ACTIVISM, STRATEGIC TRADING, AND MARKET LIQUIDITY

Kerry.E.Back Rice University

Pierre Collin-Dufresne EPFL, SFI and CEPR

Vyacheslav (Slava) Fos Boston College

Tao Li City University Hong Kong

> Alexander Ljungqvist NYU and NBER

Share-holder Activism

- Activists play central role in modern corporate governance and are often successful in increasing the value of targeted companies (Icahn, Buffett, Ackman, Peltz, Loeb).
- Feb 2015 issue of The Economist called them "Capitalism's unlikely heroes."
 - Assets under management more than doubled since 2008 to close to \$120 billion of capital in 2014, where it attracted a fifth of all flows into hedge funds.
 - According to the Economist: "Last year Activists launched 344 campaigns against public companies, large and small. In the past five years one company in two in the S&P 500 index of Americas most valuable listed firms has had a big activist fund on its share register, and one in seven has been on the receiving end of an activist attack."

Share-holder Activism

ACTIVISM: SCHEDULE 13D DISCLOSURE RULES

- Activists typically accumulate shares by trading anonymously in secondary markets.
- When their stake hits 5%, SEC requires they disclose within 10 days:
 - (I) their holdings and intentions (Brav et al. 2008)
 (e.g., Corporate governance action, Management shake-up, M&A transaction, Capital structure change, Cost reduction measures, Dividend payouts, Share buybacks, ...)
 - ${\rm (II)}\,$ all their trades during prior 60 days (CD and Fos (2015)):

- Schedule 13D activists:
 - own 7.2% stake on average on the filing date
 - increase share-holder value significantly (+6% excess returns in 30 days pre-filing) and persistently
 - target more liquid stocks (and trade when liquidity is high).

- Schedule 13D activists:
 - own 7.2% stake on average on the filing date
 - increase share-holder value significantly (+6% excess returns in 30 days pre-filing) and persistently
 - target more liquid stocks (and trade when liquidity is high).
- Recently senators Baldwin of Wisconsin and Merkley of Oregon propose new legislature (the "Brokaw Act") to shorten the disclosure window to 2 days to "remove the opportunity for risk-less gains that activists achieve."

- Schedule 13D activists:
 - own 7.2% stake on average on the filing date
 - increase share-holder value significantly (+6% excess returns in 30 days pre-filing) and persistently
 - target more liquid stocks (and trade when liquidity is high).
- Recently senators Baldwin of Wisconsin and Merkley of Oregon propose new legislature (the "Brokaw Act") to shorten the disclosure window to 2 days to "remove the opportunity for risk-less gains that activists achieve."
- Big law firms such as Wachtell, Lipton, Rosen and Katz lobby the SEC to review the 13D disclosure rules to make it more difficult for activists to acquire shares *"in the interest of transparency and fairness for small shareholders."*

- Schedule 13D activists:
 - own 7.2% stake on average on the filing date
 - increase share-holder value significantly (+6% excess returns in 30 days pre-filing) and persistently
 - target more liquid stocks (and trade when liquidity is high).
- Recently senators Baldwin of Wisconsin and Merkley of Oregon propose new legislature (the "Brokaw Act") to shorten the disclosure window to 2 days to "remove the opportunity for risk-less gains that activists achieve."
- Big law firms such as Wachtell, Lipton, Rosen and Katz lobby the SEC to review the 13D disclosure rules to make it more difficult for activists to acquire shares *"in the interest of transparency and fairness for small shareholders."*
- \Rightarrow Raises questions about economic efficiency (and market liquidity).

Background

- Link between market liquidity (price efficiency), corporate governance (activism), and firm value (economic efficiency):
 - Suppose activist can create (or destroy) value at some cost (e.g., governance).
 - Profitability depends on ability to buy (or sell) shares before market reflects full value (Maug (1998)).
 - Conversely, if market reflects value of activism, market liquidity may allow activist to sell out of her stake and hurt share-holders (Coffee (1991), Bhide (1993)).

Background

- Link between market liquidity (price efficiency), corporate governance (activism), and firm value (economic efficiency):
 - Suppose activist can create (or destroy) value at some cost (e.g., governance).
 - Profitability depends on ability to buy (or sell) shares before market reflects full value (Maug (1998)).
 - Conversely, if market reflects value of activism, market liquidity may allow activist to sell out of her stake and hurt share-holders (Coffee (1991), Bhide (1993)).
- Kyle (1985) proposes seminal model of strategic trading by informed investor:
 - Risk-neutral trader knows exogenous firm value V
 - Market marker sets price equal to expected value given she observes only total order flow (equal to informed trading plus noise).
 - \Rightarrow (a) Optimal trading strategy, (b) Equilibrium price dynamics, (c) Market liquidity.

