise signal of effort ( ζs
σ2
s

is higher),

even moderately high outputs are positive signals of effort – the strike price falls. One case

in which K >
∂φsê/∂e

φsê
(and thus q∗s > ξs) is when the manager is above his reservation utility

(λ = 0 yields K ≡ W̄−λ
µ

> 0) and the signal is individually uninformative (
∂φsê/∂e

φsê
= 0). If

q∗s < ξs, i.e. strike prices are low across signal realizations, then greater precision ζs
σ2
s

increases

the strike price due to the converse argument. In both cases, greater output precision leads to

the strike price being closer to the mean of the stock price distribution.

Note that equation (11) shows that the individual informativeness effect is scaled by the

inverse of signal precision, σ2
s

ζs
, and so the individual informativeness effect interacts with the

precision effect. The intuition is as follows. A signal that is individually bad news about effort

leads to a higher strike price. If output is an imprecise measure of effort, then the strike price

needs to be raised a lot, otherwise it would likely be exceeded purely by luck.

Since the strike price is driven by the location and precision effects, as well as the individual

informativeness effect, it may be lower even if the signal individually indicates low effort.

Consider two signal realizations, L and H, such that
∂φLê /∂e

φLê
<

∂φHê /∂e

φHê
: L is individually worse

news about effort than H. Despite this, the strike price may be lower under L (q∗L < q∗H). This

can happen for two reasons. Consider the following simple cases.

One case is ξL < ξH and ζL
σ2
L

= ζH
σ2
H

, so the signal has a location effect but not a precision

effect. Here, any given output q is better news about effort under L than H, since
∂f
∂e

(q|ê,L)

f(q|ê,L)
>

∂f
∂e

(q|ê,H)

f(q|ê,H)
for any q. Equation (11) shows that the strike price is optimally lower under L if

the location effect (the difference between ξL and ξH) outweighs the individual informativeness

effect (the difference between
∂φLê /∂e

φLê
and

∂φHê /∂e

φHê
). For example, let s be the number of industry

competitors. Few competitors (s = H) are individually a better signal of effort than many

competitors (s = L), because they suggest that the manager has driven out competition or

deterred entry. This consideration may be outweighed by a second effect – a given level of

output is a more positive signal of effort the more competitors there are, since competition

causes a downward shift in the location of the output distribution. Equation (11) shows that
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the strike price may optimally be lower when there are more competitors, despite s = L

individually indicating low effort, as this consideration may be outweighed by the location

effect.

A second case is ζH
σ2
H
< ζL

σ2
L

, ξH = ξL = ξ, so the signal has a precision effect but not a

location effect. Since ζH
σ2
H
< ζL

σ2
L

, output q is more informative about effort under L than H

which means that q∗L should be closer than q∗H to ξ, ceteris paribus. Since
∂φLê /∂e

φLê
<

∂φHê /∂e

φHê
, the

individual informativeness effect means that q∗L > q∗H , ceteris paribus. Thus, if both q∗L and

q∗H are below ξ, the precision and individual informativeness effects work in the same direction

and so we unambiguously have q∗L > q∗H . We thus focus on the interesting case where both q∗L
and q∗H are above ξ. We have q∗L < q∗H if the precision effect (the difference between ζH

σ2
H

and ζL
σ2
L

)

is sufficiently large to outweigh the individual informativeness effect (the difference between
∂φHê /∂e

φHê
and

∂φLê /∂e

φLê
).

For example, let s = H be high volatility (e.g. of the stock price, cash flow, or profit) and

s = L be low volatility. If the manager’s effort involves finding and pursuing risky investment

opportunities, then s = L is individually bad news about effort. In addition, it also means

that output is a precise measure of managerial effort. Thus, high output combined with low

volatility can indicate effort more than high output combined with high volatility. Even though

low volatility individually indicates low effort, in combination with high output it indicates high

effort, and so can be associated with a lower strike price (q∗L < q∗H).

Summing up the results of these two sub-sections, a signal realization should be associated

with more vesting options if it is associated with a higher optimal sensitivity of pay to output,

due to output being a more precise measure of effort. It should be associated with a lower

strike price if it increases the optimal level of pay. This will be the case if the signal indicates

high effort, that the location of the equilibrium output distribution has shifted to the left, that

output precision has increased and strike prices are high, or that precision has decreased and

strike prices are low.

2.2.3 Applications

We now apply the results of parts (i) and (ii) of Proposition 2 to three types of signal.

Economic conditions

First, let s be a signal of economic conditions. Economic conditions are outside the man-

ager’s control and thus individually uninformative about effort (
∂φsê/∂e

φsê
= 0), but may have

location and precision effects.

Economic conditions will affect vesting if and only if they affect either ζs or σs. Starting
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with the former (ζs), if good economic conditions increase the manager’s impact on output

ζs (e.g. because effort has a multiplicative effect on firm value), vesting should be increasing

in economic conditions. If instead bad economic conditions increase the manager’s impact,

e.g. if the stakes are higher in bad times, vesting should be decreasing in economic conditions.

Moving to the latter (σs), if risk σs is lower (higher) in good economic conditions, then output

is a more (less) precise signal of effort and so vesting should be higher (lower).

That vesting should depend on economic conditions suggests that it should be affected by

luck. This contrasts with current performance-vesting practices which assume that vesting

should depend on performance measures within the manager’s control – and if individually

uninformative measures are used, this is to filter out external factors that affect the location

of the output distribution (the intuition behind relative performance evaluation). However,

Proposition 2 shows that the location effect should only affect the strike price, not vesting.

Economic conditions will affect the strike price if they affect ξs, ζs, or σs. The strike price

should depend on the location effect. If the firm’s business is pro-cyclical, then good economic

conditions are associated with a high location parameter ξs, which increases the strike price.

The opposite is true if the business is counter-cyclical. In addition, the strike price should

depend on the precision effect. If good economic conditions increase output precision ζs
σ2
s

and

the manager is above his reservation utility, then the strike price is decreasing in economic

conditions. The opposite is true if good economic conditions reduce output precision.

We now present an example that illustrates the effect of economic conditions on the contract.

We consider a signal s that affects only the location and scale parameters, but not the impact

parameter, and where good economic conditions are associated with lower volatility. As a

result, the number of vesting options is higher in an expansion, because lower volatility means

greater output precision. The strike price is affected by both the location and precision effects.

On the one hand, an expansion is associated with a higher location parameter which tends to

increase the strike price. On the other hand, it is also associated with a lower scale parameter

which tends to decrease the strike price. In our example, the latter effect dominates, so the

strike price is higher in a recession – the opposite of the relative performance evaluation effect.

Example 1 Suppose that the manager has log utility, outside wealth W̄ = 2, and reservation

utility ū = 0. The cost of effort is characterized by C(ê) = 0.5 and C ′(ê) = 0.1. The signal s is

the state of the economy, which can be a recession (s̃ = sR, which occurs with probability 0.25)

or expansion (s̃ = sE). The signal is individually uninformative about effort: (
∂φsê
∂e

= 0). At

equilibrium effort ê, output is normally distributed with location and scale parameters ξsR = 10

and σsR = 1.7 in a recession, and ξsE = 11 and σsE = 1.0 in an expansion. For both signals,
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Recession Expansion

Figure 2: The payoff of the manager as a function of output in a recession (s = sR) on the left,
and in an expansion (s = sE) on the right, in Example 1.

the impact of effort on output is the same: ζs = 1.

Since ln W̄ −C(ê) ≥ ū, the participation constraint is nonbinding. We find a strike price of

q∗sR ≈ 14.27 in a recession, and q∗sE ≈ 12.48 in an expansion. Indeed, we have q∗s = ξs + σ2
s

ζs
W̄
µ

:

in a recession, a lower equilibrium location parameter ξs decreases the strike price, whereas

a higher scale parameter σs increases it. The latter effect dominates so that the strike price

is higher in a recession. Moreover, because output is a more precise measure of effort in

an expansion, the number of vesting options is higher in an expansion. The state-contingent

contract is depicted in Figure 2.

Accounting performance

Now let s be an accounting performance measure, such as profits or cash flows, which Bettis

et al. (2018) show to be common vesting determinants. The main difference with the previous

section is that, unlike economic conditions, accounting performance is individually informative

about effort. In addition, the settings in which s affects the impact and scale parameters will

be different when s is accounting performance rather than economic conditions.

There are two cases to consider, and we discuss the effects on both vesting and the strike

price together. First, suppose that the ratio ζs
σ2
s

is decreasing in profits. This may be the case

for a start-up, where the baseline scenario is low profits and a low stock price – high profits

increase stock price volatility because investors speculate over whether the high profits are

sustainable. Starting with vesting, it is decreasing in profits because they are associated with

greater volatility. (While profits also individually indicate effort, this is irrelevant for vesting.)
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Moving to the strike price, it is affected by profits in two ways. The individual informativeness

effect means that the strike price will be decreasing in profits; the precision effect can go in

either direction depending on whether strike prices are high or low. In addition to its own

effect, the precision effect also dampens the individual informativeness effect. For low profits,

output volatility is low, and therefore the strike price does not need to increase much to punish

the manager.

Second, suppose that the ratio ζs
σ2
s

is increasing in profits. This may arise due to the well-

known “leverage effect” of Black (1976) and Christie (1982), where higher profitability reduces

a firm’s leverage and thus equity volatility. It may also be true for a mature firm, where the

baseline scenario is high profits and a high stock price. High profits imply “business as usual”,

where the stock price is less volatile and thus more informative about effort. Low profits likely

mean that the business was disrupted, for example by new entrants, so the stock price is more

volatile and less informative about effort. In addition, if effort has a multiplicative effect on

firm value, the impact parameter ζs is higher in a more profitable firm. In this case, vesting is

increasing in profits. As in the first case, the strike price tends to be decreasing in profits due to

the individual informativeness effect, and the precision effect can go in either direction. Now,

the precision effect dampens the response to high profits. For high profits, output volatility is

low, and therefore the strike price does not need to decrease much to reward the manager.

In addition to depending on firm characteristics, the impact of accounting performance on

the strike price may also depend on the manager’s tenure. Accounting performance realized

early in the manager’s tenure will mostly be attributable to exogenous factors, and it will have

an effect on the stock price to the extent that it is partly unexpected. For example, announcing

unexpectedly high profits will increase the location of the stock price distribution, and therefore

the strike price. By contrast, accounting performance realized later in the manager’s tenure

will typically be informative about his effort, and the individual informativeness effect is such

that high accounting performance tends to reduce the strike price.

Sustainability performance

Finally, let s be a measure of sustainability performance, such as employee satisfaction,

customer satisfaction, or carbon emissions. Practitioners argue that sustainability measures

should be incorporated into CEO contracts; for example, this is advocated by the 2020 Euro-

pean Commission study on sustainable corporate governance. While one reason for doing so is

if the firm’s objective is broader than just shareholder value, our model suggests that it should

be incorporated even if the objective function is shareholder value alone. For example, Bettis

et al. (2018) find that the vesting of some equity grants depends on customer satisfaction,

which is often used as a sustainability metric but unlikely to be a separate objective from
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shareholder value. It may seem that the impact of sustainability is automatic because high

sustainability is individually informative about managerial effort. However, since sustainability

can also change location and precision, the effects are nuanced.

There is evidence that increases in sustainability are associated with lower stock price

volatility (Hoepner et al. 2020). If this association is not exclusively driven by a firm fixed

effect, then vesting should be increasing in sustainability, because the stock price q is more

informative about managerial effort upon high sustainable performance (higher ζs
σ2
s
). However,

vesting should only be increasing in sustainability if it affects output precision, not if it indicates

managerial effort.

In addition, sustainability performance could affect the location parameter. In the general

equilibrium model of Pastor et al. (2020), more sustainable firms have higher stock prices if

customers’ demand for sustainability is unexpectedly high. This suggests that, in this case,

higher sustainability performance should be associated with a higher location parameter ξs,

which increases the strike price. Intuitively, this avoids rewarding or punishing executives for

changes in the stock price due to unexpected changes in customer tastes.

3 Implications

This section summarizes the normative implications of our model for compensation design,

and compares them to current practice and existing empirical studies. The first three impli-

cations concern the level of the threshold and apply to any threshold-based contract, such as

dismissal contracts, bonuses, and performance-vesting stock or options. The fourth concerns

the number of vesting options and applies to performance-vesting options.

1. All else equal, thresholds should fall upon signals that are individually good

news about effort.

This implication stems from part (i) of Proposition 1. A signal that is good news about

effort should increase the payment to the manager, regardless of his current payment level,

unless limited liability binds. Proposition 1 achieves this by reducing the output threshold;

this increases the payment as long as output exceeds the threshold, but has no effect if output

is below (i.e. limited liability binds). While it seems intuitive that pay should rise with signals

that individually indicate effort, this is not always the case in reality. Rather than decreasing

the threshold, additional performance signals typically enter the contract as a separate bonus

component as shown in Figure 3 below (adapted from Edmans, Gabaix, and Jenter (2017)).

This differs from Proposition 1 in several ways. First, the signal has no effect on pay if it is
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Figure 3: Example of a bonus payment used in practice as a function of the signal s.

below the lower hurdle or above the higher hurdle. In our model, as long as limited liability

does not bind, pay should always be higher if the signal individually indicates effort. Second,

pay jumps discontinuously once the signal reaches the lower hurdle, but Proposition 1 features

no such discontinuities. Third, the effect of the signal on pay does not depend on whether

output is above the threshold, as it should.

2. All else equal, thresholds should fall upon signals that indicate the output

distribution has shifted to the left.

This implication stems from part (ii) of Proposition 1, and indeed often occurs in reality.

Bettis et al. (2018) find that 48% of performance-vesting equity grants calculate at least one

performance measure on a relative rather than an absolute basis. This effectively reduces the

threshold when peer performance is weak, as this indicates that the output distribution has

shifted to the left. In addition to this implication being implemented on a contractual basis

through vesting being based on relative performance measures, it is sometimes implemented

on a discretionary basis. For example, the BP board lowered the cash flow target in the bonus

of CEO Bob Dudley in 2015, because the Deepwater Horizon disaster caused a leftward shift

in the distribution of cash flows.
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3. All else equal, thresholds become less extreme (high thresholds fall and low

thresholds rise) upon signals that indicate that output is a precise measure of

effort.

