Are They All Like Bill, Mark, and Steve? The Education Premium for Entrepreneurs

Claudio Michelacci EIEF Fabiano Schivardi

Bocconi & EIEF

CSEF-EIEF-SITE Conference, Capri 2016

Introduction

Two questions:

Do entrepreneurs with higher education get higher returns?

② How have these differences evolved over time?

Relation between skill premium of workers and entrepreneurs

The answer is not obvious.....

ৰ **⊉** ▶্গ^৫ ি

Are They All Like Bill, Mark, and Steve?

- Their case is all but exceptional: John Rockefeller, Ray Kroc and Walt Disney did not even complete their high school studies.
- Many recent entrepreneurs with postgraduate education:
 - Sergey Brin and Larry Page, Elon Reeve Musk, Scott McNealy hold Master's degrees
 - The three leading biotechnology companies (Amgen, Gilead Sciences, and Celgene) founded by PhD graduates.
 - Even Peter Thiel who founded a fellowship programm to encourage dropouts to startup businesses, holds a Juris Doctor degree from Stanford Law School.

- An index to measure the return from entrepreneurship using the **Survey of Consumers Finances** over period 1989-2013 Expected yearly income from entrepreneurial venture due to labor income, dividend payments, and realized capital gains
- Issues with index and corrections
- Analyze evolution of return for different educational groups
- The skill premium to post-graduate education has increased substantially for entrepreneurs
- And particularly so in the **right tail** of the distribution of returns
- Test for possible explanations
- Note: we do no identify causal effects of education, just returns to skills *related to* higher education

- An index to measure the return from entrepreneurship using the **Survey of Consumers Finances** over period 1989-2013 Expected yearly income from entrepreneurial venture due to labor income, dividend payments, and realized capital gains
- Issues with index and corrections
- Analyze evolution of return for different educational groups
- The skill premium to post-graduate education has increased substantially for entrepreneurs
- And particularly so in the **right tail** of the distribution of returns
- Test for possible explanations
- Note: we **do no identify causal effects** of education, just returns to skills *related to* higher education

- An index to measure the return from entrepreneurship using the **Survey of Consumers Finances** over period 1989-2013 Expected yearly income from entrepreneurial venture due to labor income, dividend payments, and realized capital gains
- Issues with index and corrections
- Analyze evolution of return for different educational groups
- The skill premium to post-graduate education has increased substantially for entrepreneurs
- And particularly so in the **right tail** of the distribution of returns
- Test for possible explanations
- Note: we do no identify causal effects of education, just returns to skills *related to* higher education

- An index to measure the return from entrepreneurship using the **Survey of Consumers Finances** over period 1989-2013 Expected yearly income from entrepreneurial venture due to labor income, dividend payments, and realized capital gains
- Issues with index and corrections
- Analyze evolution of return for different educational groups
- The skill premium to post-graduate education has increased substantially for entrepreneurs
- And particularly so in the **right tail** of the distribution of returns
- Test for possible explanations
- Note: we **do no identify causal effects** of education, just returns to skills *related to* higher education

- An index to measure the return from entrepreneurship using the **Survey of Consumers Finances** over period 1989-2013 Expected yearly income from entrepreneurial venture due to labor income, dividend payments, and realized capital gains
- Issues with index and corrections
- Analyze evolution of return for different educational groups
- The skill premium to post-graduate education has increased substantially for entrepreneurs
- And particularly so in the **right tail** of the distribution of returns
- Test for possible explanations
- Note: we **do no identify causal effects** of education, just returns to skills *related to* higher education

An index for the entrepreneurial return

- An infinitely lived, risk-neutral entrepreneur in continuous time τ who can run at most one business in his life.
- Entrepreneur makes initial investment k. Entrepreneurial income comes from: l : labor income; d : dividend payments; (income y = d + l); and (realized) capital gains.
- The entrepreneur's discount rate is $\rho > r; r$ is market rate.
- With arrival rate λ, the entrepreneur can sell the business at its market value M = d/r.
- The entrepreneur's human capital has value $W = \frac{w}{a}$

An index for the entrepreneurial return

- An infinitely lived, risk-neutral entrepreneur in continuous time τ who can run at most one business in his life.
- Entrepreneur makes initial investment k. Entrepreneurial income comes from: l : labor income; d : dividend payments; (income y = d + l); and (realized) capital gains.
- The entrepreneur's discount rate is $\rho > r; r$ is market rate.
- With arrival rate λ, the entrepreneur can sell the business at its market value M = d/r.