BACKGROUND

- Link between market liquidity (price efficiency), corporate governance (activism), and firm value (economic efficiency):
 - Suppose activist can create (or destroy) value at some cost (e.g., governance).
 - Profitability depends on ability to buy (or sell) shares before market reflects full value (Maug (1998)).
 - Conversely, if market reflects value of activism, market liquidity may allow activist to sell out of her stake and hurt share-holders (Coffee (1991), Bhide (1993)).
- Kyle (1985) proposes seminal model of strategic trading by informed investor:
 - Risk-neutral trader knows exogenous firm value V
 - Market marker sets price equal to expected value given she observes only total order flow (equal to informed trading plus noise).
 - \Rightarrow (a) Optimal trading strategy, (b) Equilibrium price dynamics, (c) Market liquidity.
- We endogenize the liquidation value $V(X_T)$ by modeling the effort choice of the activist as a function of the accumulated stake.

Background Model Setup Equilibrium Economic efficiency and market liquidity

Types of activism

- Activist asks to increase payouts (larger effort leads to a larger change in firm value)
- Activist risk arbitrageur influences an M&A deal (larger effort leads to a higher probability of success)
- Activist requires to fire a CEO (binary outcome and non-binary effort)
- Activist nominates an alternative slate of board members (the outcome depends on activist's effort)

• ...

Background Model Setup Equilibrium Economic efficiency and market liquidity

Types of activism

- Activist asks to increase payouts (larger effort leads to a larger change in firm value)
- Activist risk arbitrageur influences an M&A deal (larger effort leads to a higher probability of success)
- Activist requires to fire a CEO (binary outcome and non-binary effort)
- Activist nominates an alternative slate of board members (the outcome depends on activist's effort)

• ...

It is an open question whether and how the relation between market liquidity and economic efficiency depends on the activism technology.

Background Model Setup Equilibrium Economic efficiency and market liquidity

Related Literature

- The microstructure literature Kyle, 1985; Glosten and Milgrom, 1985; Easley and O'Hare, 1987; Back, 1992
- Take-over literature Grossman and Hart (1980), Shleifer and Vishny (1986), Kyle and Vila (1991)
- Corporate governance literature Coffee (1991), Bhide (1993), Admati, Pfleiderer, and Zechner (1994), Maug (1998)
- Dynamic model of governance DeMarzo and Urosevic (2006), Back, Li, Ljungqvist (2014), CD and Fos (2014)
- Market efficiency and disclosure rules: Grossman and Stiglitz (1980), Fishman and Haggerty (1995)
- Insider trading: Glosten (1989), Fishman and Haggerty (1992)

Background Model Setup Equilibrium Economic efficiency and market liquidity

Model Setup

• Given a price function $P(t, Y_t)$, the activist seeks to maximize

$$\max_{v,\theta} \mathsf{E}\left[v X_T - C(v) - \int_0^T P(t, Y_t) \theta_t \, \mathrm{d}t \mid X_0\right].$$

where

- C(v) is arbitrary (convex) effort cost paid by activist to achieve v.
- $X_t = X_0 + \int_0^t \theta_s ds$ is aggregate stock position of activist.

(1)

Background Model Setup Equilibrium Economic efficiency and market liquidity

Model Setup

• Given a price function $P(t, Y_t)$, the activist seeks to maximize

$$\max_{v,\theta} \mathsf{E}\left[v X_{T} - C(v) - \int_{0}^{T} P(t, Y_{t}) \theta_{t} \, \mathrm{d}t \mid X_{0}\right]. \tag{1}$$

where

- C(v) is arbitrary (convex) effort cost paid by activist to achieve v.
- $X_t = X_0 + \int_0^t \theta_s ds$ is aggregate stock position of activist.
- Market Maker has prior $X_0 \sim N(\mu_X, \sigma_X^2)$ and observes total order flow Y_t :

$$dY_t = \theta_t dt + \sigma dZ_t$$

where Z_t is standard Brownian motion.

