The Cross-Section of Labor Leverage and Equity Returns

Andres Donangelo

François Gourio

Miguel Palacios

UT Austin

Chicago Fed

Vanderbilt University

Labor and Finance Conference

Capri, September 8, 2016

We show that:

 Labor-capital complementarity and wage smoothness results in labor leverage

We show that:

- Labor-capital complementarity and wage smoothness results in labor leverage
- Under the same conditions, labor leverage is an increasing function of labor share

We show that:

- Labor-capital complementarity and wage smoothness results in labor leverage
- Under the same conditions, labor leverage is an increasing function of labor share
- Assuming a firm's exposure to aggregate shocks is larger than wage's exposure to shocks, the previous results imply a positive relation between labor leverage and expected returns.

We find empirical evidence:

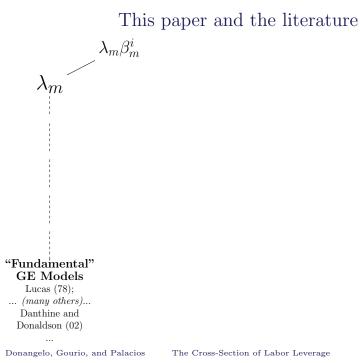
• Wages are smooth (yes, we know this, but we also find labor costs are smooth)

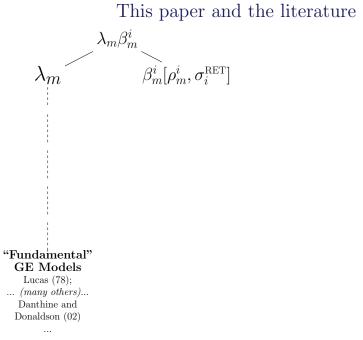
We find empirical evidence:

- Wages are smooth (yes, we know this, but we also find labor costs are smooth)
- **2** Labor and capital are strictly complements

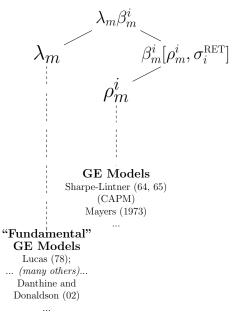
We find empirical evidence:

- Wages are smooth (yes, we know this, but we also find labor costs are smooth)
- **2** Labor and capital are strictly complements
- A positive relation between labor leverage and expected returns
 - Measured by exposure to risk (betas)
 - Measured by average realized returns

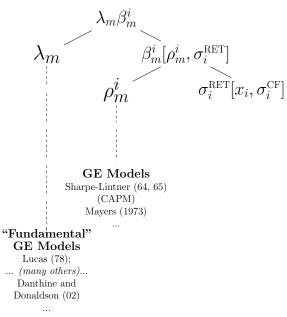

We calibrate a structural model:

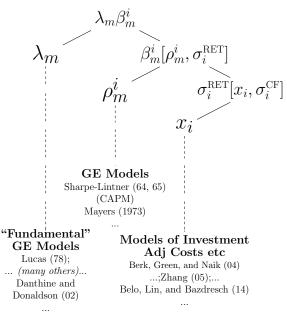

• We match relevant moments

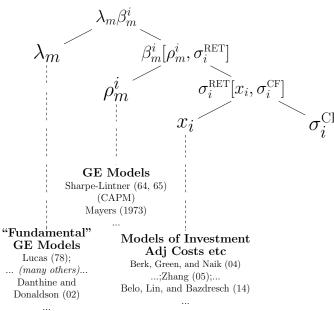
We calibrate a structural model:

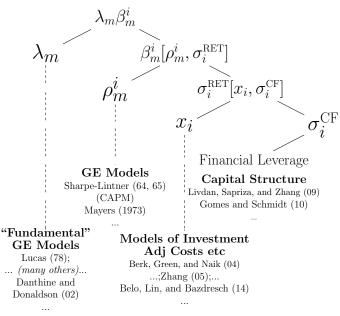

- **1** We match relevant moments
- We find that the structural model matches many other moments

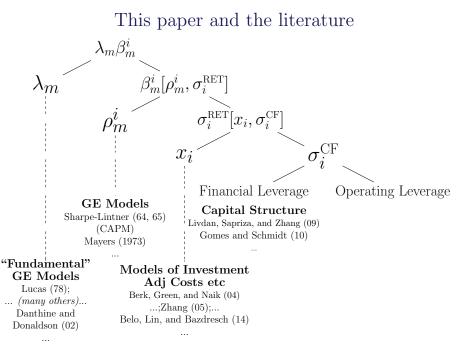
This paper and the literature $\lambda_m \beta_m^i$