• The entrepreneur's human capital has value $W = \frac{w}{a}$

An index for the entrepreneurial return

- An infinitely lived, risk-neutral entrepreneur in continuous time τ who can run at most one business in his life.
- Entrepreneur makes initial investment k. Entrepreneurial income comes from: l : labor income; d : dividend payments; (income y = d + l); and (realized) capital gains.
- The entrepreneur's discount rate is $\rho > r; r$ is market rate.
- With arrival rate λ, the entrepreneur can sell the business at its market value M = d/r.
- The entrepreneur's human capital has value $W = \frac{w}{a}$

Return from entrepreneurship

• The value to the entrepreneur of the business:

$$\rho U = y + \lambda \left(M + W - U \right)$$

• The net value of becoming entrepreneur is:

$$S = U - k - W$$

• The excess return from entrepreneurship ϕ (Chisini mean):

$$\displaystyle rac{\phi}{
ho+\lambda}=S$$
 which yields $\displaystyle \phi= heta-w$

where θ is the **total expected return**

$$\theta = d + l + \lambda \left(M - k \right) - \rho k$$

< **日**)、 つく (~

Return from entrepreneurship

• The value to the entrepreneur of the business:

$$\rho U = y + \lambda \left(M + W - U \right)$$

• The net value of becoming entrepreneur is:

$$S = U - k - W$$

• The excess return from entrepreneurship ϕ (Chisini mean):

$$rac{\phi}{
ho+\lambda}=S~~{
m which}~{
m yields}~~ rac{\phi}{\phi= heta-w}$$

where θ is the **total expected return**

 $\theta = d + l + \lambda \left(M - k \right) - \rho k$

< **日**)、 つく (~

Return from entrepreneurship

• The value to the entrepreneur of the business:

$$\rho U = y + \lambda \left(M + W - U \right)$$

• The net value of becoming entrepreneur is:

$$S = U - k - W$$

• The excess return from entrepreneurship ϕ (Chisini mean):

$$\displaystyle rac{\phi}{
ho+\lambda}=S \;\; {
m which yields} \;\; \phi= {m heta}-w$$

where θ is the **total expected return**

$$\theta = d + l + \lambda \left(M - k \right) - \rho k$$

Measurement

- Cross-sectional data in discrete time, t = 1, 2, 3... with $t = \frac{\tau}{h}$
- Information on:
 - Market value of business M:
 - 2 Per period income flow y (dividends dh plus labor income lh)
 - Oiscretized age of (current) entrepreneurial experience t
 - Initial investment k of the entrepreneur
 - **(5)** Exit rate λ is calculated using inflows and outflows
- The total return from entrepreneurship θ is measured by

$$\tilde{\theta} = d + l + \tilde{\lambda} \left(M - k \right) - \left[R(0, ht)^{\frac{1}{ht}} - 1 \right] k$$

Three extensions

• Valuation bias: Business fail, so $\lambda \equiv \delta + \mu$. Excess return is $\phi_v = \theta_v - w$ where

$$\theta_{v} = d + l + \lambda \left[\mathbb{E}_{x}\left(V\right) - k\right] - \rho k$$

② Composition bias: Heterogeneity in λ (due to μ or δ)

$$heta^* = \sum_{i=1}^N lpha_i heta_i$$
 but we observe $ilde{ heta}^* = \sum_{i=1}^N \sigma_i heta_i$

where

$$\sigma_i = \frac{\frac{\alpha_i}{\lambda_i}}{\sum_{j=1}^n \frac{\alpha_j}{\lambda_j}}$$

$$\varphi(\nu) = \frac{\rho + \lambda}{\rho + \lambda \left(1 - \nu\right)}$$

< 日 > つ < C

Three extensions

• Valuation bias: Business fail, so $\lambda \equiv \delta + \mu$. Excess return is $\phi_v = \theta_v - w$ where

$$\theta_{v} = d + l + \lambda \left[\mathbb{E}_{x} \left(V \right) - k \right] - \rho k$$