Background Model Setup Equilibrium Economic efficiency and market liquidity

Model Setup

• Given a price function $P(t, Y_t)$, the activist seeks to maximize

$$\max_{v,\theta} \mathsf{E}\left[v X_{T} - C(v) - \int_{0}^{T} P(t, Y_{t})\theta_{t} \,\mathrm{d}t \mid X_{0}\right]. \tag{1}$$

where

- C(v) is arbitrary (convex) effort cost paid by activist to achieve v.
- $X_t = X_0 + \int_0^t \theta_s ds$ is aggregate stock position of activist.
- Market Maker has prior $X_0 \sim N(\mu_X, \sigma_X^2)$ and observes total order flow Y_t :

$$dY_t = \theta_t dt + \sigma dZ_t$$

where Z_t is standard Brownian motion.

• An equilibrium is a pair (P, θ) s.t. trading strategy θ maximizes (1) given P and

$$P(t, Y_t) = \mathsf{E}\left[V(X_T) \mid \mathcal{F}_t^Y\right]$$
(2)

for each t, given θ and where $V(x) = \operatorname{argmax}_{v} \{ vx - C(v) \}$

Background **Model Setup** Equilibrium Economic efficiency and market liquidity

Some Examples of Cost function

• Symmetric quadratic (continuous) cost: $C(v) = (v - v_0)^2/(2\psi)$:

Linear $V(x) = v_0 + \psi x$

Background Model Setup Equilibrium Economic efficiency and market liquidity

Some Examples of Cost function

• Symmetric quadratic (continuous) cost: $C(v) = (v - v_0)^2/(2\psi)$:

Linear $V(x) = v_0 + \psi x$

• Asymmetric Quadratic cost:
$$C(v) = \begin{cases} (v - v_0)^2/(2\psi) & \text{if } v \ge v_0 \,, \\ \infty & \text{otherwise} \,. \end{cases}$$

Piece-wise linear and convex $V(x) = v_0 + \psi x^+$

Background Model Setup Equilibrium Economic efficiency and market liquidity

Some Examples of Cost function

• Symmetric quadratic (continuous) cost: $C(v) = (v - v_0)^2/(2\psi)$:

Linear $V(x) = v_0 + \psi x$

• Asymmetric Quadratic cost:
$$C(v) = \begin{cases} (v - v_0)^2 / (2\psi) & \text{if } v \ge v_0, \\ \infty & \text{otherwise}. \end{cases}$$

Piece-wise linear and convex $V(x) = v_0 + \psi x^+$

• Exponential case $C(v) = \frac{1}{\psi} v \ln(\frac{v}{v_0}) - \frac{1}{\psi} v$

Strictly convex $V(x) = v_0 e^{\psi x}$

Background Model Setup Equilibrium Economic efficiency and market liquidity

Some Examples of Cost function

• Symmetric quadratic (continuous) cost: $C(v) = (v - v_0)^2/(2\psi)$:

Linear $V(x) = v_0 + \psi x$

• Asymmetric Quadratic cost:
$$C(v) = \begin{cases} (v - v_0)^2 / (2\psi) & \text{if } v \ge v_0, \\ \infty & \text{otherwise}. \end{cases}$$

Piece-wise linear and convex $V(x) = v_0 + \psi x^+$

• Exponential case $C(v) = \frac{1}{\psi} v \ln(\frac{v}{v_0}) - \frac{1}{\psi} v$

Strictly convex $V(x) = v_0 e^{\psi x}$

• Binary (all or nothing): It costs c > 0 to increase stock value from v_0 to $v_0 + \Delta$.

Digital
$$V(x) = v_0 + \Delta \mathbf{1}_{[c/\Delta,\infty)}(x)$$

Equilibrium

Theorem

The pricing rule $P(t, Y_t) = E[h(Y_T) | \mathcal{F}_t^Y]$ with $h(y) = V(\mu_x + \Lambda y)$ and the trading strategy:

$$\theta_t = \frac{1}{T - t} \frac{(X_t - \mu_x - \Lambda Y_t)}{\Lambda - 2}, \qquad (3)$$

where $\Lambda = 1 + \sqrt{1 + \frac{\sigma_x^2}{\sigma^2 T}}$ only depends on the signal to noise ratio, constitute an equilibrium such that:

- $dP(t, Y_t) = \lambda(t, Y_t) dY_t$ with $\lambda(t, y) = \frac{\partial P(t, y)}{\partial y}$.
- Price impact $\lambda(t, Y_t)$ is a martingale.
- $P(T, Y_T) = V(X_T)$ almost surely.
- $\mathsf{E}[\theta_t \mid \mathcal{F}_t^Y] = 0.$

•
$$X_T \sim \text{Normal}\left[\mu_x, (\sigma\sqrt{T} + \sqrt{\sigma^2 T + \sigma_x^2})^2\right].$$

Background Model Setup Equilibrium Economic efficiency and market liquidity

Equilibrium trading strategy

- $dY_t = \theta_t dt + \sigma dZ_t$ is a Brownian Motion with volatility σ on its own (i.e., market maker's) filtration
 - This implies that the optimal trading strategy is inconspicuous.