This implication stems from parts (iii) and (iv) of Proposition 1. Overall, signals associated

with lower σ (such as low market, industry or firm volatility) and/or higher ζ (such as low reg-

ulation, high product market fluidity, high industry competition, or high industry disruption)10

increase the precision of output as a signal of effort and thus lead to less extreme thresholds:

low thresholds rise and high thresholds fall. Intuitively, if output is more informative about

effort, then less extreme output levels are needed to determine whether the manager should be

paid. However, we are not aware of cases in which thresholds are altered due to changes in the

precision of output as a measure of effort. In reality, while practitioners recognize that signals

should affect contracts if they are individually informative or indicate shifts in the output dis-

tribution, we are not aware of cases in which signals affect contracts due to indicating changes

in output precision.

Corollary 1, which applies part (iv) of Proposition 1 to the case of skewed distributions,

suggests that if output is positively skewed, thresholds should be higher upon signal realiza-

tions that indicate high volatility. In reality, stock price distributions are typically positively

skewed (see, e.g., Albuquerque (2012)), and Bettis et al. (2010, Table 8) show that stock price

thresholds in performance-vesting equity are increasing in stock return volatility, even though

they do not depend on most other firm-level variables. However, their result studies the impact

of volatility ex ante, i.e. before the contract has been signed; Corollary 1 focuses on how the

threshold should vary ex post with realized volatility.

Applying points 1-3 to option contracts suggests that it is sometimes optimal to reduce

the option strike price. Liljeblom, Pasternack, and Rosenberg (2011) study the determinants

of the option strike price ex ante, i.e., when the contract is set, in Finland where there are

no tax and accounting considerations that favor at-the-money options as in the US. However,

they do not study how the strike price is reset ex post depending on the signal realization.

Brenner, Sundaram, and Yermack (2000) find empirically that repricing nearly always involves

a lowering of the strike price, and follows poor stock price performance (both absolute and

industry-adjusted). Chance, Kumar, and Todd (2000) also find that repricing follows poor stock

returns, but that these are not due to market or industry conditions. Our model suggests that

10See RegData’s Industry Regulation Index for an example of an industry regulation index, and Hoberg,
Phillips, and Prabhala (2013) for an example of a measure of product market fluidity. Merger waves are a
potential measure of industry disruption; Harford (2005) finds that they are driven by economic, regulatory,
and technological shocks.
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a reduction in the strike price should generally be prompted by positive, rather than negative,

signals of effort, suggesting that such practices are suboptimal.11 However, the examples in

Section 2.2.2 (of more industry competitors and low risk) provide conditions under which

repricing after poor performance may be optimal, contrary to concerns that it is universally

inefficient because it rewards failure (e.g. Bebchuk and Fried (2004)).

4. The number of vesting options should increase if and only if a signal indicates

that output is a precise measure of effort.

This implication stems from part (i) of Proposition 2. While practitioners recognize that

certain signals should lead to adjustments to the level of pay (either through separate bonuses

or changes in thresholds), we are not aware of cases in which signals affect pay-performance

sensitivity due to indicating changes in output precision.

This result is related to studies on the relation between firm risk and PPS (e.g. Garen

(1994), Aggarwal and Samwick (1999)). Those studies estimate this relation cross-sectionally

between firms, whereas our prediction is within firm but across states of the world. Aggarwal

and Samwick (1999) argue that a negative relation between PPS and stock return volatility

is a “key prediction” of the principal-agent model of executive compensation. However, Pren-

dergast’s (2002) review of the evidence finds a mixed relationship, and points out that this

may arise because risk can be endogenous either to the agent’s effort or the job to which he

is assigned. Our model yields a related prediction which is not affected by this endogeneity

concern: even if the manager could change the overall level of risk, the realized level of risk

will still depend on the state of the world. For a given manager, PPS should be higher (via

additional vesting) in states where the firm’s stock is less volatile because the stock price is a

better signal of effort.

Moreover, part (i) of Proposition 2 is an “if and only if” result – it suggests that the number

of vesting options should not change with signals that only affect individual informativeness

or the location parameter. In practice, vesting sometimes depends on measures of accounting

performance, even though they may not clearly affect the impact or scale parameters. Fur-

thermore, combining points 1-4 above helps us understand how signals that affect all three of

individual informativeness, location, and precision should be used. It suggests that the com-

mon practice of making pay depend on a performance measure only through performance-based

vesting may not actually be optimal. This is efficient if the performance measure only has a

precision effect, but most measures also have individual informativeness or location effects;

11Acharya, John, and Sundaram (2000) also study the repricing of options theoretically. In their model,
repricing is not undertaken to make use of additional informative signals, but instead to maintain effort incen-
tives when options fall out of the money.
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thus, they should also affect the strike price.

The conventional justification of performance-based vesting is that it rewards the manager

for good performance. However, its primary effect is to change the slope of the contract, which

is only optimal if the signal realization affects either impact or scale (or both). If the principal

wishes to reward the manager for good performance, either because the signal is individually

indicative of effort, or because the signal shows that a given output was harder to achieve

(the location effect), this should be done by lowering the strike price. Changing the number

of vesting options fails to change the payment below the strike price. Thus, the normative

implication of this section is that performance-based options should typically involve the strike

price, rather than the number of vesting options, depending on performance.

4 Conclusion

This paper has studied how signal realizations should affect contracts, thus providing guid-

ance on practical contract design. In a general optimal contracting model with limited lia-

bility, the optimal contract involves a threshold output level. The signal realization affects

the threshold in two main ways. The first is the individual informativeness effect – signals

that individually indicate high effort should be associated with lower thresholds, all else equal.

The second is the output inference effect – signals affect the information that the principal

infers about effort from the output level. Due to this second effect, the impact of a signal

realization on the threshold is ambiguous; signals that are individually indicative of effort may

end up being associated with higher thresholds. The output inference effect in turn can be

decomposed into two components. The location effect arises if the signal indicates that the

location of the output distribution has shifted to the left (right), in which case the threshold

decreases (increases). The precision effect occurs if the signal indicates that output is riskier

and/or more impacted by effort. Greater output precision (higher impact and/or lower risk)

leads to high thresholds falling and low thresholds rising.

We then study how the signal realization affects the slope of the contract above the thresh-

old. To do so, we apply our model to study option contracts, which are linear above the

threshold (strike price), allowing us to define the slope in an unambiguous way. This appli-

cation has implications for performance-vesting options. In practice, performance signals only

affect the slope (i.e. number of vesting options), but our analysis suggests that they should

instead affect the strike price. Only a limited set of signals – those that affect output precision

– should also affect the number of vesting options.

Our model features a single effort decision by the manager and a single component of

28

Electronic copy available at: https://ssrn.com/abstract=2488144



output, and studies how to incorporate an additional signal into a contract. In future research,

it would be interesting to study a multi-tasking model where there are multiple actions and

multiple components of output. For example, in Holmström and Tirole (1993), the manager

takes both a short-term and a long-term action, and the principal cares about both short-term

earnings and liquidation value. How to incorporate an additional signal, that is informative

about one or both actions, into the contract is an open question. A second potential extension

would be to explore in more detail how the signal affects optimal risk-sharing. While the focus

of this paper is on how signals affect contracts through what they imply about effort, it does

contain a channel through which the signal affects risk-sharing – the precision effect shows that,

when output is a less precise indicator of effort, pay is less sensitive to output. Future research

could allow the manager’s wealth or utility function to vary with the signal, thus leading to a

richer analysis on how signals affect risk-sharing.
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A Proofs

Proof of Lemma 1: For now we ignore the LL (5). By Lemma 4, when (31) holds, we can

replace the IC in (4) by the first-order condition (“FOC”):

∑
s

[
∂φsê
∂e

∫ +∞

0

u
(
W̄ + ws (q)

)
f(q|ê, s)dq + φsê

∫ +∞

0

u
(
W̄ + ws (q)

) ∂f
∂e

(q|ê, s)dq
]

= C ′(ê).

(12)

The FOC with respect to ws (q) in the program in (2), (3), and (4) is:

φsêf(q|ê, s)− λφsêu′(W̄ + ws (q))f(q|ê, s)− µu′(W̄ + ws (q))

[
∂φsê
∂e

f(q|ê, s) + φsê
∂f

∂e
(q|ê, s)

]
= 0

⇔ 1

u′(W̄ + ws (q))
= λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]
. (13)

Due to LL, we have m(q) = W̄ and m(q) = ∞, using the notation in Jewitt, Kadan, and

Swinkels (2008). Using the FOC in (13), the reasoning in Proposition 1 of Jewitt, Kadan, and

Swinkels (2008) applies for any given signal realization s, so that the optimal contract for a

given s is defined implicitly by:

1

u′(W̄ + ws (q))
=

 λ+ µ
[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê,s)
f(q|ê,s)

]
if λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê,s)
f(q|ê,s)

]
≥ 1

u′(W̄ )
,

1
u′(W̄ )

if λ+ µ
[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê,s)
f(q|ê,s)

]
< 1

u′(W̄ )
,

(14)

with λ ≥ 0 and µ > 0. This can be rewritten as equation (6). �

Proof of Proposition 1: From equation (14), we have ws(q) > 0 if and only if:

λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]
>

1

u′(W̄ )
.

If the support of the output distribution is [0,∞) and if, for a given s,

λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(0|ê, s)
f(0|ê, s)

]
>

1

u′(W̄ )
, (15)

then q∗s = 0. Otherwise (if the support is [0,∞) and equation (15) does not hold, or if the

support is instead (−∞,∞)), since
∂f
∂e

(q|ê,s)
f(q|ê,s) is increasing in q by MLRP, for u′(W̄ ) > 0 the
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threshold q∗s is implicitly defined by:

λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q∗s |ê, s)
f(q∗s |ê, s)

]
=

1

u′(W̄ )

⇔
∂f
∂e

(q∗s |ê, s)
f(q∗s |ê, s)

=
1

µ

(
1

u′(W̄ )
− λ
)
− ∂φsê/∂e

φsê
(16)

where the right-hand side (“RHS”) is independent of q, and
∂f
∂e

(q|ê,s)
f(q|ê,s) is increasing in q by MLRP.

Using equation (8) that defines the likelihood ratio of output, we have:

d

dq

∂f
∂e

(q|ê, s)
f(q|ê, s)

=
ζs
σ2
s

G(q), (17)

where

G(q) := −
g′′
(
q−ξs
σs

)
g
(
q−ξs
σs

)
−
(
g′
(
q−ξs
σs

))2

(
g
(
q−ξs
σs

))2 . (18)

Due to MLRP, equations (17) and (18) imply that G(q) > 0 ∀q. From equation (8), since

ζs > 0, σs > 0, and g(·) > 0, a distribution with location and scale parameters that satisfies

MLRP is such that g′(·) > 0 if q is lower than a threshold, and g′(·) < 0 if q is higher than

this threshold, i.e., the probability density function (“PDF”) g is single peaked – the output

corresponding to the peak is denoted by qPs .

For part (i), there are four cases to consider:

� If the support of the output distribution is [0,∞) and (15) holds for si and sj, then

q∗si = q∗sj = 0.

� If the support is [0,∞) and (15) holds for si but not sj, then q∗si = 0 < q∗sj .

� If the support is [0,∞), it is impossible for (15) to hold for sj but not si since LRsi(q) >

LRsj(q)∀q.

� If the support is [0,∞) and (15) holds for neither si nor for sj, or if the support is instead

(−∞,∞), q∗si and q∗sj are both described by equation (16). Since µ > 0 and
∂f
∂e

(q|ê,s)
f(q|ê,s) is

increasing in q by MLRP, it follows from (16) that
∂φ

si
ê /∂e

φ
si
ê

>
∂φ

sj
ê /∂e

φ
sj
ê

is associated with

q∗si < q∗sj , all else equal across signals.
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For part (ii), there are the same four cases to consider. The first three cases are exactly the

same as part (i). For the fourth case, q∗si and q∗sj are both described by (16). For ξsi < ξsj , all

else equal across signals we have
∂f
∂e

(q|ê,si)
f(q|ê,si) >

∂f
∂e

(q|ê,sj)
f(q|ê,sj) for any q. Then by MLRP and µ > 0, it

follows from (16) that q∗si < q∗sj , all else equal across signals.

For part (iii), using equation (8) we have:

∂
∂f
∂e

(q|ê,s)
f(q|ê,s)

∂ζs
= − 1

σs︸︷︷︸
≤ 0

g′
(
q−ξs
σs

)
g
(
q−ξs
σs

)
︸ ︷︷ ︸
≥ 0 for q ≤ qPs

. (19)

Changes in ζs do not change the peak of the distribution (such that f ′(q|ê, s) = 0), which is

the same for si and sj, and denoted by qPs . There are four cases to consider:

� If the support is [0,∞) and (15) holds for si and sj, then q∗si = q∗sj = 0.

� If the support is [0,∞) and (15) holds for si but not sj, then q∗si = 0 < q∗sj . Given MLRP

and equation (19), this is possible for q∗s > qPs but not for q∗s < qPs (s ∈ {si, sj}).

� If the support is [0,∞) and (15) holds for sj but not si, then q∗sj = 0 < q∗si . Given MLRP

and (19), this is possible for q∗s < qPs but not for q∗s > qPs (s ∈ {si, sj}).

� If the support is [0,∞) and (15) does not hold, or if the support is instead (−∞,∞),

q∗si and q∗sj are both described by (16). Again, since
∂f
∂e

(q|ê,s)
f(q|ê,s) is increasing in q by MLRP,

a higher likelihood ratio of output implies a lower threshold q∗s , as implicitly defined in

(16). For q∗s ≤ qPs , the RHS of (19) is negative at q = q∗s , so that a higher ζs is associated

with a higher threshold q∗s . For q∗s ≥ qPs , the RHS of (19) is positive at q = q∗s , so that a

higher ζs is associated with a lower threshold q∗s .