② Composition bias: Heterogeneity in λ (due to μ or δ)

$$heta^* = \sum_{i=1}^N oldsymbol{lpha}_i heta_i$$
 but we observe $ilde{ heta}^* = \sum_{i=1}^N oldsymbol{\sigma}_i heta_i$

where

$$\sigma_i = \frac{\frac{\alpha_i}{\lambda_i}}{\sum_{j=1}^n \frac{\alpha_j}{\lambda_j}}$$

$$\varphi(\nu) = \frac{\rho + \lambda}{\rho + \lambda \left(1 - \nu\right)}$$

< 日 > つ < C

Three extensions

• Valuation bias: Business fail, so $\lambda \equiv \delta + \mu$. Excess return is $\phi_v = \theta_v - w$ where

$$\theta_{v} = d + l + \lambda \left[\mathbb{E}_{x} \left(V \right) - k \right] - \rho k$$

② Composition bias: Heterogeneity in λ (due to μ or δ)

$$heta^* = \sum_{i=1}^N lpha_i heta_i$$
 but we observe $ilde{ heta}^* = \sum_{i=1}^N \sigma_i heta_i$

where

$$\sigma_i = \frac{\frac{\alpha_i}{\lambda_i}}{\sum_{j=1}^n \frac{\alpha_j}{\lambda_j}}$$

$$\varphi(\nu) = \frac{\rho + \lambda}{\rho + \lambda \left(1 - \nu\right)}$$

< 日 > つ < C

Key cross-sectional data from Survey of Consumer Finances

- Entrepreneur: An individual who, as a main job, owns business [X3103], which is actively managed [X3104]
- Labour income: "Earnings in main job" [X4112]
- **Dividend payments:** "Earnings from the business in addition to regular salary" [X4131]
- Initial Investment: "Original investment or value when received it (cost basis for tax purposes)" [X3130]
- Firm's value: "What is the net worth of (your share of) this business?; Probe: If Respondent says the business is worth nothing, this is the cost to buy a similar asset" [X3129]
- Firm age: Current date minus date of initial investment
- Entrepreneur's opportunity cost of capital: Real value of the S&P500 Total Return Index (with dividend payments)
- Entry flows into entrepreneurship: Census data from LBD

1 200

Survey of Consumer Finances (SCF)

- Representative triennial cross-sectional survey of around 4,000 households (6,000 in the last two waves)
- Period: 1989-2013
- Focus on head of household
- All statistics are weighted
- Multiple implicates to deal with measurement error

Educational attainments of employees and entrepreneurs

Descriptive stats: entrepreneurs by educational groups

	High schoo	ol graduates	College graduates		Postgraduates	
Variable	mean	sd	mean	sd	mean	sd
θ	62.24	532.00	138.94	916.64	229.16	1059.82
d	35.84	264.38	71.61	453.27	146.45	605.93
l	26.20	59.13	50.32	146.41	79.77	217.40
M	532.48	3603.50	1149.18	6324.73	1274.85	7359.26
k	301.90	3349.39	551.25	6017.42	634.33	6086.35
$\lambda(M-k)$	19.36	317.67	52.54	488.33	44.63	500.13
$\lambda(M-k) - \rho k$	0.21	445.16	17.01	727.53	2.95	741.56
Unlimited liability	0.70	0.46	0.52	0.50	0.54	0.50
Agriculture	0.07	0.26	0.03	0.17	0.02	0.13
Mining and Construction	0.29	0.45	0.13	0.34	0.02	0.15
Manufacturing	0.09	0.29	0.09	0.29	0.04	0.20
Trade	0.16	0.37	0.19	0.39	0.07	0.25
Finance and Services	0.17	0.37	0.25	0.43	0.14	0.35
Transportation, Commun	0.21	0.41	0.31	0.46	0.71	0.46
and Utilities						

Note: Pooled SCF data over 1989-2013 period. Constant 2010 prices.