Donangelo, Gourio, and Palacios


Donangelo, Gourio, and Palacios


Donangelo, Gourio, and Palacios


Donangelo, Gourio, and Palacios

Donangelo, Gourio, and Palacios

Donangelo, Gourio, and Palacios

Donangelo, Gourio, and Palacios

This paper and the literature $\lambda_m \beta_n^i$ $\beta_m^i[\rho_m^i,\sigma_i^{\text{RET}}]$ $\sigma_i^{\text{RET}}[x_i, \sigma_i^{\text{CF}}]$ x_{i} Financial Leverage Operating Leverage GE Models **Capital Structure** Sharpe-Lintner (64, 65) Livdan, Sapriza, and Zhang (09) (CAPM) Gomes and Schmidt (10) Mayers (1973) "Fundamental" "Traditional O.L." Models of Investment **GE Models** Models w/ Fixed Adj Costs etc Lucas (78); **Operating Costs** Berk, Green, and Naik (04) ... (many others)... Carlson, Fisher, and Gianmarino (04) ...;Zhang (05);... Danthine and ...;Novy-Marx (11);... Belo, Lin, and Bazdresch (14) Donaldson (02)

Donangelo, Gourio, and Palacios

This paper and the literature $\lambda_m \beta_n^i$ $\beta_m^i[\rho_m^i,\sigma_i^{\text{RET}}]$ $\sigma_i^{\text{RET}}[x_i, \sigma_i^{\text{CF}}]$ x_{i} Financial Leverage **Operating** Leverage GE Models **Capital Structure** Sharpe-Lintner (64, 65) Livdan, Sapriza, and Zhang (09) (CAPM) Gomes and Schmidt (10) Mayers (1973) Labor "Fundamental" "Traditional O.L." Models of Investment Leverage **GE Models** Models w/ Fixed Adj Costs etc Lucas (78); **Operating Costs** Berk, Green, and Naik (04) ... (many others)... Carlson, Fisher, and Gianmarino (04) ...;Zhang (05);... Danthine and ...;Novy-Marx (11);... Belo, Lin, and Bazdresch (14) Donaldson (02)

Donangelo, Gourio, and Palacios

- **1** Note: We are not explaining anomalies
- We are pointing out the relevance for labor leverage in the cross-section of expected returns

What is Labor Leverage?

• Cash flow risk amplification due to labor costs

What is Labor Leverage?

- Cash flow risk amplification due to labor costs
- What is special about labor costs?
 - Main operating cost for firms
 - Smoother than other costs:

What is Labor Leverage?

- Cash flow risk amplification due to labor costs
- What is special about labor costs?
 - Main operating cost for firms
 - Smoother than other costs:

	Cost (Dependent Variable)					
	Δlc	Δ nlc	Δtc	$lc^{g}(\%)$	$\mathrm{nlc}^{\mathrm{g}}(\%)$	$tc^{g}(\%)$
Δ sale	0.09***	0.72^{***}	0.81***			
	(0.01)	(0.03)	(0.03)			
$\operatorname{sale}^{\operatorname{g}}(\%)$				0.43^{***}	1.46^{***}	1.07^{***}
				(0.16)	(0.28)	(0.12)
Firm FE	Υ	Υ	Υ	Υ	Y	Y
R-sq. (%)	19.23	72.88	76.69	0.00	9.96	59.25
Obs.	8,173	8,173	8,173	8,173	8,173	8,173

Donangelo, Gourio, and Palacios

What causes Labor Leverage?

- "Keynesian" mechanisms (i.e., driven by K-L relations):
 - <u>Labor Risk Insurance</u>: ...; Danthine and Donaldson (2002); Parlour and Walden (2011); Berk and Walden (2013); (Mindy) Zhang (2014); ...
 - <u>Unions</u>: Chen, Kacperczyk, and Ortiz-Molina (2011);...
 - Job Search and Wage Bargaining: Petrosky-Nadeau, Zhang, and Kuehn (2013); ...
 - Wage Rigidity: Favilukis and Lin (2015a,b); ...
- "Neo-Classical" mechanisms (i.e., technology driven):
 - L-K Complementarity: Gourio (2007) (now subsumed by this paper); Palacios (2012)
 - Labor Mobility: Donangelo (2014);