For part (iv), using (8) we have:

∂
∂f
∂e

(q|ê,s)
f(q|ê,s)

∂σs
=
ζs
σ2
s

g′
(
q−ξs
σs

)
g
(
q−ξs
σs

)
︸ ︷︷ ︸
> 0 for q < qPs

+
ζs
σs
G(q)︸︷︷︸
≥ 0

(
ξs − q
σ2
s

)
︸ ︷︷ ︸
> 0 for q < ξs

.
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We also have ζs > 0 and σs > 0, so that:

sign

∂ ∂f
∂e

(q∗s |ê,s)
f(q∗s |ê,s)

∂σs

{ > 0 if q∗s < qPs and q∗s < ξs

< 0 if q∗s > qPs and q∗s > ξs
. (20)

There are four cases to consider:

� If the support is [0,∞) and (15) holds for si and sj, then q∗si = q∗sj = 0.

� If the support is [0,∞) and (15) holds for si but not sj, then q∗si = 0 < q∗sj . Given MLRP

and equation (20), this is possible for q∗s < qPs and q∗s < ξs but not for q∗s > qPs and q∗s > ξs

(s ∈ {si, sj}).

� If the support is [0,∞) and (15) holds for sj but not si, then q∗sj = 0 < q∗si . Given

MLRP and (20), this is possible for q∗s > qPs and q∗s > ξs but not for q∗s < qPs and q∗s < ξs

(s ∈ {si, sj}).

� If the support is [0,∞) and (15) does not hold, or if the support is instead (−∞,∞), q∗si

and q∗sj are both described by equation (16). Since
∂f
∂e

(q|ê,s)
f(q|ê,s) is increasing in q by MLRP,

a higher likelihood ratio of output implies a lower threshold q∗s , as implicitly defined in

(16); the relation between σs and the threshold is then given by (20). �

Proof of Corollary 1: The threshold q∗s is implicitly defined in (16). With µ > 0, u′ > 0, a

non-binding IR (λ = 0) and a signal realization that is weakly bad news about effort (∂φsê/∂e ≤
0), the threshold is such that:

∂f
∂e

(q∗s |ê, s)
f(q∗s |ê, s)

=
1

µ

1

u′(W̄ )
− ∂φsê/∂e

φsê
> 0

Since
∂f
∂e

(q|ê,s)
f(q|ê,s) is increasing in q by MLRP, an increase in the likelihood ratio of output implies

a lower threshold q∗s . Using equation (20), we know that:

sign

(
dq∗s
dσs

){
≤ 0 if q∗s ≤ qPs and q∗s ≤ ξs

≥ 0 if q∗s ≥ qPs and q∗s ≥ ξs
(21)

For a distribution with location and scale parameters, λ = 0, and ∂φsê/∂e ≤ 0, equation
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(16) rewrites as:

− ζs
σs

g′
(
q∗s−ξs
σs

)
g
(
q∗s−ξs
σs

) =
1

µ

1

u′(W̄ )
− ∂φsê/∂e

φsê
> 0 (22)

The peak of the output distribution, qPs , is defined implicitly by:

1

σ2
s

g′
(
qPs − ξs
σs

)
= 0. (23)

For a single-peaked distribution, equations (22) and (23) and MLRP imply that q∗s > qPs . In

this case, we know from (21) that q∗s is increasing in σs if q∗s ≥ ξs.

Under a skew-normal distribution for q with location parameter hs(e), scale parameter σs,

and shape parameter αs, the likelihood ratio of output is:

∂f
∂e

(q|ê, s)
f(q|ê, s)

=
1

σs

q − ξs
σs

− αs
ϕ
(
αs

q−ξs
σs

)
Φ
(
αs

q−ξs
σs

)
 , (24)

In addition, we know from (8) and (23) that the likelihood ratio of output is zero at the peak

qPs . Using equation (24) with αs ≥ 0, this implies that qPs ≥ ξs, with equality for αs = 0.

In sum, with a skew-normal distribution, we have qPs ≥ ξs if and only if the distribution has

nonnegative skewness. In this case, q∗s > qPs implies q∗s > ξs. Thus, q∗s is increasing in σs. �

Proof of Lemma 2: We start by characterizing the optimal contract that induces effort ê.

For effort e, we have q ∼ N (hs(e), σ
2
s). Let ϕs be the PDF of the normal distribution with

mean zero and standard deviation σs.

Letting Ws(q) = ws(q) + W̄ to simplify notation, the IC is:

ê ∈ arg max
e

∑
s

φse

∫
ln (Ws(q))ϕs (q − hs(e)) dq − C(e).

The IR and LL are, respectively:

∑
s

φsê

∫
ln (Ws(q))ϕs (q − hs(ê)) dq − C(ê) ≥ u,

and

Ws(q) ≥ W̄ ∀q, s.
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To simplify notation, we will work with the manager’s indirect utility, us(q) := lnWs(q), so

that Ws(q) = exp [us(q)] . This step is without loss of generality. The next step, which is not

without loss of generality, is to replace the IC by its FOC:

∑
s

∂φsê
∂e

∫
us (q)ϕs (q − ξs) dq+

∑
s

φsê

∫
us (q) ζs

q − ξs
σ2
s

ϕs (q − ξs) dq−C ′(ê)

{
≥ 0 if ê = ē

= 0 if ê ∈ (0, ē)
.

This FOC rewrites as:

∑
s

∫
us (q)ϕs (q − ξs)

[
∂φsê
∂e

+ φsêζs
q − ξs
σ2
s

]
dq − C ′(ê)

{
≥ 0 if ê = ē

= 0 if ê ∈ (0, ē)
. (25)

Since replacing the IC by its FOC is not always valid, after solving the firm’s relaxed

program, we will need to verify that its solution satisfies the IC. The principal’s relaxed program

is:

max
us(·)

∑
s

φsê

∫
(q − exp [us(q)])ϕs (q − ξs) dq

subject to (25), ∑
s

φsê

∫
us (q)ϕs (q − ξs) dq − C(ê) ≥ u, (26)

and

us (q) ≥ ln W̄ ∀q, s.

Lemma 3 solves this optimization problem.

Lemma 3 The optimal contract that implements ê > 0 in the relaxed program satisfies:

Ws(q) =

 W̄ for q ≤ ξs + σ2
s

ζs

[
W̄−λ
µ
− ∂φsê/∂e

φsê

]
λ+ µ

[
∂φsê/∂e

φsê
+ ζs

q−ξs
σ2
s

]
for q > ξs + σ2

s

ζs

[
W̄−λ
µ
− ∂φsê/∂e

φsê

] ,

where λ ≥ 0 and µ > 0.

Proof. The relaxed program maximizes a strictly concave function subject to linear con-

straints, so the FOC below, the complementary slackness conditions and the constraints are

necessary and sufficient. Pointwise optimization gives:

− exp [us(q)]φ
s
êϕs (q − ξs) + µ

[
∂φsê
∂e

+ φsêζs
q − ξs
σ2
s

]
ϕs (q − ξs)

+λφsêϕs (q − ξs) + λLL(q, s) = 0,
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where λLL(q, s) are the multipliers associated with the LL. Letting λ̃LL(q, s) ≡ λLL(q,s)
φsêϕs(q−ξs)

≥ 0,

we can rewrite the FOC as:

Ws(q) = λ+ λ̃LL(q, s) + µ

[
∂φsê/∂e

φsê
+ ζs

q − ξs
σ2
s

]
. (27)

There are two cases to consider. First, if λ = 0 in the optimal contract, it can be verified

that the following solves the necessary and sufficient optimality conditions:

Ws(q) =

 W̄ for q ≤ ξs + σ2
s

ζs

(
W̄
µ
− ∂φsê/∂e

φsê

)
µ
[
∂φsê/∂e

φsê
+ ζs

q−ξs
σ2
s

]
for q > ξs + σ2

s

ζs

(
W̄
µ
− ∂φsê/∂e

φsê

) , (28)

where µ is chosen so that the IC holds (it can be shown that such µ > 0 exists and is unique).

To see this, note that when the LL binds, we have Ws(q) = W̄ and λ̃LL(q, s) ≥ 0. Then, the

FOC becomes:

λ̃LL(q, s) = W̄ − µ
[
∂φsê/∂e

φsê
+ ζs

q − ξs
σ2
s

]
− λ = W̄ − µ

[
∂φsê/∂e

φsê
+ ζs

q − ξs
σ2
s

]
≥ 0,

which is positive because q ≤ ξs+ σ2
s

ζs

(
W̄
µ
− ∂φsê/∂e

φsê

)
. When the LL does not bind (Ws(q) > W̄ ),

we have λ̃LL(q, s) = 0, so that the FOC becomes:

Ws(q) = µ

[
∂φsê/∂e

φsê
+ ζs

q − ξs
σ2
s

]
,

where µ is chosen so that the IC holds. If the resulting contract satisfies the IR in (26), then

indeed λ = 0 at the optimal contract, which is described in (28). This establishes that an

option with state-contingent strike price ξs + σ2
s

ζs

(
W̄
µ
− ∂φsê/∂e

φsê

)
and slope n∗s := µ ζs

σ2
s

solves the

relaxed program when we are implementing ê > 0.

Now suppose that the resulting contract does not satisfy IR in (26). Then we have λ > 0.

It can be verified that the following solves the necessary and sufficient optimality conditions:

Ws(q) =

 W̄ for q ≤ ξs + σ2
s

ζs

(
W̄−λ
µ
− ∂φsê/∂e

φsê

)
λ+ µ

[
∂φsê/∂e

φsê
+ ζs

q−ξs
σ2
s

]
for q > ξs + σ2

s

ζs

(
W̄−λ
µ
− ∂φsê/∂e

φsê

) ,

where λ and µ are chosen so that the IR and IC hold. To see this, note that when the LL
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binds, we have Ws(q) = W̄ and λ̃LL(q, s) ≥ 0. Then, the FOC becomes:

λ̃LL(q, s) = W̄ − µ
[
∂φsê/∂e

φsê
+ ζs

q − ξs
σ2
s

]
− λ ≥ 0,

which is positive because q ≤ ξs + σ2
s

ζs

(
W̄−λ
µ
− ∂φsê/∂e

φsê

)
. When the LL does not bind (Ws(q) >

W̄ ), we have λ̃LL(q, s) = 0, so that the FOC becomes:

Ws(q) = λ+ µ

[
∂φsê/∂e

φsê
+ ζs

q − ξs
σ2
s

]
.

This establishes that an option with state-contingent strike price q∗s = ξs+
σ2
s

ζs

(
W̄−λ
µ
− ∂φsê/∂e

φsê

)
and slope n∗s := µ ζs

σ2
s

solves the relaxed program when we are implementing ê > 0. Let

K := W̄−λ
µ

, which is independent from q and s. �

Proof of Proposition 2: We rely on the proof of Lemma 2.

For part (i), the slope of the option contract is n∗s := µ ζs
σ2
s
.

For part (ii), we can write the optimal contract as:

ws(q) = max

{
λ+ µ

[
∂φsê/∂e

φsê
+ ζs

q − ξs
σ2
s

]
− W̄ , 0

}
.

The strike price q∗s is such that ws(q) > 0 if and only if q ≥ q∗s , as derived in the proof of

Lemma 2. With K = W̄−λ
µ

, we have q∗s = ξs + σ2
s

ζs

(
K − ∂φsê/∂e

φsê

)
. �

B The First-Order Approach With Limited Liability

Prior literature has developed conditions to justify the FOA, such as Rogerson (1985) and

Jewitt (1988). However, using the FOA in models with limited liability is not straightforward.

First, some conditions rely on the optimal contract derived in the absence of contracting

constraints (Jewitt (1988), Kim and Jung (2015)), and are thus not applicable under limited

liability. Second, Rogerson’s (1985) condition on the convexity of the cumulative distribu-

tion function, which is generalized to the multi-signal case by Sinclair-Desgagné (1994), does

not rely on the contract and thus can be used with contracting constraints (e.g., Kadan and

Swinkels (2008), Jewitt, Kadan, and Swinkels (2008)). However, it imposes a strong restriction

on the probability distribution of the performance measure, which is not satisfied by proba-
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bility distributions commonly used to model stock returns, such as the normal, gamma, and

lognormal (Hemmer (2004)). Third, an alternative approach, used by Dittmann and Maug

(2007) in calibration and Kirkegaard (2017), first derives the optimal contract assuming the

FOA is valid, and then imposes conditions based on this contract that guarantee the validity

of the FOA. Since the optimal contract generally cannot be characterized in closed form, it is

hard to obtain analytical conditions for the validity of the FOA.

We present a new condition for the validity of the FOA under limited liability for utility

functions that are bounded from above, which is the case for many common utility functions,

such as constant absolute risk aversion and constant relative risk aversion (“CRRA”) with a

relative risk aversion γ larger than 1. The condition uses limited liability to obtain a lower

bound on the manager’s utility which, combined with the upper bound, allows us to specify

conditions that rule out profitable non-local deviations. Crucially, these conditions do not

depend on the (endogenous) contract, nor do they require the strong convexity condition in

Rogerson (1985).

Let K+
e and K−e denote the integral of the positive and negative parts of the second deriva-

tive of the joint distribution f(q, s|e) with respect to effort:

K+
e :=

∑
s

∫ +∞

q

max

{
∂2f

∂e2
(q, s|e), 0

}
dq, (29)

K−e :=
∑
s

∫ +∞

q

min

{
∂2f

∂e2
(q, s|e), 0

}
dq. (30)

Lemma 4, proven in Supplementary Appendix E, provides a sufficient condition for the

FOA to be valid.

Lemma 4 (First-Order Approach): Suppose that

K−e u(W̄ ) +K+
e lim
c↗∞

u(c) < C ′′(e) (31)

for all e ∈ (0, ē). Then, the FOA is valid.