Return of Entrepreneurs θ and Employees w

Time profile of returns by education

- Stable for high school graduates
- Similar in the beginning for college and post graduate, but now postgraduates earn 100,000\$ more than collage graduates

- Education premium has increased for employees as well, but less than for entrepreneurs
- Similar evolution for entrepreneurs with Master's (MA, MS, MBA) and those with PhD, MD, JD

Excess Returns: $\phi = \theta - w$

<**₽** ▶ , ୭ < ୯

Entrepreneurs returns θ , Master's vs PhD

Total returns θ at different percentiles of the return distribution

< ₽ > 9 < C

Decomposition of θ over time

See Exit Rate λ and Net Capital Gains $\lambda(M-k) - \rho k$

< ₽ > 9 < C

Decomposition of total returns

- Dividends plus labor income drive most of the differences
- Both the value of the business and of initial investment increase for college and postgraduates, stable for no college
- Value upon exit is substantial
- Smaller effects of gross capital gains and net capital gains, also because exit rate has decreased

Regression analysis

- We check for statistical significance of the effects and investigate their potential sources
- Run:

$$\begin{split} \theta_{it} = & \mathsf{College}_{it} + \mathsf{PostGR}_{it} + \mathsf{Post}_{2000} + \mathsf{Post}_{2000} \times \mathsf{College}_{it} + \\ & + \mathsf{Post}_{2000} \times \mathsf{PostGr}_{it} + \mathsf{Controls}_{it} + \epsilon_{it} \end{split}$$

- Also run with time trends and with year dummies interacted with education dummies
- Results extremely robust
- Increase not present at the 25th percentiles, stronger at higher percentiles

Regression analysis

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	θ	φ	d+l	M	(3) k	GCG	NCG
College	56.2***	36.2***	50.4***	318.7***	154.9**	18.2***	5.8
	(12.7)	(12.6)	(8.3)	(82.5)	(62.5)	(7.0)	(9.3)
Postgraduates	94.4***	54.3***	107.3***	175.2*	115.0	1.4	-12.9
	(17.2)	(17.1)	(10.7)	(100.2)	(91.6)	(9.3)	(15.3)
$College \times Post$	26.8	19.5	11.8	477.8***	169.8*	22.9**	14.9
Postgraduates × Post	(16.7) 112.7***	(16.6) 84.6***	(10.0) 82.7***	(115.5) 737.6***	(92.9) 216.6*	(9.8) 34.5***	(13.3) 30.0*
Age	(24.2) 16.7***	(24.1) 16.7***	(16.8) 10.3***	(134.8) 36.3***	(120.6) -25.9	(11.6) 4.7***	(18.2) 6.4***
Age ²	(2.6) -0.2***	(2.6) -0.2***	(1.0) -0.1***	(13.9) -0.1	(18.8) 0.5**	(1.5) -0.0***	(2.3) -0.1***
Female	(0.0) -49.0***	(0.0) -48.6***	(0.0) -44.1***	(0.1) -435.8***	(0.2) -201.0***	(0.0) -18.1***	(0.0) -4.9
White	(10.6) 33.3***	(10.5) 33.2***	(8.2) 31.5***	(67.2) 161.2**	(52.2) 86.4*	(4.5) 6.0	(6.3) 1.8
Married	(9.5) 27.8***	(9.5) 28.2***	(6.3) 34.7***	(72.1) 354.1***	(46.6) 249.0***	(4.9) 9.1*	(6.6) -6.8
	(10.3)	(10.3)	(6.7)	(63.6)	(50.8)	(4.9)	(6.7)
Obs.	7,250	7,250	7,250	7,250	7,250	7,250	7,250
H_0 : College × Post = F	Postgrad \times P	ost					
F-stat	12.680	7.330	14.680	3.215	0.161	0.978	0.701
P-value	0.000	0.007	0.000	0.073	0.688	0.323	0.402

What explains the increase in returns to education?

- Increased not fully explained by:
 - **1** Valuation see, composition see, and recycling biases see
 - Sectoral composition: sector dummies interacted with time dummies, see regression and pattern
 - Vintage effects: cohort dummies at start-up date interacted with education dummies see
 - Financial constraints: collateral dummies see and changes in dividends age profiles see
 - **Intergenerational transmission of businesses: see**
 - Span of control: firm employment size and number of business see picture and regression
 - **Risk**: legal form see
- We conclude that more sophisticated skills associated with higher education embodied in entrepreneur have become increasingly important

What explains the increase in returns to education?