A Broad Definition of Labor Leverage

- Value Added: $Y[X_t, W_t]$
- Operating Profits: $\Pi[X_t, W_t]$

 $(X_t \text{ is TFP or price of good produced}, W_t \text{ is wage rate})$

A Broad Definition of Labor Leverage

- Value Added: $Y[X_t, W_t]$
- Operating Profits: $\Pi[X_t, W_t]$

 $(X_t \text{ is TFP or price of good produced}, W_t \text{ is wage rate})$

• Labor Leverage (ℓ)

$$\ell \equiv \frac{d\Delta \pi_t / d\Delta x_t}{d\Delta y_t / d\Delta x_t} - 1$$

 $(\pi, x, \text{ and } y \text{ denote the logs of } \Pi, X, \text{ and } Y)$

Donangelo, Gourio, and Palacios

• Adding some structure:

 $Y_t = X_t F[K, L_t]$ (value added) $\Pi_t = \max_{L_t} \{ X_t F[K, L_t] - L_t W_t \}$ (operating profits)

• Adding some structure:

$$\begin{aligned} Y_t &= X_t F[K, L_t] & (\text{value added}) \\ \Pi_t &= \max_{L_t} \{ X_t F[K, L_t] - L_t W_t \} & (\text{operating profits}) \end{aligned}$$

• Labor Leverage:
$$\ell = \frac{(1-\gamma)\frac{S_t}{1-S_t}\left(1-\frac{\partial\Delta w_t}{\partial\Delta x_t}\right)}{1+\gamma\frac{S_t}{1-S_t}\left(1-\frac{\partial\Delta w_t}{\partial\Delta x_t}\right)}$$

 $\gamma \equiv \frac{F_{\rm K}[K,L]F_{\rm L}[K,L]}{F[K,L]F_{\rm KL}[K,L]}$ (K-L Elasticity of Substitution)

• Adding some structure:

$$Y_t = X_t F[K, L_t]$$
 (value added)

$$\Pi_t = \max_{L_t} \{ X_t F[K, L_t] - L_t W_t \}$$
 (operating profits)

• Labor Leverage:
$$\ell = \frac{(1-\gamma)\frac{S_t}{1-S_t}\left(1-\frac{\partial\Delta w_t}{\partial\Delta x_t}\right)}{1+\gamma\frac{S_t}{1-S_t}\left(1-\frac{\partial\Delta w_t}{\partial\Delta x_t}\right)}$$

 $\gamma \equiv \frac{F_{\rm K}[K,L]F_{\rm L}[K,L]}{F[K,L]F_{\rm KL}[K,L]}$ (K-L Elasticity of Substitution)

- Labor Leverage is increasing in Labor Share (S) when:
 - Wages are sufficiently smooth: $\frac{\partial \Delta w_t}{\partial \Delta x_t} < 1$
 - K and L are strictly complements: $\gamma < 1$

• Adding some structure:

$$Y_t = X_t F[K, L_t]$$
 (value added)

$$\Pi_t = \max_{L_t} \{ X_t F[K, L_t] - L_t W_t \}$$
 (operating profits)

• Labor Leverage:
$$\ell = \frac{(1-\gamma)\frac{S_t}{1-\chi_t}\left(1-\frac{\partial\Delta w_t}{\partial\Delta x_t}\right)}{1+\gamma\frac{S_t}{1-S_t}\left(1-\frac{\partial\Delta w_t}{\partial\Delta x_t}\right)}$$

 $\gamma \equiv \frac{F_{\rm K}[K,L]F_{\rm L}[K,L]}{F[K,L]F_{\rm KL}[K,L]}$ (K-L Elasticity of Substitution)

- Labor Leverage is increasing in Labor Share (S) when:
 - Wages are sufficiently smooth: $\frac{\partial \Delta w_t}{\partial \Delta x_t} < 1$
 - K and L are strictly complements: $\gamma < 1$

• Adding some structure:

$$Y_t = X_t F[K, L_t]$$
 (value added)

$$\Pi_t = \max_{L_t} \{ X_t F[K, L_t] - L_t W_t \}$$
 (operating profits)

• Labor Leverage:
$$\ell = \frac{(1-\gamma)\frac{S_t}{1-S_t}\left(1-\frac{\partial\Delta w_t}{\partial\Delta x_t}\right)}{1+\gamma\frac{S_t}{1-S_t}\left(1-\frac{\partial\Delta w_t}{\partial\Delta x_t}\right)}$$