The intuition for the condition in Lemma 4 is as follows. For the FOA to be valid, we

must ensure that the manager’s objective (expected utility of payments minus effort costs) is

a concave function of effort. In general, the effect of effort on the expected utility of payments

may be sufficiently locally convex that it offsets the impact of a strictly convex effort cost.

We therefore need to provide an upper bound on the convexity of the (endogenous) payments.
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With limited liability, u(W̄ ) is a lower bound on the manager’s utility, and by monotonicity,

limc↗∞ u(c) is an upper bound on the manager’s utility. Lemma 4 uses these bounds to limit

the convexity in the manager’s expected utility.

We close by showing how researchers can apply the condition in Lemma 4 to special cases.

Example 2 below considers a quadratic effort cost.

Example 2 Let W̄ = 10, u(w) = w−2

−2
(i.e., the manager has CRRA utility γ = 3), the cost of

effort is C(e) = αe + β
2
e2, with α ≥ 0 and β > 0, the set of possible effort levels is e ∈ [0, 10],

output follows a normal distribution with mean e and standard deviation 2, S = 1, and the

manager is protected by limited liability. Then we have:
∫∞
q

min
{
∂2f
∂e2

(q|e, s), 0
}
dq ≈ −0.121

for all e, u(W̄ ) = − 1
200

, C ′′(e) = β, and the condition in Lemma 4 is simply β > 0.121
200

.

Equation (31) can be simplified in special cases. Since K−e < 0, it is easier to satisfy

condition (31) when the manager’s outside wealth W̄ is higher. When limc↗+∞ u(c) = 0, as

with constant absolute risk aversion and CRRA with γ > 1, (31) becomes

K−e u(W̄ ) < C ′′(e)

for all e ∈ (0, ē).

Lemma 4 can also be applied to settings in which there is no additional signal. In that

case, we have:

K+
e =

∫ ∞
q

max

{
∂2f

∂e2
(q|e), 0

}
dq and K−e =

∫ ∞
q

min

{
∂2f

∂e2
(q|e), 0

}
dq.

C Determinants of the Threshold

Without loss of generality, let an increase in c parametrize an increase in the marginal cost of

effort that leaves the equilibrium cost of effort C(ê) unchanged. Suppose that u ≤ u
(
W̄
)
−C(ê),

i.e., the IR is nonbinding and λ = 0. Assuming that the FOA holds, plugging the optimal

contract (6) into the IC (4) yields:

∑
s

[∫ q∗s

q

u
(
W̄
) ∂f
∂e

(q, s|ê)dq +

∫ ∞
q∗s

u

(
u′
−1

(
1

/
µ
∂f
∂e

(q, s|ê)
f(q, s|ê)

))
∂f

∂e
(q, s|ê)dq

]
= C ′(ê).

(32)
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From equation (16) that describes the thresholds, with λ = 0:

LRs(q
∗
s |ê) =

∂f
∂e

(q∗s , s|ê)
f(q∗s , s|ê)

=
1

µ

1

u′(W̄ )
> 0. (33)

This implies that ∂f
∂e

(q, s|ê) > 0 ∀q > q∗s due to MLRP, so that the derivative of the left-

hand side (“LHS”) of the IC in equation (32) with respect to µ is positive (recall that, by

construction, u′−1
(
1
/
µLRs(q

∗
s |ê)
)

= W̄ ). To maintain incentive compatibility following an

increase in c that raises the RHS of (32), the Lagrange multiplier µ must therefore rise for the

LHS of (32) to increase correspondingly. In turn, using MLRP, u′ > 0, and equation (33), a

higher µ implies a lower q∗s for any s. In sum, when IR does not bind, a higher c results in a

lower q∗s for any s. Since the likelihood ratio is positive at the threshold (see (33)), an increase

in c brings the threshold q∗s closer to the point where the likelihood ratio LRs(q|ê) is zero.

Intuitively, a higher marginal cost of effort requires the principal to offer higher incentives,

which she ensures by lowering the threshold.

D Performance Signals and Pay-Performance Sensitiv-

ity

This section studies how the signal realization affects pay-performance sensitivity (“PPS”)

above the threshold pay-performance, generalizing Section 2.2 beyond piecewise linear con-

tracts. We return to the main model of Section 1 and no longer require log utility or normally-

distributed output. The only additional assumption that we impose is CRRA utility. This is

because the curvature of the utility function plays an important role in the slope of the contract,

and CRRA utility allows us to capture this curvature with a single parameter, γ. Moreover,

CRRA is widely used for executive pay, in particular for calibration (see, e.g., Dittmann and

Maug (2007) and references cited therein).

We define PPS as ws(q)−ws(q0)
q−q0 for q > q0 > max{qPs , ξs, q∗s} for s ∈ {si, sj}. It represents the

slope of the contract between any two outputs q and q0 where the payment is strictly positive

(since q0 is above the threshold). Proposition 3, proven in Supplementary Appendix F, studies

how PPS depends on the signal realization.

Proposition 3 (Effect of signal on pay-performance sensitivity) Suppose that the FOA holds,

and consider outputs q and q0 such that q > q0 > max{qPs , ξs, q∗s} for s ∈ {si, sj}. All else equal

across signals:
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(i) If signal realization si is individually more indicative of effort than sj (
∂φ

si
ê /∂e

φ
si
ê

>
∂φ

sj
ê /∂e

φ
sj
ê

),

PPS is higher (lower) under si if γ < (>)1.

(ii) If signal realization si is associated with a higher equilibrium location parameter than

sj (ξi > ξj), PPS is higher (lower) under si if the likelihood ratio of output is weakly concave

and γ ≥ 1 (weakly convex and γ ≤ 1).

(iii) If signal realization si is associated with a higher impact parameter than sj (ζi > ζj),

PPS is higher under si if γ ≤ 1.

(iv) If signal realization si is associated with a higher scale parameter than sj (σi > σj),

PPS is lower under si than sj if the likelihood ratio of output is weakly convex and γ ≤ 1.

To understand how a signal realization affects PPS, consider the local PPS at output q and

signal s for ws(q) > 0:

w′s(q) =
µ

γ

∂

∂q

{
∂f
∂e

(q|ê, s)
f(q|ê, s)

}
︸ ︷︷ ︸

A

λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]
︸ ︷︷ ︸

B


1
γ
−1

. (34)

A signal can affect PPS by affecting term A or B in equation (34). Term A, which is positive

by MLRP, is the slope of the likelihood ratio of output. A signal may affect this slope in two

ways. The first is a location effect: the likelihood ratio of output under si is a rightward slope

of the likelihood ratio under signal sj. When the likelihood ratio is concave (convex) in output,

the location effect increases (decreases) PPS at a given output level. The second is a precision

effect: the likelihood ratio is steeper under si than sj, i.e. higher for high output and lower

for low output. The precision effect increases PPS regardless of the curvature of the likelihood

ratio – it concentrates incentives in states of the world (signal realizations) where output is

more informative about effort. (Note that, unlike in the main paper, here the location and

precision effects refer to the impact on PPS rather than the threshold.)

Term B, which is positive (see equation (37) in Supplementary Appendix F), is a linear

transformation of the likelihood ratio. It captures the contract curvature effect : if the sig-

nal realization affects the payment ws(q), this in turn affects PPS if the payment above the

threshold is nonlinear in term B. When γ < 1 (γ > 1), the payment above the threshold is

convex (concave) in term B. Intuitively, γ affects not only risk aversion but also prudence –

downside risk aversion, which depends on the third derivative of the utility function. When

γ < 1, the effect of prudence (which favors convex contracts as they protect the agent from

downside risk) dominates the effect of risk aversion (which favors concave contracts), so that
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the optimal contract is convex in a linear transformation of the likelihood ratio, i.e. term B.12

When prudence is high, it is efficient to concentrate rewards on very positive outcomes rather

than moderately positive outcomes. If the payment above the threshold is convex (concave)

in term B, then if a signal realization increases the payment at a given output, PPS increases

(decreases). When γ = 1 (as in Section 2.2), the contract is linear in term B, so changes to

the payment do not affect PPS.

The likelihood ratio of the signal affects only term B; the likelihood ratio of output affects

both terms. Thus, in part (i) of Proposition 3, which concerns the likelihood ratio of the

signal, only the contract curvature effect applies. Signals that are individually indicative of

effort increase pay; if γ < 1, the contract is convex in term B, and so this increase in pay also

increases PPS. The effect is reversed if γ > 1.

In part (ii), which concerns the likelihood ratio of output, both the location and contract

curvature effects apply. Starting with the former, if ξi > ξj, the output distribution under si

is shifted to the right. If the likelihood ratio is concave in output, a higher location of the

output distribution means a greater slope of the likelihood ratio at any given output level,

which increases PPS. Moving to the latter, at any given output, the payment is lower under si

than sj. When γ ≥ 1 (γ ≤ 1), the payment is concave (convex) in a linear transformation of

the likelihood ratio, which means a higher (lower) PPS under si.

In parts (iii) and (iv), both the precision and contract curvature effects apply. In part (iii),

if ζi > ζj, output is more informative about effort under si and so PPS is higher (the precision

effect). In addition, above the peak of the distribution, a larger impact parameter leads to a

higher likelihood ratio and therefore a higher payment, which weakly increases PPS if and only

if γ ≤ 1 (the contract curvature effect). Thus, if γ ≤ 1, both effects go in the same direction

and so PPS is unambiguously higher. In part (iv), if σi > σj, output is less informative about

effort under si and so PPS is lower (the precision effect). In addition, above the peak and

location parameter of the distribution, a more volatile output leads to a lower likelihood ratio

and therefore a lower payment, which weakly decreases PPS if and only if γ ≤ 1 (the contract

curvature effect).13

12For a formal result, see Proposition 1 and Claim 4 in Chaigneau, Sahuguet, and Sinclair-Desgagné (2017).
13There is a subtle distinction between the informativeness effects for the impact and scale parameters, for

the same reason that the impact and scale parameters do not always have opposite effects on the threshold in
Proposition 1. The impact parameter affects the slope of the likelihood ratio but not the equilibrium output
distribution. In contrast, the scale parameter affects the slope of the likelihood ratio and also spreads out the
equilibrium output distribution. Thus, a higher scale parameter results in a lower likelihood ratio for high
output levels, which further diminishes the sensitivity of the likelihood ratio to output (and thus PPS) if the
likelihood ratio of output is convex – reinforcing the effects described in the main text. This explains why part
(iv) also requires the likelihood ratio of output to be weakly convex whereas part (iii) does not.
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Supplementary Appendix for
“How Should Performance Signals Affect Contracts?”

E Proof of Lemma 4

For a given contract ws(q), the effort choice problem of the agent can be written successively

as:

max
e

E
[
u
(
W̄ + ws(q)

)]
− C(e) ⇔ max

e

∑
s

∫ +∞

q

u
(
W̄ + ws(q)

)
f(q, s|e)dq − C(e)

The second derivative of the agent’s objective function with respect to e is negative for any e

if and only if:

∑
s

∫ +∞

q

u
(
W̄ + ws(q)

) ∂2f(q, s|e)
∂e2

dq < C ′′(e) ∀e ∈ (0, ē). (35)

Assume that u is bounded from above, with limw→∞ u(w) ≡ u+. In addition, with limited

liability, the minimum payment is ws(q) = 0; with an increasing utility function, this implies

that the minimum value of u is u(W̄ ). Therefore, for any {q, s}:

u
(
W̄ + ws(q)

)
∈
[
u(W̄ ), u+

]
Using notations K+

e and K−e defined in equations (29) and (30), the expression on the LHS of

equation (35) can then be rewritten as:

∑
s

∫ +∞

q

u
(
W̄ + ws(q)

)
min

{
∂2f(q, s|e)

∂e2
, 0

}
dq+

∑
s

∫ +∞

q

u
(
W̄ + ws(q)

)
max

{
∂2f(q, s|e)

∂e2
, 0

}
dq

(36)

As established above, we have u
(
W̄ + ws(q)

)
≥ u(W̄ ) for any q, s, and u

(
W̄ + ws(q)

)
≤ u+

for any q, s. Therefore, for any q, s such that ∂2f(q,s|e)
∂e2

≤ 0 we have u
(
W̄ + ws(q)

) ∂2f(q,s|e)
∂e2

≤
u(W̄ )∂

2f(q,s|e)
∂e2

; and for any q, s such that ∂2f(q,s|e)
∂e2

≥ 0 we have u
(
W̄ + ws(q)

) ∂2f(q,s|e)
∂e2

≤
u+ ∂2f(q,s|e)

∂e2
. Integrating and summing over q and s, this implies that expression (36) is less

than K−e u(W̄ ) +K+
e u

+, which completes the proof. �
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F Proof of Proposition 3

From equation (8), since ζs > 0, σs > 0, and g(·) > 0, a distribution with location and

scale parameters that satisfies MLRP is such that g′(·) > 0 if q is lower than a threshold,

and g′(·) < 0 if q is higher than this threshold, i.e., the PDF g is single peaked – the output

corresponding to the peak is denoted by qPs . For symmetric distributions, the single peak of

the distribution, which is such that g′
(
qPs −ξs
σs

)
= 0, is at qPs = ξs for s ∈ {si, sj}. With CRRA

utility, characterized by u′(w) = w−γ and u′−1(w) = w−
1
γ , provided that the FOA holds we

have:

ws(q) =


(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê,s)
f(q|ê,s)

]) 1
γ

− W̄ if λ+ µ
[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê,s)
f(q|ê,s)

]
≥ 1

u′(W̄ )

0 if λ+ µ
[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê,s)
f(q|ê,s)

]
< 1

u′(W̄ )

. (37)

For γ > 1, we use the condition for the FOA in Lemma 4. For γ ≤ 1, we derive a condition

for FOA to hold in this setting. The FOA holds if:

∑
s

∫ +∞

q

u
(
W̄ + ws(q)

) ∂2f(q, s|e)
∂e2

dq < C ′′(e) ∀e ∈ (0, ē), (38)

where u(w) = w1−γ

1−γ if γ < 1 and lnw if γ = 1, and ws (q) is defined by equation (37).