- Increased not fully explained by:
 - **1** Valuation see, composition see, and recycling biases see
 - Sectoral composition: sector dummies interacted with time dummies, see regression and pattern
 - Vintage effects: cohort dummies at start-up date interacted with education dummies see
 - Financial constraints: collateral dummies see and changes in dividends age profiles see
 - Intergenerational transmission of businesses: see
 - Span of control: firm employment size and number of business see picture and regression
 - **Risk**: legal form see
- We conclude that more sophisticated skills associated with higher education embodied in entrepreneur have become increasingly important

Span of Control

Summing up

- The return to postgraduate education has increased for entrepreneurs: "Mark, Bill and Steve" have been exceptional
- Today an entrepreneur with a postgraduate degree earns
 100k\$ more than one with a college degree, up from basically zero in the late eighties
- Education advantage comes from general effect of entrepreneurial skills embodied in entrepreneur, rather than specific channels (sectoral composition, vintage effects, access to finance...)
- We do not account for **selection**. But evidence suggest that skills of highly educated people have become more important
- There might be some indication that entrepreneurial skills associated with higher education have become scarcer. Why?

OVERVIEW ABOUT COURSES FACULTY FEES SCHOLARSHIPS SCHEDULE CONTACT INFORMATION APPLY

An EIEF-LUISS joint master's degree program

A new two-years graduate program for highly talented students • A gateway to the world's best PhD programs and a successful professional career Advanced quantitative methods applied to policy issue • A small class, active learning and intense tutoring Scholarships and fee waiver • A world-class faculty in an international academic environment

Quantile Regressions

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	θ	ϕ	d + l	M	k	GCG	NCG
Panel A: Pre-Post	specificatio	n					
25^{th} pct							
$College \times Post$	-3.2	-5.6	-1.7	6.4	2.0	-0.1	-1.2
	(4.4)	(4.3)	(5.0)	(5.3)	(1.7)	(0.2)	(1.0)
$Postgrad \times Post$	-8.7	-14.8**	-8.6	13.9	1.3	0.0	`3.7 [´]
-	(6.6)	(7.0)	(7.4)	(9.8)	(1.5)	(0.3)	(4.6)
50 th pct	()	()	()	()	()	. ,	. ,
$College \times Post$	-4.5	-10.0	2.6	35.6	16.5**	-0.1	-0.6
	(6.5)	(6.8)	(5.5)	(25.6)	(6.6)	(1.0)	(0.4)
$Postgrad \times Post$	32.6***	1 5.9	32.0**	`59.3*́	16.5	1.1	0.2
-	(12.6)	(11.8)	(13.0)	(34.7)	(13.6)	(1.0)	(0.5)
75 th pct	· · ·	. ,	()	· · ·	()	. ,	. ,
$College \times Post$	6.7	-1.9	9.6	86.7	71.2**	0.9	0.0
-	(16.0)	(16.0)	(12.8)	(86.1)	(31.8)	(8.0)	(5.2)
$Postgrad \times Post$	66.1***	36.0	51.3* [*]	399.0***	141.2***	6.8	4.2
-	(25.1)	(22.5)	(21.1)	(86.9)	(52.6)	(4.3)	(4.2)
90 th pct	()	. ,	()	()	()	. ,	()
$College \times Post$	131.9***	117.7**	42.4	1,452.4***	336.0**	28.4	10.7
	(50.0)	(51.9)	(36.1)	(355.0)	(169.7)	(26.9)	(24.9)
$Postgrad \times Post$	183.4***	128.6**	153.2***	1,715.7***	566.0***	47.7**	40.5**
-	(54.1)	(52.0)	(52.7)	(367.1)	(137.4)	(22.5)	(16.6)
	. ,	. ,	. ,	. ,	. ,	. ,	. ,