Background Model Setup Equilibrium Economic efficiency and market liquidity

EQUILIBRIUM TRADING STRATEGY

- $dY_t = \theta_t dt + \sigma dZ_t$ is a Brownian Motion with volatility σ on its own (i.e., market maker's) filtration
 - This implies that the optimal trading strategy is inconspicuous.
- Remarkably, the optimal trading strategy, $\theta_t = \frac{1}{T-t} \frac{(X_t \mu_x \Lambda Y_t)}{\Lambda 2}$, is independent of the effort cost (C(v), V(x)) when expressed as a function of Y_t, X_t .
 - Instead, the cost function C(v) determines V(x) and thus affects the price function P(t, Y) and the amount of effort expended.

Background Model Setup Equilibrium Economic efficiency and market liquidity

EQUILIBRIUM TRADING STRATEGY

- $dY_t = \theta_t dt + \sigma dZ_t$ is a Brownian Motion with volatility σ on its own (i.e., market maker's) filtration
 - This implies that the optimal trading strategy is inconspicuous.
- Remarkably, the optimal trading strategy, $\theta_t = \frac{1}{T-t} \frac{(X_t \mu_x \Lambda Y_t)}{\Lambda 2}$, is independent of the effort cost (C(v), V(x)) when expressed as a function of Y_t, X_t .
 - Instead, the cost function C(v) determines V(x) and thus affects the price function P(t, Y) and the amount of effort expended.
- Different from Kyle, the optimal trading strategy depends positively on the number of accumulated shares (X_t)
 - \rightarrow Amplification effect: The informed (activist) more than offsets the cumulative noise trading demand because the value of activism increases with activist's ownership.
 - \rightarrow Evidence on activists' trading strategies
 - ightarrow The endogenous value of the firm depends on the amount of realized liquidity trading.

Examples: the symmetric quadratic model

EXAMPLE

In the symmetric quadratic model, $V(x) = v_0 + \psi x$, so

$$h(y) = v_0 + \psi \mu_x + \psi \Lambda y \,.$$

The price function at any time $t \leq T$ is given by:

$$P(y,t) = v_0 + \psi \mu_x + \psi \Lambda y \tag{4}$$

The price impact function is given by:

$$\lambda(\mathbf{y}, t) = \psi \Lambda \tag{5}$$

This case resembles the original Kyle model:

- Price impact is constant
- However, $\lim_{\sigma\to 0} \lambda = \psi > 0$ ('endogenous uncertainty'!).

EXAMPLES: THE ASYMMETRIC QUADRATIC MODEL

EXAMPLE

In the asymmetric quadratic model, $V(x) = v_0 + \psi x^+$, so

$$egin{aligned} \psi(y) &= v_0 + \psi \left(\mu_x + \Lambda y
ight)^+ \ &= egin{cases} v_0 & ext{if } y < -rac{\mu_x}{\Lambda} \ v_0 + \psi \mu_x + \psi \Lambda \, y & ext{otherwise} \ . \end{aligned}$$

The price function at any time $t \leq T$ is given by:

$$P(y,t) = v_0 + \psi(\mu_x + \Lambda y) \mathsf{N} \left[\frac{\mu_x + \Lambda y}{\Lambda \sigma \sqrt{T - t}} \right] + \psi \Lambda \sigma \sqrt{T - t} \mathsf{n} \left[\frac{\mu_x + \Lambda y}{\Lambda \sigma \sqrt{T - t}} \right]$$
(6)

The price impact function is given by:

$$\lambda(y,t) = \psi \Lambda N \left[\frac{\mu_x + \Lambda y}{\Lambda \sigma \sqrt{T - t}} \right]$$
(7)

Model Setup Equilibrium Economic efficiency and market liquidity

Symmetric VS. Asymmetric quadratic cost function

Model Setup **Equilibrium** Economic efficiency and market liquidity

SYMMETRIC VS. ASYMMETRIC QUADRATIC COST FUNCTION

Background Model Setup **Equilibrium** Economic efficiency and market liquidity

EXAMPLES: THE EXPONENTIAL MODEL

EXAMPLE

In the exponential model, $V(x) = v_0 e^{\psi x}$, so

$$h(y) = v_0 e^{\psi(\mu_x + \Lambda y)}$$

The price function at any time $t \leq T$ is given by:

$$P(y,t) = v_0 e^{\psi \left(\mu_x + \Lambda y + \frac{1}{2}\Lambda^2 \sigma^2(T-t)\right)}$$
(8)

The price impact function is given by:

$$\lambda(y,t) = \Lambda P(y,t) \tag{9}$$

A Black-Scholes price process with a price-volume relationship.