Part (i): Suppose that signals si and sj differ only in their individual informativeness:
∂φ

si
ê /∂e

φ
si
ê

>
∂φ

sj
ê /∂e

φ
sj
ê

(si and sj are associated with the same output distribution). For notational

convenience, let φ̃s ≡
∂φsê/∂e

φsê
and ws(q) ≡ Wq(φ̃s), which is a continuous function of φ̃s. For a

given q, we can write:

wsi(q)− wsj(q) = Wq(φ̃i)−Wq(φ̃j) =

∫ φ̃i

φ̃j

∂Wq(φ̃)

∂φ̃
dφ̃.

Holding all else constant including Lagrange multipliers (we are comparing two signal realiza-

tions, i.e. we do not change parameters of the contracting environment), for given q and s such

2
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that ws(q) > 0:

∂Wq(φ̃)

∂φ̃
=

∂

∂φ̃


(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ

− W̄


=

µ

γ︸︷︷︸
> 0

(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ
−1

︸ ︷︷ ︸
≥ 0 since ws(q) ≥ 0

, (39)

For given q and q0, we have

wsi(q)− wsi(q0)

q − q0

≥
wsj(q)− wsj(q0)

q − q0

⇔ wsi(q)− wsj(q)−
(
wsi(q0)− wsj(q0)

)
≥ 0. (40)

Thus, for given q and q0 such that q > q0 and ws(q0) > 0, we have:

wsi(q)− wsj(q)−
(
wsi(q0)− wsj(q0)

)
=

µ

γ

∫ φ̃i

φ̃j

(λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ
−1

−

(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q0|ê, s)
f(q0|ê, s)

]) 1
γ
−1
 dφ̃.

We have: q > q0 which implies
∂f
∂e

(q|ê,s)
f(q|ê,s) >

∂f
∂e

(q0|ê,s)
f(q0|ê,s) by MLRP, so that, for a given φ̃s:

λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]
> λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q0|ê, s)
f(q0|ê, s)

]
(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ
−1

>

(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q0|ê, s)
f(q0|ê, s)

]) 1
γ
−1

iff γ < 1.(41)

If γ < 1, the condition in (41) holds, and so (40) also holds. If γ < 1, (41) does not hold, and

so (40) does not either. If γ = 1, the equation in (41) is satisfied as an equality so that the

expression on the right in (40) is equal to zero.

Part (ii): Suppose that signals si and sj differ only in their equilibrium location parameter,

with ξi > ξj. Let ws(q) ≡ Wq(ξs), which is a continuous function of ξs, since
∂f
∂e

(q|ê,s)
f(q|ê,s) is by

assumption continuously differentiable in the equilibrium location parameter ξs. For a given

q, we have:

wsi(q)− wsj(q) = Wq(ξi)−Wq(ξj) =

∫ ξi

ξj

∂Wq(ξ)

∂ξ
dξ.
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Holding all else constant including Lagrange multipliers, for given q and s such that ws(q) > 0,

we have:

∂Wq(ξ)

∂ξ
=

∂

∂ξ


(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ

− W̄


=

µ

γ︸︷︷︸
> 0

∂

∂ξ

{
∂f
∂e

(q|ê, s)
f(q|ê, s)

}(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ
−1

︸ ︷︷ ︸
≥ 0 since ws(q) ≥ 0

, (42)

where:

∂

∂ξ

{
∂f
∂e

(q|ê, s)
f(q|ê, s)

}
=

∂

∂ξ

− ζsσs
g′
(
q−ξs
σs

)
g
(
q−ξs
σs

)


= − ζs
σ2
s

G(q)︸︷︷︸
≥ 0

, (43)

where G is defined in equation (18). For given q and q0, we have:

wsi(q)− wsi(q0)

q − q0

≥
wsj(q)− wsj(q0)

q − q0

⇔ wsi(q)− wsj(q)−
(
wsi(q0)− wsj(q0)

)
≥ 0. (44)

Thus, for given q and q0 such that q > q0 and ws(q0) > 0, we have:

wsi(q)− wsj(q)−
(
wsi(q0)− wsj(q0)

)
=

µ

γ

ζs
σ2
s

∫ ξi

ξj

(
−G(q)

(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ
−1

+G(q0)

(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q0|ê, s)
f(q0|ê, s)

]) 1
γ
−1)

dξ. (45)

From equation (17) and the definition of G(q) in (18), the likelihood ratio of output is weakly

concave in q if and only if G′(q) ≤ 0 in which case 0 ≤ G(q) ≤ G(q0) since q > q0. In addition,

q > q0 implies
∂f
∂e

(q|ê,s)
f(q|ê,s) >

∂f
∂e

(q0|ê,s)
f(q0|ê,s) by MLRP, so that, for a weakly concave likelihood ratio and
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γ ≥ 1:

λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]
> λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q0|ê, s)
f(q0|ê, s)

]
(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ
−1

≤

(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q0|ê, s)
f(q0|ê, s)

]) 1
γ
−1

G(q)

(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ
−1

≤ G(q0)

(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q0|ê, s)
f(q0|ê, s)

]) 1
γ
−1

.(46)

We conclude that if the likelihood ratio is nonconvex and γ ≥ 1, then (46) holds and, using

equation (45), (44) holds too. Symmetrically, if the likelihood ratio is weakly convex (so that

G′(q) ≥ 0) and γ ≤ 1, then the inequality in (46) is reversed, so that it is reversed in condition

(44) too. Finally, if the likelihood ratio is linear (so that G′(q) = 0) and γ = 1, then (46) holds

as an equality, and so does condition (44).

Part (iii): Suppose that signals si and sj differ only in their impact parameter, with ζi > ζj.

Let ws(q) ≡ Wq(ζs), which is a continuous function of ζs, since
∂f
∂e

(q|ê,s)
f(q|ê,s) is by assumption

continuously differentiable in the parameter ζs. For a given q, we have:

wsi(q)− wsj(q) = Wq(ζi)−Wq(ζj) =

∫ ζi

ζj

∂Wq(ζ)

∂ζ
dζ. (47)

As above, holding all else constant including Lagrange multipliers, for given q and s such that

ws(q) > 0:

∂Wq(ζ)

∂ζ
=

∂

∂ζ


(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ

− W̄


=

µ

γ

∂

∂ζ

{
∂f
∂e

(q|ê, s)
f(q|ê, s)

}(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ
−1

︸ ︷︷ ︸
> 0 since ws(q) > 0

, (48)

where

∂

∂ζ

{
∂f
∂e

(q|ê, s)
f(q|ê, s)

}
=

∂

∂ζ

− ζsσs
g′
(
q−ξs
σs

)
g
(
q−ξs
σs

)
 = − 1

σs︸︷︷︸
< 0

g′
(
q−ξs
σs

)
g
(
q−ξs
σs

)
︸ ︷︷ ︸
< 0 for q > qPs

. (49)
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Thus, at output q, we have:

∫ ζi

ζj

∂Wq(ζ)

∂ζ
dζ =

∫ ζi

ζj

µ

γ

1

σs

−g′
(
q−ξs
σs

)
g
(
q−ξs
σs

)


︸ ︷︷ ︸
> 0 for q > qPs

(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ
−1

︸ ︷︷ ︸
> 0 since ws(q) > 0

dζ.

In sum, with q > q0 > max{qPs , q∗s , ξs}, we have:

wsi(q)− wsj(q)−
[
wsi(q0)− wsj(q0)

]
= Wq(ζi)−Wq(ζj)− [Wq0(ζi)−Wq0(ζj)]

=
µ

γ

1

σs

∫ ζi

ζj

(−g′
(
q−ξs
σs

)
g
(
q−ξs
σs

)
(λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ
−1

−

−g′
(
q0−ξs
σs

)
g
(
q0−ξs
σs

)
(λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q0|ê, s)
f(q0|ê, s)

]) 1
γ
−1)

dζ. (50)

For q > max{qPs , q∗s , ξs}, both −g′( q−ξsσs
)

g( q−ξsσs
)

and
(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê,s)
f(q|ê,s)

]) 1
γ
−1

are positive and

weakly increasing in q (by MLRP) if γ ≤ 1. Therefore, if γ ≤ 1, expression (50) is positive.

Using (44), this means that, with ζi > ζj, the PPS measure ws(q)−ws(q0)
q−q0 is higher under si than

under sj.

Part (iv): Suppose that signals si and sj differ only in their scale parameter, with σi > σj.

Let ws(q) ≡ Wq(σs), which is a continuous function of σs, since
∂f
∂e

(q|ê,s)
f(q|ê,s) is by assumption

continuously differentiable in the scale parameter σs. For a given q, we have:

wsi(q)− wsj(q) = Wq(σi)−Wq(σj) =

∫ σi

σj

∂Wq(σ)

∂σ
dσ. (51)

Holding all else constant including Lagrange multipliers, for given q and s such that ws(q) > 0:

∂Wq(σ)

∂σ
=

∂

∂σ


(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ

− W̄


=

µ

γ︸︷︷︸
> 0

∂

∂σ

{
∂f
∂e

(q|ê, s)
f(q|ê, s)

}(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ
−1

︸ ︷︷ ︸
> 0 since ws(q) > 0

,
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where:

∂

∂σ

{
∂f
∂e

(q|ê, s)
f(q|ê, s)

}
=

∂

∂σ

− ζsσs
g′
(
q−ξs
σs

)
g
(
q−ξs
σs

)


=
ζs
σ2
s︸︷︷︸

> 0

g′
(
q−ξs
σs

)
g
(
q−ξs
σs

)
︸ ︷︷ ︸
< 0 for q > qPs

+
ζs
σs︸︷︷︸
> 0

G(q)︸︷︷︸
≥ 0

ξs − q
σ2
s︸ ︷︷ ︸

< 0 for q > ξs

. (52)

So, at output q:

∫ σi

σj

∂Wq(σ)

∂σ
dσ =

∫ σi

σj

µ

γ

ζs
σ2
s


g′
(
q−ξs
σs

)
g
(
q−ξs
σs

) +G(q)
ξs − q
σs︸ ︷︷ ︸

< 0 for q > max{ξs, qPs }


(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ
−1

︸ ︷︷ ︸
> 0 since ws(q) > 0

dσ

In sum, with q > q0 > max{qPs , q∗s , ξs}:

wsi(q)− wsj(q)−
(
wsi(q0)− wsj(q0)

)
= Wq(σi)−Wq(σj)− (Wq0(σi)−Wq0(σj))

=
µ

γ

ζs
σ2
s

∫ σi

σj

(g′
(
q−ξs
σs

)
g
(
q−ξs
σs

) +G(q)
ξs − q
σs

(λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê, s)
f(q|ê, s)

]) 1
γ
−1

−

g′
(
q0−ξs
σs

)
g
(
q0−ξs
σs

) +G(q)
ξs − q0

σs

(λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q0|ê, s)
f(q0|ê, s)

]) 1
γ
−1)

dσ(53)

For q > max{qPs , q∗s , ξs},
(
g′( q−ξsσs

)
g( q−ξsσs

)
+G(q) ξs−q

σs

)
is negative and weakly decreasing in q if the

likelihood ratio of output is weakly convex (by MLRP and since then G′(q) ≥ 0, as per point (ii)

above), while
(
λ+ µ

[
∂φsê/∂e

φsê
+

∂f
∂e

(q|ê,s)
f(q|ê,s)

]) 1
γ
−1

is positive and weakly increasing in q (by MLRP)

if γ ≤ 1. Therefore, if γ ≤ 1 and the likelihood ratio of output is weakly convex, expression (53)

is negative. Using inequality (44), this means that, with σi > σj, the PPS measure ws(q)−ws(q0)
q−q0

is lower under si than under sj if the likelihood ratio of output is weakly convex and γ ≤ 1. �
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G The First-Order Approach with Limited Liability, Normally-

Distributed Output, and Log Utility

This Appendix provides sufficient conditions for the FOA in the setting considered in Sec-

tion 2.2, with limited liability, normally-distributed output, and log utility. We first derive the

optimal contract and provide a sufficient condition for the FOA without an additional signal.

Given effort e ∈ [0, ē], output is determined by

q = e+ ε,

where ε ∼ N (0, σ2).

Proposition 4 Suppose C ′′(e) ≥ ē
σ2 for all e ∈ [0, ē]. Let {w∗(·), e∗} be the optimal contract

and the effort it implements. Then, there exist λ > 0 and q∗ ≤ e∗ + σ2

λ
W̄ such that

w∗(q) =
λ

σ2
·max {q − q∗, 0} .

Moreover, q∗ = e∗ + σ2

λ
W̄ if the IR does not bind.

For example, with a quadratic effort cost, C(e) = αe + β
2
e2, for α > 0 and β > 0, we have

C ′′(e) = β for all e, and the sufficient condition for the FOA is simply β ≥ ē
σ2 .

Proof of Proposition 4:

As usual, let ϕ denote the PDF of the standard normal distribution. Let W (q) ≡ w(q)+W̄

denote the manager’s consumption. His IC, IR, and LL are, respectively:

e ∈ arg max
ê∈[0,ē]

∫
ln (W (q))

1

σ
ϕ

(
q − ê
σ

)
dq − C(ê),∫

ln [W (q)]
1

σ
ϕ

(
q − e
σ

)
dq − C(e) ≥ 0,

W (q) ≥ W̄ ∀q.

To simplify notation, we will work with the manager’s indirect utility, u(q) ≡ lnW (q),

so that W (q) = exp [u(q)] . This step is without loss of generality. The next step, which in
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general is not without loss of generality, is to replace the IC by its FOC:

∫
u (q)

(
q − e
σ3

)
ϕ

(
q − e
σ

)
dq − C ′(e)


≥ 0 if e = ē

= 0 if e ∈ (0, ē)

≤ 0 if e = 0

, (54)

where we used the fact that ϕ′(q) = −xϕ(q), so that d
de

[
ϕ
(
q−e
σ

)]
= q−e

σ2 · ϕ
(
q−e
σ

)
. Since

replacing the IC by its FOC is not always valid, after solving the firm’s relaxed program, we

will need to verify that its solution satisfies the IC.