Introduction Theory Data Evidence Conclusions

Dividends plus labor income

back

Gross capital gains

back

Net capital gains

Value of business

back

Initial investment

<₽>, nac

Exit rate λ

Valuation bias

Composition bias

Recycling bias

Sectoral specialization and skill premium

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	θ	ϕ	d+l	\hat{M}	k	ĠĊĠ	ŃĆĠ
College	52.9***	32.9**	48.4***	296.6***	148.9**	16.5**	4.5
	(13.7)	(13.6)	(8.5)	(85.9)	(69.1)	(7.8)	(10.6)
Postgraduate	93.6***	53.4***	97.6***	350.6***	153.3*	13.7	-4.0
	(16.6)	(16.4)	(12.0)	(117.0)	(87.2)	(9.0)	(13.1)
$College \times Post$	22.2	15.0	6.5	508.2***	182.6*	24.6**	15.7
	(18.3)	(18.3)	(10.2)	(121.7)	(105.4)	(10.9)	(15.2)
Postgraduate $ imes$ Post	107.6***	79.6***	87.4***	865.4***	354.7***	31.1***	20.3
	(24.1)	(23.9)	(18.2)	(158.7)	(121.3)	(11.8)	(16.9)
Agriculture \times Post	7.3	7.5	-32.3*	-364.8**	-384.8*	8.9	39.6
	(38.2)	(38.2)	(19.2)	(161.8)	(226.2)	(17.5)	(34.1)
Manufacturing \times Post	-38.2	-38.7	`-4.7´	-146.5	`69.0´	-29.1	-33.4
	(34.0)	(34.0)	(21.7)	(252.7)	(134.3)	(19.6)	(21.7)
$Trade \times Post$	-26.7	-27.1	4.8	-77.8	169.9	-22.5	-31.5
	(29.0)	(29.0)	(11.7)	(184.3)	(213.1)	(17.5)	(26.7)
Finance \times Post	55.9**	55.2**	52.8***	452.5***	255.8*	10.6	3.1
	(24.8)	(24.8)	(13.8)	(159.0)	(146.1)	(12.6)	(19.5)
TCU \times Post	-2.4	-2.8	-12.0	-391.0***	-286.9***	-4.9	9.6
	(21.0)	(21.0)	(12.5)	(134.5)	(108.1)	(10.6)	(14.7)
Agriculture	-39.3	-39.4	12.3	69.5	279.0	-21.5	-51.6*
	(32.5)	(32.6)	(15.3)	(125.7)	(206.3)	(14.5)	(30.4)
Manufacturing	99.5***	100.1***	41.4***	658.2***	23.7	61.7***	58.0***
	(24.5)	(24.4)	(14.6)	(180.8)	(87.1)	(15.4)	(16.9)
Trade	21.1	21.2	5.9	284.7**	70.9	20.3*	15.2
	(16.2)	(16.1)	(8.2)	(115.5)	(95.0)	(10.7)	(14.5)
Finance	14.8	15.0	13.4	276.1***	131.2	14.2*	1.5
	(15.8)	(15.8)	(9.0)	(85.6)	(91.4)	(8.3)	(13.0)
тси	20.3	20.5	29.0***	-133.9	-14.1	-10.0	-8.7
	(15.9)	(15.9)	(9.0)	(94.1)	(79.1)	(8.0)	(11.4)

Introduction Theory Data Evidence Conclusions

Differences in patterns of sectoral specialization $S(e_1, e_2)$

Financial constraints and the age profile of dividends

	(1)	(2)	(3)	(4)	(5)
	d+l	M	θ	d	$\frac{d}{M}$
College	23.4**	100.3	54.1**	11.3	-11.2
	(11.9)	(150.2)	(25.5)	(10.6)	(8.5)
Postgraduate	104.9***	583.2***	96.0***	60.2***	-11.7
	(14.9)	(132.0)	(23.5)	(11.4)	(8.3)
$College\timesPost$	36.9**	277.2	21.7	18.5	17.3
	(14.9)	(199.7)	(31.3)	(12.4)	(15.5)
Postgraduate imes Post	72.9***	165.8	111.2***	56.0***	11.8
	(21.6)	(192.6)	(33.0)	(17.0)	(7.8)
Age \times College	2.7**	24.5	0.4	1.7**	0.2
	(1.1)	(17.8)	(2.9)	(0.8)	(0.2)
Age imesPostgrad	0.3	-30.7***	-0.3	0.5	0.2
	(0.9)	(11.7)	(1.7)	(0.7)	(0.2)
$Age \times College \times Post$	-2.4**	7.9	0.1	-1.1	-0.4
	(1.1)	(19.3)	(3.3)	(0.9)	(0.5)
$\textbf{Age} \times \textbf{Postgrad} \times \textbf{Post}$	0.8	46.3***	0.4	0.8	-0.1
	(1.2)	(14.1)	(2.6)	(1.0)	(0.2)
Age imes Post	0.8	-21.7**	-2.3	0.7	0.2
	(0.5)	(10.1)	(2.0)	(0.5)	(0.1)
Age	1.7***	40.2***	2.0	0.9**	-0.2
	(0.4)	(9.3)	(1.3)	(0.4)	(0.1)