Background Model Setup Equilibrium Economic efficiency and market liquidity

Examples: the binary effort model

EXAMPLE

In the binary effort model,

$$V(x) = v_0 + \Delta \mathbf{1}_{[c/\Delta,\infty)}(x),$$

so

$$\begin{split} h(y) &= v_0 + \Delta \mathbf{1}_{[c/\Delta,\infty)} \left(\mu_x + \Lambda y \right) \\ &= \begin{cases} v_0 & \text{if } y < \frac{(c/\Delta - \mu_x)}{\Lambda} \,, \\ v_0 + \Delta & \text{otherwise} \,. \end{cases} \end{split}$$

It follows that the price function at any time $t \leq T$ is given by:

$$P(y,t) = v_0 + \Delta N \left[\frac{\mu_x + \Lambda y - c/\Delta}{\Lambda \sigma \sqrt{T - t}} \right]$$
(10)

The price impact is given by: $\lambda(y, t) = \frac{\partial P(y, t)}{\partial y} = \Delta \frac{n \left[\frac{\mu_X + \Lambda y - c/\Delta}{\Lambda \sigma \sqrt{T - t}} \right]}{\sigma \sqrt{T - t}}$

Motivation Model of Activism, Liquidity and Efficiency Conclusion Equilibrium Conclusion

Economic efficiency and market liquidity

• We measure economic efficiency by price (at time 0), which is the expected effort of the activist.

Motivation Model of Activism, Liquidity and Efficiency Conclusion Equilibrium Conclusion

Economic efficiency and market liquidity

- We measure economic efficiency by price (at time 0), which is the expected effort of the activist.
- We measure market liquidity by the expected average price impact $(E[\frac{1}{T}\int_{0}^{T}\lambda_{s}ds] = \lambda_{0}).$

Background Model Setup Equilibrium Economic efficiency and market liquidity

ECONOMIC EFFICIENCY AND MARKET LIQUIDITY

- We measure economic efficiency by price (at time 0), which is the expected effort of the activist.
- We measure market liquidity by the expected average price impact $(E[\frac{1}{T}\int_{0}^{T}\lambda_{s}ds] = \lambda_{0}).$
- Importantly, market liquidity (λ) can be affected by different channels:
 - Noise trading volatility (σ) \sim Trading tax or length of disclosure window.
 - Prior uncertainty about insider's position $(\sigma_X) \sim$ Disclosure rules.
 - Initial block size (μ_x) .
 - Productivity of the activist $(\Delta, \psi) \sim$ Legal environment.

Background Model Setup Equilibrium Economic efficiency and market liquidity

Economic efficiency and market liquidity

- We measure economic efficiency by price (at time 0), which is the expected effort of the activist.
- We measure market liquidity by the expected average price impact $(E[\frac{1}{T}\int_{0}^{T}\lambda_{s}ds] = \lambda_{0}).$
- Importantly, market liquidity (λ) can be affected by different channels:
 - Noise trading volatility (σ) \sim Trading tax or length of disclosure window.
 - Prior uncertainty about insider's position $(\sigma_X) \sim$ Disclosure rules.
 - Initial block size (μ_x) .
 - Productivity of the activist $(\Delta, \psi) \sim$ Legal environment.
- These channels also have different implications for economic efficiency.
 - ⇒ We consider separately the ex-ante impact at date 0 when $Y_0 = 0$ of a change in $\sigma, \mu_x, \sigma_x, \psi$ on price (economic efficiency) and price impact (market liquidity).

Background Model Setup Equilibrium Economic efficiency and market liquidity

PRODUCTIVITY OF THE ACTIVIST

EXAMPLE

In all (symmetric, asymmetric quadratic, exponential, binary) models:

$$rac{\partial P}{\partial \psi} > 0 \quad ext{and} \quad rac{\partial \lambda}{\partial \psi} > 0$$

- Variation in activism productivity generates negative cross-sectional relation between economic efficiency and market liquidity, because uncertainty about the activist's position creates more adverse selection when she is more productive.
- The causality (activism \rightarrow liquidity) is reverse of what the literature has focused on.