Writing in terms of the manager’s indirect utility, the IR becomes∫
u (q)

1

σ
ϕ

(
q − e
σ

)
dq − C(e) ≥ 0. (55)

It is convenient to multiply both sides of LL by 1
σ
ϕ
(
q−e
σ

)
> 0, rewriting it as:

1

σ
ϕ

(
q − e
σ

)
u (q) ≥ 1

σ
ϕ

(
q − e
σ

)
ln W̄ ∀q. (56)

The principal’s relaxed program is:

max
u(·),e

∫
{q − exp [u(q)]} 1

σ
ϕ

(
q − e
σ

)
dq,

subject to (54), (55) and (56).

As in Grossman and Hart (1983), we break down this program in two parts. First, we

consider the solution of the relaxed program holding each effort e ∈ [0, ē] fixed:

min
u(·)

∫
exp [u(q)]

1

σ
ϕ

(
q − e
σ

)
dq,

subject to (54), (55) and (56).

The optimal contract to implement the lowest effort (e∗ = 0) pays a fixed wage. The

utility given to the manager is set at the lowest level that still satisfies both LL and IR:

u(q) = max{ln W̄ , C(0)} for all q. To see this, notice that a constant utility u(q) = u∗ always

satisfies (54):∫
u∗

q

σ3
ϕ
( q
σ

)
dq − C ′(0) =

u∗

σ3
×
∫
qϕ
( q
σ

)
dq − C ′(0) = −C ′(0) ≤ 0.
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Lemma 5 obtains the solution of the relaxed program for e∗ > 0.

Lemma 5 The optimal contract that implements e∗ > 0 in the relaxed program is:

w(q) =
λ

σ2
·max {q − q∗, 0} ,

where q∗ ≤ e∗ + σ2

λ
W̄ (with equality if the IR does not bind).

Proof. The (infinite-dimensional) Lagrangian gives the following FOC:

− exp [u(q)]
1

σ
ϕ

(
q − e∗

σ

)
+λ

(
q − e∗

σ3

)
ϕ

(
q − e∗

σ

)
+µIR

1

σ
ϕ

(
q − e∗

σ

)
+µLL(q)

1

σ
ϕ

(
q − e∗

σ

)
= 0,

where λ is the multiplier associated with (54), and µLL and µIR are the multipliers associated

with (55) and (56). Since the program corresponds to the minimization of a strictly convex

function subject to linear constraints, the FOC above, along with the standard complementary

slackness conditions and the constraints, are sufficient for an optimum. Substitute exp [u (q)] =

W (q) and simplify the FOC above to obtain:

W (q) = λ
q − e∗

σ2
+ µIR + µLL(q).

Suppose first that the IR does not bind, so that µIR = 0. Then, the FOC becomes

W (q) = λ
q − e∗

σ2
+ µLL(q).

For W (q) > W̄ , complementary slackness gives µLL(q) = 0, so that:

W (q) = λ× q − e∗

σ2
,

which exceeds W̄ if and only if

λ× q − e∗

σ2
> W̄ ⇐⇒ q > e∗ +

σ2W̄

λ
≡ q∗.

For W (q) = W̄ , the FOC becomes:

W̄ = λ
q − e∗

σ2
+ µLL(q) ∴ µLL(q) = W̄ − λq − e

∗

σ2
,
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so that µLL(q) ≥ 0 if and only if

W̄ ≥ λ× q − e∗

σ2
⇐⇒ q ≤ q∗.

Therefore, the optimal contract is

W (q) = max

{
λ (q − e∗)

σ2
, W̄

}
=

{
λ(q−e∗)
σ2 if q ≥ q∗

W̄ if q ≤ q∗
.

Writing in terms of the firm’s payments, we have

w(q) = W (q)− W̄ =
λ

σ2
max {q − q∗, 0} ,

where the last equality uses the definition of q∗. The firm gives the manager an option with

strike price q∗ = e∗ + σ2

λ
W̄ > e∗ and a slope λ

σ2 chosen so that (54) holds (which can be shown

to exist and be unique).

Next, suppose that the IR binds so that µIR ≥ 0. Then, for W (q) > W̄ , we must have

W (q) = λ
q − e∗

σ2
+ µIR,

so that

W (q) > W̄ ⇐⇒ µIR > W̄ − λq − e
∗

σ2
.

For W (q) = W̄ , we have:

W̄ = λ
q − e∗

σ2
+ µIR + µLL(q),

so that µLL(q) ≥ 0 if and only if

µLL(q) = W̄ − λq − e
∗

σ2
− µIR ≥ 0

⇐⇒ W̄ − λq − e
∗

σ2
≥ µIR.

Define the strike price q∗ as the solution to

W̄ − λq
∗ − e∗

σ2
= µIR,
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that is,

q∗ ≡ e∗ +
σ2

λ

(
W̄ − µIR

)
≤ e∗ +

σ2

λ
W̄ .

Combining both conditions, we obtain

W (q) =

{
λ
σ2 (q − q∗) + W̄ if q ≥ q∗

W̄ if q ≤ q∗
,

which again corresponds to an option with strike price q∗ and slope λ
σ2 . Here, λ and q∗ are

chosen so that both (54) and (55) hold with equality.

Lemma 6 gives an upper bound on λ:

Lemma 6 Suppose e∗ > 0 is the effort that solves the firm’s relaxed program. Then the optimal

contract is

w(q) = max

{
λ

σ2
(q − q∗) , 0

}
,

where 0 < λ <
√

2πσe∗ and q∗ ≤ e∗ + σ2

λ
W̄ .

Proof. From Lemma 5, we need to show that λ ≤
√

2πσe∗. Recall that the optimal contract

that implements effort e > 0 is the option:

w(q) = max

{
λ

σ2
(q − q∗) , 0

}
,

where q∗ ≤ σ2

λ
W̄ + e. Since the firm’s net profits q − w(q) are increasing in the strike price

q∗ (holding constant all other variables, including effort), its profits are bounded above by the

profits from offering the option with the highest strike price (q̄ = σ2

λ
W̄ + e ≥ q∗), which equal

e−

[
λ

σ2

∫ ∞
σ2

λ
W̄+e

(
q − e− σ2

λ
W̄

)
1

σ
ϕ

(
q − e
σ

)
dq

]
.

Let z ≡ q − e− σ2

λ
W̄ , so that q = z + e + σ2

λ
W̄ . Note that q ≥ σ2

λ
W̄ + e if and only if z ≥ 0.

Thus, we can rewrite this expression as

e−

[
λ

σ2

∫ ∞
0

z
1

σ
ϕ

(
z + σ2

λ
W̄

σ

)
dz

]
.
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Moreover, since ϕ(z) is decreasing in z for z > 0, it follows that

ϕ

(
z + W̄

λ

σ

)
< ϕ

( z
σ

)
∀z > 0.

Thus, the firm’s profits are strictly less than

e− λ

σ2

∫ ∞
0

z

σ
ϕ
( z
σ

)
dz. (57)

Apply the following change of variables y = z
σ

(so that z = σy, dz = σdy) to write∫ ∞
0

z

σ
ϕ
( z
σ

)
dz = σ

∫ ∞
0

yϕ (y) dy.

Integrating by parts gives ∫ ∞
0

yϕ(y)dy = [−ϕ(y)]∞0 = ϕ(0) =
1√
2π
.

Substituting into (57), the firm’s profits are strictly less than

e− 1√
2π
· λ
σ
.

Since the firm can always obtain a profit of zero by paying zero wages and implementing zero

effort, we must have

e− 1√
2π
· λ
σ
> 0 ⇐⇒ λ <

√
2πσe.

Lemma 7 provides an additional upper bound:

Lemma 7 For any q∗ ∈ R, e ∈ [0, ē], σ > 0 and λ > 0, we have

∫
ln

[
W̄ +

λ

σ2
·max {(q − q∗) , 0}

][(
q − e
σ

)2

− 1

]
1

σ
ϕ

(
q − e
σ

)
dq

≤
∫ [

W̄ +
λ

σ2
·max {(q − q∗) , 0}

] [(
q − e
σ

)2

− 1

]
1

σ
ϕ

(
q − e
σ

)
dq.
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Proof. For notational simplicity, let y ≡ q∗−e
σ

, apply the change of variables z ≡ q−e
σ

, and let

g(z) ≡ W̄ +
λ

σ
·max {z − y, 0} − ln

[
W̄ +

λ

σ
·max {z − y, 0}

]
.

Then, the inequality in Lemma 7 can be written as∫ ∞
−∞

g(z)
(
z2 − 1

)
ϕ (z) dz ≥ 0.

We claim that g(·) is non-decreasing. To see this, note that, for z ≤ y, g(z) = W̄ − ln W̄ (which

is constant in z). For z > y, we have

g′(z) =
λ

σ

(
W̄ − 1 + λ

σ
(z − y)

W̄ + λ
σ

(z − y)

)
,

which is positive for all z > y since W̄ ≥ 1. Since g is non-decreasing, we have g(q) ≥ g(−q)
for q ≥ 0 and d

dq
[g(q)− g(−q)] ≥ 0. Note that, applying the change of variables z̃ = −z and

using the symmetry of (z2 − 1)ϕ (z) around zero, we have:∫ 0

−∞
g(z)

(
z2 − 1

)
ϕ (z) dz = −

∫ ∞
0

g(−z)
(
z2 − 1

)
ϕ (z) dz. (58)

Therefore,∫
g(z) (z2 − 1)ϕ (z) dz =

∫ 0

−∞ g(z) (z2 − 1)ϕ (z) dz +
∫∞

0
g(z) (z2 − 1)ϕ (z) dz

= −
∫∞

0
g(−z) (z2 − 1)ϕ (z) dz +

∫∞
0
g(z) (z2 − 1)ϕ (z) dz

=
∫∞

0
[g(z)− g(−z)] (z2 − 1)ϕ (z) dz

=
∫ 1

0
[g(z)− g(−z)] (z2 − 1)ϕ (z) dz +

∫∞
1

[g(z)− g(−z)] (z2 − 1)ϕ (z) dz

≥
∫ 1

0
[g(1)− g(−1)] (z2 − 1)ϕ (z) dz +

∫∞
1

[g(1)− g(−1)] (z2 − 1)ϕ (z) dz

= [g(1)− g(−1)]
∫∞

0
(z2 − 1)ϕ (z) dz = 0,

where the first line opens the integral between positive and negative values of z, the second line

substitutes (58), the third line combines the terms from the two integrals, and the fourth line

opens the integral between z ≤ 1 and z ≥ 1. The fifth line is the crucial step, which uses the

following two facts: (i) z2 > (<)1 for z > (<)1, and (ii) g(z)− g(−z) is non-decreasing for all

z. Therefore, substituting g(z)− g(−z) by its upper bound where the term inside the integral

is negative, and by its lower bound where it is positive, lowers the value of the integrand. The
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sixth line combines terms and uses the fact that∫ ∞
0

(
z2 − 1

)
ϕ (z) dz = [−zϕ(z)]∞0 = 0.

Lemma 8 shows that the solution of the relaxed program also solves the firm’s program if

the effort cost is sufficiently convex, i.e. the FOA is valid.

Lemma 8 Suppose C ′′(e) ≥ ē
σ

for all e ∈ [0, ē]. Then, the solution of the firm’s program

coincides with the solution of the relaxed program.

Proof. The manager’s utility from choosing effort e is:

U(e; q∗, λ) ≡
∫

ln

[
W̄ +

λ

σ2
·max {(q − q∗) , 0}

]
1

σ
ϕ

(
q − e
σ

)
dq − C(e).

We know from previous results that 0 < λ <
√

2πσe∗. The FOA is valid if

∂2U

∂e2
(e; q∗, λ) ≤ 0

for all e ∈ [0, ē], all q∗ ∈ R, and λ ∈ (0,
√

2πσē). Differentiating gives

∂2U
∂e2

=
∫

ln
[
W̄ + λ

σ2 ·max {(q − q∗) , 0}
]

1
σ
d2

de

[
ϕ
(
q−e
σ

)]
dq − C ′′(e)

= 1
σ2

∫
ln
[
W̄ + λ

σ2 ·max {(q − q∗) , 0}
]

1
σ

[(
q−e
σ

)2 − 1
]
ϕ
(
q−e
σ

)
dq − C ′′(e)

, (59)

where the second line uses the fact that d2

de2

[
ϕ
(
q−e
σ

)]
= 1

σ2

[(
q−e
σ

)2 − 1
]
ϕ
(
q−e
σ

)
. Note that

∫
ln
[
W̄ + λ

σ2 ·max {(q − q∗) , 0}
] [(

q−e
σ

)2 − 1
]

1
σ
ϕ
(
q−e
σ

)
dq

≤
∫ [
W̄ + λ

σ2 ·max {(q − q∗) , 0}
] [(

q−e
σ

)2 − 1
]

1
σ
ϕ
(
q−e
σ

)
dq

= λ
σ2 ·

∫
[max {(q − q∗) , 0}]

[(
q−e
σ

)2 − 1
]

1
σ
ϕ
(
q−e
σ

)
dq

= λ
σ2 ·

∫∞
q∗

(q − q∗)
[(

q−e
σ

)2 − 1
]

1
σ
ϕ
(
q−e
σ

)
dq,

where the inequality uses the result from Lemma 7, the third line follows from
∫ [(

q−e
σ

)2 − 1
]

1
σ
ϕ
(
q−e
σ

)
dq =

0 (a standard normal variable has variance 1), and the fourth line opens the max operator.

Substituting in the expression from (59), we obtain the following sufficient condition for the
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validity of the FOA:

λ

σ4
·
∫ ∞
q∗

(q − q∗)

[(
q − e
σ

)2

− 1

]
1

σ
ϕ

(
q − e
σ

)
dq ≤ C ′′(e) (60)

for all e ∈ [0, ē], q∗ ∈ R, and λ ∈ (0,
√

2πσē).