Some explanations

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	θ	ϕ	d + l	M	k	GCG	NCG
Panel A: Vintage Effects							
$College \times Post$	21.2	14.3	13.6	686.3***	326.1**	28.5**	7.6
	(21.4)	(21.4)	(11.4)	(144.3)	(133.1)	(12.9)	(18.1)
$Postgrad \times Post$	110.1***	84.1***	97.5***	842.2***	375.3**	31.8**	12.7
	(29.6)	(29.6)	(19.6)	(156.5)	(165.6)	(14.6)	(23.2)
Panel C: Collateral							
College \times Post	30.7*	23.4	8.0	373.7***	63.8	23.3**	22.7
	(17.8)	(17.8)	(9.8)	(109.4)	(96.5)	(10.0)	(14.1)
$Postgrad \times Post$	115.2***	87.0***	80.3***	672.7***	150.2	34.8***	34.9*
	(24.4)	(24.3)	(16.7)	(132.8)	(118.4)	(11.6)	(18.0)
Collateral dummy	29.1	29.1	0.0	308.6***	9.0	26.1***	29.0*
	(19.9)	(19.9)	(7.4)	(82.9)	(117.3)	(9.2)	(17.2)
Value of collateral	-0.0	-0.0	0.0***	0.9***	0.8***	0.0	-0.0*
	(0.0)	(0.0)	(0.0)	(0.1)	(0.2)	(0.0)	(0.0)
Panel D: Legal Form							
$College \times Post$	23.7	16.5	9.7	439.1***	153.5*	21.1**	14.1
	(16.7)	(16.7)	(10.0)	(112.7)	(93.2)	(9.7)	(13.3)
Postgrad × Post	106.5***	78.4***	78.2***	658.1***	183.1	30.8***	28.3
	(24.3)	(24.2)	(16.8)	(137.2)	(123.0)	(11.7)	(18.3)
Unlimited Liability	-86.0***	-85.8***	-62.0***	-1,103.6***	-464.0***	-52.0***	-23.9***
Panel E: Inherited							
College \times Post	27.6*	20.3	12.5	494.3***	177.3*	23.7**	15.1
	(16.7)	(16.6)	(9.9)	(112.8)	(92.7)	(9.7)	(13.3)
Postgrad imes Post	111.8***	83.6***	82.0***	719.5***	208.3*	33.7***	29.8
	(24.1)	(24.0)	(16.6)	(132.5)	(119.3)	(11.6)	(18.1)
Business inherited?	44.6	44.7	34.6*	862.9***	392.0***	37.9***	10.0
	(28.1)	(28.0)	(17.9)	(184.3)	(120.3)	(13.3)	(17.6)

Span of control

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	θ	ϕ	d+l	M	k	GCG	NCG
$College \times Post$	22.3	15.0	8.8	475.5***	179.8*	22.0**	13.5
	(16.9)	(16.9)	(10.0)	(119.1)	(92.6)	(10.0)	(13.4)
$\mathbf{Postgrad} \times \mathbf{Post}$	98.4***	70.3***	69.4***	510.6***	92.1	26.0**	29.1
	(24.2)	(24.2)	(16.0)	(141.3)	(123.3)	(12.0)	(18.5)
Employment	Ò.5***	Ò.5***	Ò.4***	4.4***	1.7***	Ò.2***	0.1
	(0.1)	(0.1)	(0.1)	(1.0)	(0.4)	(0.1)	(0.1)
Nr. of businesses	1 5.6	15.6	32.0***	1,344.4***	915.8 ^{***}	36.2***	-16.4
	(11.4)	(11.4)	(4.8)	(118.9)	(98.6)	(6.9)	(10.1