Background Model Setup Equilibrium Economic efficiency and market liquidity

PRIOR UNCERTAINTY ABOUT ACTIVIST'S POSITION

Example

In the symmetric quadratic model: $\frac{\partial P}{\partial \sigma_x} = 0$ and $\frac{\partial \lambda}{\partial \sigma_x} > 0$

Example

In the asymmetric quadratic model:
$$\frac{\partial P}{\partial \sigma_x} > 0$$
 and $\frac{\partial \lambda}{\partial \sigma_x} > 0$

A general result obtains (since σ_x is mean-preserving spread for X_T):

Theorem

If V(x) is convex then $\frac{\partial P}{\partial \sigma_x} \ge 0$ (and conversely if V(x) is concave)

If V(x) satisfies mild regularity conditions $\frac{\partial \lambda}{\partial \sigma_x} > 0$

• If V(x) is convex then cross-sectional variation in μ_x, σ_x creates a negative relation between economic efficiency and market liquidity, because activism \rightarrow liquidity.

Background Model Setup Equilibrium Economic efficiency and market liquidity

PRIOR UNCERTAINTY ABOUT ACTIVIST'S POSITION - CONT.

Example

In the binary effort model,
$$\frac{\partial P}{\partial \sigma_x} \geq 0 \iff \mu_x \leq c/\Delta$$
 and $\frac{\partial \lambda}{\partial \sigma_x} > 0$

- Cross-sectional variation in μ_x, σ_x creates a negative relation between economic efficiency and market liquidity if only if the expected initial take is too low to justify activism on its own.
- More uncertainty about the insider's position:
 - creates more adverse selection risk and makes markets less liquid.
 - increases the likelihood that actual stake X_0 is large enough to become active if $\mu_x \leq c/\Delta$.

Background Model Setup Equilibrium Economic efficiency and market liquidity

Noise trading volatility

EXAMPLE

In the symmetric quadratic model: $\frac{\partial P}{\partial \sigma} = 0$ and $\frac{\partial \lambda}{\partial \sigma} < 0$

Example

In the asymmetric quadratic model:
$$\frac{\partial P}{\partial \sigma} > 0$$
 and $\frac{\partial \lambda}{\partial \sigma} < 0$

A general result obtains (since an increase in σ is mean-preserving spread for X_T):

Theorem

If
$$V(x)$$
 is convex then $\frac{\partial P}{\partial \sigma} \ge 0$ (and conversely if $V(x)$ is concave then $\frac{\partial P}{\partial \sigma} \le 0$)

However, comparative statics for market liquidity λ are less straightforward.

Background Model Setup Equilibrium Economic efficiency and market liquidity

NOISE TRADING VOLATILITY - CONT.

EXAMPLE

In the binary effort model,

$$\left\{\frac{\partial P}{\partial \sigma} \geq 0 \iff \mu_x \leq c/\Delta\right\} \quad \text{and} \quad \left\{\frac{\partial \lambda}{\partial \sigma} < 0 \iff |\mu_x - c/\Delta|^2 < T\sigma^2\Lambda^2(\Lambda - 1)\right\}$$

CONCLUSION

• We endogenize terminal value in Kyle-Back model to study link between shareholder activism and liquidity

- We endogenize terminal value in Kyle-Back model to study link between shareholder activism and liquidity
- Three key results:
 - The underlying nature of activism plays a crucial role in the relation between liquidity and activism.

- We endogenize terminal value in Kyle-Back model to study link between shareholder activism and liquidity
- Three key results:
 - The underlying nature of activism plays a crucial role in the relation between liquidity and activism.
 - Increase in noise trading does not necessary improve market liquidity.

- We endogenize terminal value in Kyle-Back model to study link between shareholder activism and liquidity
- Three key results:
 - The underlying nature of activism plays a crucial role in the relation between liquidity and activism.
 - Increase in noise trading does not necessary improve market liquidity.
 - The relation between activism and liquidity depends on the source of variation in either.

- We endogenize terminal value in Kyle-Back model to study link between shareholder activism and liquidity
- Three key results:
 - The underlying nature of activism plays a crucial role in the relation between liquidity and activism.
 - Increase in noise trading does not necessary improve market liquidity.
 - The relation between activism and liquidity depends on the source of variation in either.
- The paper informs about consequences of policy change such as trading tax, changing disclosure rules, disclosure window, legal environment.