Let ξ(q∗) ≡
∫∞
q∗

(q − q∗)
[(

q−e
σ

)2 − 1
]

1
σ
ϕ
(
q−e
σ

)
dq. We claim that ξ′ (q∗)

{
>

<

}
0 ⇐⇒

q∗

{
<

>

}
e. Differentiating yields:

ξ′ (q∗) = −
∫ ∞
q∗

[(
q − e
σ

)2

− 1

]
1

σ
ϕ

(
q − e
σ

)
dq. (61)

Note that

d

dq

[
−
(
q − e
σ

)
ϕ

(
q − e
σ

)]
= − 1

σ
ϕ

(
q − e
σ

)
−
(
q − e
σ

)
1

σ
ϕ′
(
q − e
σ

)
=

[(
q − e
σ

)2

− 1

]
1

σ
ϕ

(
q − e
σ

)
,

where the last equality uses the fact that ϕ′(q) = −qϕ(q). Therefore,

∫ [(
q − e
σ

)2

− 1

]
1

σ
ϕ

(
q − e
σ

)
dq = −

(
q − e
σ

)
ϕ

(
q − e
σ

)
.

Substituting back into (61) gives:

ξ′ (q∗) = −
(
q∗ − e
σ

)
ϕ

(
q∗ − e
σ

){
>

<

}
0 ⇐⇒ q∗

{
<

>

}
e.

Therefore, ξ(·) is maximized at q∗ = e, so that, by condition (60), it suffices to show that

λ

σ4
· ξ(e) ≤ C ′′(e). (62)

Evaluating ξ at e gives:

ξ(e) =

∫ ∞
e

(q − e)

[(
q − e
σ

)2

− 1

]
1

σ
ϕ

(
q − e
σ

)
dq.
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Performing the change of variables z ≡ q−e
σ

, we obtain

ξ(e) =

∫ ∞
e

(
q − e
σ

)[(
q − e
σ

)2

− 1

]
ϕ

(
q − e
σ

)
dq = σ

∫ ∞
0

z
(
z2 − 1

)
ϕ (z) dz. (63)

Integrating by parts gives∫
z
(
z2 − 1

)
ϕ (z) dz = −z2ϕ(z) +

∫
zϕ (z) dz,

where we let (z2 − 1)ϕ (z) dz = dv so that v = −zϕ (z), and we let u = z, so that du = dz.

Therefore ∫ ∞
0

z
(
z2 − 1

)
ϕ (z) dz =

∫ ∞
0

zϕ (z) dz.

Using d
dz

[−ϕ(z)] = zϕ (z) , we have∫ ∞
0

z
(
z2 − 1

)
ϕ (z) dz = [−ϕ(z)]+∞0 = ϕ(0) =

1√
2π
.

Substituting into (63), yields

ξ(e) =
σ√
2π
.

Substituting into (62), we obtain the following sufficient condition:

λ√
2πσ3

≤ C ′′(e),

which is true for all e ∈ [0, ē] and all λ ∈ (0,
√

2πσē) if and only if

C ′′(e) ≥ ē

σ2
∀e ∈ [0, ē].

Proposition 5 provides a sufficient condition for the FOA with an additional performance

signal, for a subset of signal distributions.

Proposition 5 We consider the same setting as in Proposition 2, and a signal distribution

such that: (i) h′′s(e) ≤ 0 for all s; (ii) φse linear in e for all s; (iii) hs1(e) ≤ hs2(e), h′s1 (e) ≤
h′s2 (e), and σs1 ≥ σs2 for any s1, s2 with dφ

s1
e

de
> 0 > dφ

s2
e

de
and any e ∈ [0, ē]. Then the FOA is

valid if C ′′(e) ≥
∑

s φ
s
e∗hs (ē)

∑
s
φse
σ3
s

(h′s(e))
2

∑
s

φs
e∗
σs

for all e ∈ [0, ē].
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Proof of Proposition 5: Let ϕ denote the PDF of the standard normal distribution. Let

Ws(q) := W̄ + ws(q) denote the manager’s consumption (i.e., the manager’s initial wealth W̄

plus his pay). His IC, IR, and LL are, respectively:

e ∈ arg max
ê∈[0,ē]

∑
s

φse

∫
ln (Ws(q))

1

σs
ϕ

(
q − hs (ê)

σs

)
dq − C(ê),

∑
s

φse

∫
ln (Ws(q))

1

σs
ϕ

(
q − hs (e)

σs

)
dq − C(e) ≥ 0,

Ws (q) ≥ W̄ ∀q, s.

To simplify notation, we will work with the manager’s indirect utility, us(q) := ln (Ws(q)),

so that Ws(q) = exp[us(q)]. This step is without loss of generality. The next step, which in

general is not without loss of generality, is to replace the IC by its FOC:

∑
s

φse

∫
us (q)

q − hs (e)

σ3
s

ϕ

(
q − hs (e)

σs

)
dq − C ′(e)


≥ 0 if e = ē

= 0 if e ∈ (0, ē)

≤ 0 if e = 0

. (64)

Since replacing the IC by its FOC is not always valid, after solving the firm’s relaxed program,

we will need to verify that its solution satisfies the IC. It is convenient to multiply both sides

of LL by 1
σs
ϕ
(
q−hs(e)
σs

)
φse > 0, rewriting it as:

1

σs
ϕ

(
q − hs (e)

σs

)
φseus (q) ≥ 1

σs
ϕ

(
q − hs (e)

σs

)
φse ln W̄ ∀q, s. (65)

The principal’s relaxed program is:

max
{us(q)}q,s,e

∑
s

φse

∫
{q − exp [us(q)]}

1

σs
ϕ

(
q − hs (e)

σs

)
dq

subject to (64), (65), and

∑
s

φse

∫
us (q)

1

σs
ϕ

(
q − hs (e)

σs

)
dq − C(e) ≥ 0. (66)

As in Grossman and Hart (1983), we break down this program in two parts. First, we consider
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the solution of the relaxed program holding each effort e ∈ [0, ē] fixed:

min
u(·)

∑
s

φse

∫
exp [us(q)]

1

σs
ϕ

(
q − hs (e)

σs

)
dq

subject to (64), (65), and (66).

The optimal contract to implement the lowest effort (e∗ = 0) pays a fixed wage. The

utility given to the manager is set at the lowest level that still satisfies both the LL and IR:

us(q) = max{ln W̄ , C(0)} for all q, s.

Lemma 9 obtains the solution of the relaxed program for e∗ > 0.

Lemma 9 The optimal contract that implements e∗ > 0 in the relaxed program is:

ws(q) =
λ

σ2
s

·max {q − q∗s , 0} ,

where q∗s ≤ σ2
s
W̄
λ

+ hs (e∗) (with equality if the IR does not bind).

Proof. The (infinite-dimensional) Lagrangian associated with this program is:

∑
s

φse

∫
exp [us(q)]

1

σs
ϕ

(
q − hs (e∗)

σs

)
dq

+λ

[∑
s

φse

∫
us (q)

q − hs (e∗)

σ3
s

ϕ

(
q − hs (e∗)

σs

)
dq − C ′(e∗)

]

+µIR

[∑
s

φse

∫
us (q)

1

σs
ϕ

(
q − hs (e∗)

σs

)
dq − C(e∗)

]

+µLL(q, s)
1

σs
ϕ

(
q − hs (e∗)

σs

)
φseus (q) .

The FOC is:

− exp [us(q)]
1

σs
ϕ

(
q − hs (e∗)

σs

)
φse + λ

q − hs (e∗)

σ3
s

ϕ

(
q − hs (e∗)

σs

)
φse

+µIR
1

σs
ϕ

(
q − hs (e∗)

σs

)
φse + µLL(q, s)

1

σs
ϕ

(
q − hs (e∗)

σs

)
φse = 0,

where λ is the multiplier associated with (64), and µLL and µIR are the multipliers associated

with (65) and (66). Since the program corresponds to the minimization of a strictly convex
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function subject to linear constraints, the FOC above, along with the standard complementary

slackness conditions and the constraints, are sufficient for an optimum. Substitute exp [us (q)] =

Ws(q) and simplify the FOC above to obtain:

Ws(q) = λ
q − hs (e∗)

σ2
s

+ µIR + µLL(q, s).

By complementary slackness, we must have µIR ≥ 0 (with µIR = 0 if IR does not bind).

Similarly, µLL(q) ≥ 0 with equality if Ws(q) > W̄ . Thus, for Ws(q) > W̄ , we must have

Ws(q) = λ
q − hs (e∗)

σ2
s

+ µIR > W̄ ,

which can be rearranged as

q > σ2
s

W̄ − µIR
λ

+ hs (e∗) =: q∗s .

For Ws(q) = W̄ , we must have

µLL(q, s) = W̄ − λq − hs (e∗)

σ2
s

− µIR ≥ 0 ⇐⇒ q ≤ q∗s .

Combining both conditions, we obtain

Ws(q) = max

{
λ
q − hs (e∗)

σ2
s

+ µIR, W̄

}
= W̄ +

λ

σ2
s

·max {q − q∗s , 0} .

Thus,

ws(q) =
λ

σ2
s

·max {q − q∗s , 0} .

Finally, since µIR ≥ 0,

q∗s = σ2
s

W̄ − µIR
λ

+ hs (e∗) ≤ hs (e∗) + σ2
s

W̄

λ
,

with equality if IR does not bind (in which case, we have µIR = 0).

Lemma 10 gives an upper bound on λ:

Lemma 10 Suppose e∗ > 0 is the effort that solves the firm’s relaxed program. Then the
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optimal contract is

ws(q) = max

{
λ

σ2
s

(q − q∗s) , 0

}
,

where 0 < λ <
√

2π
∑
s φ

s
e∗hs(e

∗)∑
s

φs
e∗
σ2
s

and q∗s ≤ hs (e∗) + σ2
s
W̄
λ

.

Proof. From Lemma 10, we need to show that λ ≤
√

2π
∑
s φ

s
e∗hs(e

∗)∑
s

φs
e∗
σ2
s

. Recall that the optimal

contract that implements effort e∗ > 0 is the option:

ws(q) = max

{
λ

σ2
s

(q − q∗s) , 0

}
,

where q∗s ≤ hs (e∗) + σ2
s
W̄
λ

. Since the firm’s net profits q − w(q) are increasing in the strike

price q∗s (holding constant all other variables, including effort), its profits are bounded above

by the profits from offering the option with the highest strike price for each signal s (q̄s =

hs (e∗) + σ2
s
W̄
λ
≥ q∗s), which equal

∑
s

φse∗hs (e∗)−
∑
s

φse∗

[
λ

σ2
s

∫ ∞
hs(e∗)+σ2

s
W̄
λ

(
q − hs (e∗)− σ2

s

W̄

λ

)
1

σs
ϕ

(
q − hs (e∗)

σs

)
dq

]
.

For each s, let z ≡ q−hs (e∗)−σ2
s
W̄
λ

, so that q = z+hs (e∗)+σ2
s
W̄
λ

. Note that q ≥ hs (e∗)+σ2
s
W̄
λ

if and only if z ≥ 0. Thus, we can rewrite this expression as

∑
s

φse∗hs (e∗)−
∑
s

φse∗

[
λ

σ2
s

∫ ∞
0

z
1

σs
ϕ

(
z + σ2

s

λ
W̄

σs

)
dz

]
.

Moreover, since ϕ(z) is decreasing in z for z > 0, it follows that, for any s,

ϕ

(
z + σ2

s
W̄
λ

σs

)
< ϕ

(
z

σs

)
∀z > 0.

Thus, the firm’s profits are strictly less than

∑
s

φse∗hs (e∗)−
∑
s

φse∗
λ

σ2
s

∫ ∞
0

z

σs
ϕ

(
z

σs

)
dz. (67)
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Apply the following change of variables y = z
σs

(so that z = σsy, dz = σsdy) to write∫ ∞
0

z

σs
ϕ

(
z

σs

)
dz = σs

∫ ∞
0

yϕ (y) dy.

Integrating by parts gives ∫ ∞
0

yϕ(y)dy = [−ϕ(y)]∞0 = ϕ(0) =
1√
2π
.

Substituting into (67), the firm’s profits are strictly less than

∑
s

φse∗hs (e∗)−
∑
s

φse∗
1√
2π
· λ
σs
.

Since the firm can always obtain a profit of zero by paying zero wages and implementing zero

effort, we must have

∑
s

φse∗hs (e∗)− λ√
2π

∑
s

φse∗

σs
> 0 ⇐⇒ λ <

√
2π
∑

s φ
s
e∗hs (e∗)∑

s

φs
e∗
σs

.

Lemma 11 provides an additional upper bound:

Lemma 11 For any q∗s ∈ R ∀s, e ∈ [0, ē], e∗ ∈ [0, ē], σs > 0∀s, and λ > 0, we have

∑
s

φse

∫
ln

[
W̄ +

λ

σ2
s

·max {q − q∗s , 0}
]

(h′s(e))
2

[
(q − hs (e))2

σ4
s

− 1

σ2
s

]
1

σs
ϕ

(
q − hs (e)

σs

)
dq

≤
∑
s

φse

∫ [
W̄ +

λ

σ2
s

·max {q − q∗s , 0}
]

(h′s(e))
2

[
(q − hs (e))2

σ4
s

− 1

σ2
s

]
1

σs
ϕ

(
q − hs (e)

σs

)
dq.

Proof. For notational simplicity, for each s, let ys := q∗s−hs(e)
σs

, apply the change of variables

zs := q−hs(e)
σs

, and let

gs(z) := W̄ +
λ

σs
·max {z − ys, 0} − ln

[
W̄ +

λ

σs
·max {z − ys, 0}

]
.
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Then, the inequality in Lemma 11 can be written as

∑
s

φse
σ3
s

(h′s(e))
2

∫ ∞
−∞

gs(z)
(
z2 − 1

)
ϕ (z) dz ≥ 0. (68)

The terms φse, σs, and (h′s(e))
2 are positive, so it remains to prove that this integral is positive.

We claim that, for each s, gs(·) is non-decreasing. To see this, notice that, for zs ≤ ys ,

gs(z) = W̄ − ln W̄ (which is constant in zs). For zs > ys, we have

g′s(z) =
λ

σs

(
W̄ − 1 + λ

σs
(z − y)

W̄ + λ
σs

(z − y)

)
,

which is positive for all zs > ys since W̄ ≥ 1. Since g is non-decreasing, we have gs(q) ≥ gs(−q)
for q ≥ 0 and d

dq
[gs(q)− gs(−q)] ≥ 0. Note that, applying the change of variables z̃ = −z and

using the symmetry of (z2 − 1)ϕ (z) around zero, we have:∫ 0

−∞
gs(z)

(
z2 − 1

)
ϕ (z) dz = −

∫ ∞
0

gs(−z)
(
z2 − 1

)
ϕ (z) dz. (69)

Therefore,∫
gs(z) (z2 − 1)ϕ (z) dz =

∫ 0

−∞ gs(z) (z2 − 1)ϕ (z) dz +
∫∞

0
gs(z) (z2 − 1)ϕ (z) dz

= −
∫∞

0
gs(−z) (z2 − 1)ϕ (z) dz +

∫∞
0
gs(z) (z2 − 1)ϕ (z) dz

=
∫∞

0
[gs(z)− gs(−z)] (z2 − 1)ϕ (z) dz

=
∫ 1

0
[gs(z)− gs(−z)] (z2 − 1)ϕ (z) dz +

∫∞
1

[gs(z)− gs(−z)] (z2 − 1)ϕ (z) dz

≥
∫ 1

0
[gs(1)− gs(−1)] (z2 − 1)ϕ (z) dz +

∫∞
1

[gs(1)− gs(−1)] (z2 − 1)ϕ (z) dz

= [gs(1)− gs(−1)]
∫∞

0
(z2 − 1)ϕ (z) dz = 0,

where the first line opens the integral between positive and negative values of z, the second

line substitutes (69), the third line combines the terms from the two integrals, and the fourth

line opens the integral between z ≤ 1 and z ≥ 1. The fifth line is the crucial step, which uses

the following two facts: (i) z2 > (<)1 for z > (<)1, and (ii) gs(z) − gs(−z) is non-decreasing

for all z. Therefore, substituting gs(z) − gs(−z) by its upper bound where the term inside

the integral is negative, and by its lower bound where it is positive, lowers the value of the

integrand. The sixth line combines terms and uses the fact that∫ ∞
0

(
z2 − 1

)
ϕ (z) dz = [−zϕ(z)]∞0 = 0.
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Lemma 12 shows that the solution of the relaxed program also solves the firm’s program if

the effort cost is sufficiently convex, i.e. the FOA is valid.

Lemma 12 Suppose C ′′(e) ≥
∑

s φ
s
e∗hs (ē)

∑
s
φse
σ3
s

(h′s(e))
2

∑
s

φs
e∗
σs

for all e ∈ [0, ē]. Then, the solution of

the firm’s program coincides with the solution of the relaxed program.

Proof. The manager’s utility from choosing effort e is:

U(e; {q∗s}, λ) :=
∑
s

φse

∫
ln

[
W̄ +

λ

σ2
s

·max {q − q∗s , 0}
]

1

σs
ϕ

(
q − hs (e)

σs

)
dq − C(e).

We know from previous results that 0 < λ <
√

2π
∑
s φ

s
e∗hs(ē)∑

s

φs
e∗
σs

. The FOA is valid if

∂2U

∂e2
(e; {q∗s}, λ) ≤ 0

for all e ∈ [0, ē], all q∗s ∈ R, and λ ∈
(

0,
√

2π
∑
s φ

s
e∗hs(ē)∑

s

φs
e∗
σs

)
. Differentiating gives

∂2U
∂e2

=
∑

s

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
1
σs

d2

de2

[
φseϕ

(
q−hs(e)
σs

)]
dq − C ′′(e)

=
∑

s

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
1
σs

d
de

[
dφse
de
ϕ
(
q−hs(e)
σs

)
+ φse

d
de
ϕ
(
q−hs(e)
σs

)]
dq − C ′′(e)

=
∑

s

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
1
σs

[
d2φse
de2

ϕ
(
q−hs(e)
σs

)
+ 2dφ

s
e

de
d
de
ϕ
(
q−hs(e)
σs

)
+φse

d2

de2
ϕ
(
q−hs(e)
σs

)]
dq − C ′′(e)

=
∑

s
d2φse
de2

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
1
σs
ϕ
(
q−hs(e)
σs

)
dq

+2
∑

s
dφse
de

h′s(e)
σ2
s

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
q−hs(e)
σs

ϕ
(
q−hs(e)
σs

)
dq

+
∑

s
φse
σ2
s

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
1
σs

×
[
(h′s(e))

2
[

(q−hs(e))2

σ2
s

− 1
]

+ h′′s(e) (q − hs (e))
]
ϕ
(
q−hs(e)
σs

)
dq − C ′′(e)

,

(70)

where the last equality uses the fact that

d2

de2

[
ϕ

(
q − hs (e)

σs

)]
=

1

σ2
s

[
(h′s(e))

2

(
(q − hs (e))2

σ2
s

− 1

)
+ h′′s(e) (q − hs (e))

]
ϕ

(
q − hs (e)

σs

)
.

24

Electronic copy available at: https://ssrn.com/abstract=2488144



First, with φse linear in e (assumption (ii) in Proposition 5), d2φse
de2

= 0∀s, so that the first

term on the RHS of (70) is zero.

Second, the second term on the RHS of (70) can be rewritten as:

2
∑
s

dφse
de

h′s (e)

σ2
s

∫
ln

[
W̄ +

λ

σ2
s

·max {q − q∗s , 0}
]
q − hs (e)

σs
ϕ

(
q − hs (e)

σs

)
dq

= 2
∑
s

dφse
de

h′s (e)

σ2
s

[ ∫ q∗s

−∞
ln
(
W̄
) q − hs (e)

σs
ϕ

(
q − hs (e)

σs

)
dq

+

∫ ∞
q∗s

ln

(
W̄ +

λ

σ2
s

(q − q∗s)
)
q − hs (e)

σs
ϕ

(
q − hs (e)

σs

)
dq

]
, (71)

where q∗s = σ2
s
W̄−µIR

λ
+ hs (e∗). For a given e, letting ζs := q−hs(e)

σs
and ζ∗s := q∗s−hs(e)

σs
, we have:∫

ln

[
W̄ +

λ

σ2
s

·max {q − q∗s , 0}
]
q − hs (e)

σs

1

σs
ϕ

(
q − hs (e)

σs

)
dq

=

∫
ln

[
W̄ +

λ

σs
·max {ζ − ζ∗s , 0}

]
ζϕ (ζ) dζ

=

∫ ζ∗s

−∞
ln
(
W̄
)
ζϕ (ζ) dζ +

∫ ∞
ζ∗s

ln

[
W̄ +

λ

σs
(ζ − ζ∗s )

]
ζϕ (ζ) dζ ≥ 0, (72)

where the inequality follows from W̄ ≥ 1 and the symmetry of the normal distribution. This

shows that, in equation (71), the term in brackets is increasing in hs(e) and in h′s (e), and

decreasing in σs, all else equal. Note that, as
∑

s φ
s
e = 1∀e, we have

∑
s
dφse
de

= 0, which implies

∑
s| dφ

s
e

de
>0

dφse
de

= −
∑

s| dφ
s
e

de
<0

dφse
de

.

In sum, with assumption (iii), the expression in (71) is negative.

Third, we now show that the third term on the RHS of (70) is negative. With φse ≥ 0 and

σs > 0 for all s, with h′′s(e) ≤ 0 for all s (assumption (i)), and with equation (72), we have:

∑
s

φse
σs
h′′s(e)

∫
ln

[
W̄ +

λ

σ2
s

·max {q − q∗s , 0}
]
q − hs (e)

σs

1

σs
ϕ

(
q − hs (e)

σs

)
dq ≤ 0. (73)
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Moreover:∑
s
φse
σ2
s

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

] [
(h′s(e))

2
[

(q−hs(e))2

σ2
s

− 1
]

+ h′′s(e) (q − hs (e))
]

1
σs
ϕ
(
q−hs(e)
σs

)
dq

=
∑

s
φse
σ2
s

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
(h′s(e))

2
[

(q−hs(e))2

σ2
s

− 1
]

1
σs
ϕ
(
q−hs(e)
σs

)
dq

+
∑

s
φse
σs
h′′s(e)

∫
ln
[
W̄ + λ

σ2
s
·max {q − q∗s , 0}

]
q−hs(e)
σs

1
σs
ϕ
(
q−hs(e)
σs

)
dq

≤
∑

s
φse
σ2
s
(h′s(e))

2
∫ [

W̄ + λ
σ2
s
·max {q − q∗s , 0}

] [
(q−hs(e))2

σ2
s

− 1
]

1
σs
ϕ
(
q−hs(e)
σs

)
dq

=
∑

s λ
φse
σ4
s
(h′s(e))

2 ·
∫

max {q − q∗s , 0}
[

(q−hs(e))2

σ2
s

− 1
]

1
σs
ϕ
(
q−hs(e)
σs

)
dq

=
∑

s λ
φse
σ4
s
(h′s(e))

2 ·
∫∞
q∗s

(q − q∗s)
[

(q−hs(e))2

σ2
s

− 1
]

1
σs
ϕ
(
q−hs(e)
σs

)
dq,

where the first equality separates the sum into two components, the inequality that follows

uses the result from Lemma 11 and equation (73), the next equality follows from

∫ [(
q − hs (e)

σs

)2

− 1

]
1

σs
ϕ

(
q − hs (e)

σs

)
dq = 0,

(a standard normal variable has variance 1), and the last equality opens the max operator.

Substituting in the expression from (70), we obtain the following sufficient condition for the

validity of the FOA:

λ
∑
s

φse
σ4
s

(h′s (e))
2 ·
∫ ∞
q∗s

(q − q∗s)

[(
q − hs (e)

σs

)2

− 1

]
1

σs
ϕ

(
q − hs (e)

σs

)
dq ≤ C ′′(e) (74)

for all e ∈ [0, ē], q∗s ∈ R, and λ ∈
(

0,
√

2π
∑
s φ

s
e∗hs(ē)∑

s

φs
e∗
σs

)
. Let

ξs(q
∗
s) :=

∫ ∞
q∗s

(q − q∗s)

[(
q − hs (e)

σs

)2

− 1

]
1

σs
ϕ

(
q − hs (e)

σs

)
dq.

We claim that

ξ′s(q
∗
s)

{
>

<

}
0 ⇐⇒ q∗s

{
<

>

}
hs (e) . (75)

Differentiating yields:

ξ′s(q
∗
s) = −

∫ ∞
q∗s

[(
q − hs (e)

σs

)2

− 1

]
1

σs
ϕ

(
q − hs (e)

σs

)
dq. (76)
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Note that

d

dq

[
−
(
q − hs (e)

σs

)
ϕ

(
q − hs (e)

σs

)]
= − 1

σs
ϕ

(
q − hs (e)

σs

)
−
(
q − hs (e)

σs

)
1

σs
ϕ′
(
q − hs (e)

σs

)
=

[(
q − hs (e)

σs

)2

− 1

]
1

σs
ϕ

(
q − hs (e)

σs

)
,

where the last equality uses the fact that ϕ′(q) = −qϕ(q). Therefore,

∫ [(
q − hs (e)

σs

)2

− 1

]
1

σs
ϕ

(
q − hs (e)

σs

)
dq = −

(
q − hs (e)

σs

)
ϕ

(
q − hs (e)

σs

)
.

Substituting back into (76) gives:

ξ′s(q
∗
s) = −

(
q∗s − hs (e)

σs

)
ϕ

(
q∗s − hs (e)

σs

){
>

<

}
0 ⇐⇒ q∗s

{
<

>

}
hs (e) .

Therefore, ξs(·) is maximized at q∗s = hs(e), so that, by condition (74), it suffices to show that

λ
∑
s

φse
σ4
s

(h′s (e))
2 · ξs(hs(e)) ≤ C ′′(e), (77)

for all e ∈ [0, ē] and λ ∈
(

0,
√

2π
∑
s φ

s
e∗hs(ē)∑

s

φs
e∗
σs

)
. Evaluating ξs at hs(e) gives:

ξs(hs(e)) =

∫ ∞
hs(e)

q − hs (e)

σs

[(
q − hs (e)

σs

)2

− 1

]
ϕ

(
q − hs (e)

σs

)
dq.

Performing the change of variables zs ≡ q−hs(e)
σs

, we obtain

ξs(hs(e)) = σs

∫ ∞
0

z
(
z2 − 1

)
ϕ (z) dz. (78)

Integrating by parts gives∫
z
(
z2 − 1

)
ϕ (z) dz = −z2ϕ(z) +

∫
zϕ (z) dz,

where we let (z2 − 1)ϕ (z) dz = dv so that v = −zϕ (z), and we let u = z, so that du = dz.
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Therefore ∫ ∞
0

z
(
z2 − 1

)
ϕ (z) dz =

∫ ∞
0

zϕ (z) dz.

Using d
dz

[−ϕ(z)] = zϕ (z) , we have∫ ∞
0

z
(
z2 − 1

)
ϕ (z) dz = [−ϕ(z)]+∞0 = ϕ(0) =

1√
2π
.

Substituting into (78), yields

ξs(hs(e)) =
σs√
2π
.

Substituting into (77), we obtain the following sufficient condition:

λ√
2π

∑
s

φse
σ3
s

(h′s (e))
2 ≤ C ′′(e),

which is true for all e ∈ [0, ē] and all λ ∈
(

0,
√

2π
∑
s φ

s
e∗hs(ē)∑

s

φs
e∗
σs

)
if

∑
s

φse∗hs (ē)

∑
s
φse
σ3
s

(h′s (e))2∑
s

φs
e∗
σs

≤ C ′′(e) ∀e ∈ [0, ē].
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