 $\gamma \equiv \frac{F_{\rm K}[K,L]F_{\rm L}[K,L]}{F[K,L]F_{\rm KL}[K,L]}$ (K-L Elasticity of Substitution)

- Labor Leverage is increasing in Labor Share (S) when:
 - Wages are sufficiently smooth: $\frac{\partial \Delta w_t}{\partial \Delta x_t} < 1$
 - K and L are strictly complements: $\gamma < 1$

Sidenote

• Model implies $\gamma = \frac{\partial \Delta y_t / \partial \Delta x_t - 1}{\partial \Delta \pi_t / \partial \Delta x_t - 1}$. Thus, labor leverage present if

$$\partial \Delta \pi_{\rm t} / \partial \Delta x_{\rm t} > \partial \Delta y_{\rm t} / \partial \Delta x_{\rm t}$$

• We will use this result to verify the conditions for labor leverage are met

Empirical Results

Measure of Firm-Level Labor Share

Two constructed measures of labor share:

1 Main measure of labor share (LS):

 $\mathrm{LS}_{it} \equiv \frac{\mathrm{XLR}_{it}}{\mathrm{OIBDP}_{it} + \mathrm{XLR}_{it} + \mathrm{INVFG}_{it} - \mathrm{INVFG}_{it-1}}$

Measure of Firm-Level Labor Share

Two constructed measures of labor share:

1 Main measure of labor share (LS):

 $\mathrm{LS}_{it} \equiv \frac{\mathrm{XLR}_{it}}{\mathrm{OIBDP}_{it} + \mathrm{XLR}_{it} + \mathrm{INVFG}_{it} - \mathrm{INVFG}_{it-1}}$

2 Extended measure of labor share (ELS):

$$ELS_{it} \equiv \begin{cases} LS_{it} & \text{if } LS_{it} \text{ is non-missing} \\ \hline OIBDP_{it} + LABEX_{it} + INVFG_{it} - INVFG_{it-1} & \text{if } LS_{it} \text{ is missing,} \end{cases}$$

where $LABEX = EMP \times Industry Average of (XLR/EMP)$

Characteristics of Firms Sorted by Labor Share

1	2	3	4	5	6	7	8	9	10	11
LS	ELS	Log.	B/M	Log.	Log.	Tang.	Org.	Lev.	Prof.	Obs/
		L/K		Size	Asset		Cap.			Year
0.62	0.65	3.01	0.62	6.48	6.69	0.31	1.23	0.50	0.34	1632
0.33	0.32	0.81	0.63	7.22	7.43	0.59	0.63	0.58	0.21	326
0.53	0.53	2.60	0.49	6.89	6.83	0.32	1.17	0.47	0.39	327
0.65	0.65	3.09	0.57	6.56	6.64	0.30	1.28	0.47	0.40	327
0.74	0.74	3.31	0.69	6.22	6.53	0.28	1.37	0.49	0.37	327
0.85	0.85	3.63	0.82	5.74	6.28	0.27	1.43	0.52	0.33	326
	0.62 0.33 0.53 0.65 0.74	LS ELS 0.62 0.65 0.33 0.32 0.53 0.53 0.65 0.65 0.74 0.74	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Donangelo, Gourio, and Palacios

Cyclicality of Labor Share Validation of LS and ELS as Measures of Labor Leverage

		Proxy for Labor Share (S)							
		LS		ELS					
	I	II	III	I	II	III			
$\mathrm{gdp}_t^\mathrm{g}$	-0.33***			-0.46***					
0 11	(0.12)			(0.10)					
$\mathrm{tfp}_t^\mathrm{g}$		-0.43*			-0.52^{**}				
- 0		(0.25)			(0.23)				
mkt_t^{g}			-0.03*			-0.06***			
-			(0.02)			(0.02)			
Firm FE	Υ	Υ	Y	Υ	Υ	Y			
R-sq. (%)	0.54	0.30	0.16	0.34	0.14	0.25			
Obs.	13,508	13,508	13,508	75,720	75,720	75,720			

Donangelo, Gourio, and Palacios

Sensitivity of Operating Profit Growth to Shocks Validation of LS and ELS as Measures of Labor Leverage

		S=LS		S=ELS Aggregate Shock			
	A	ggregate Sho	ock				
	$gdp^{\rm g}$	tfp^{g}	mkt^{g}	$gdp^{\rm g}$	tfp^{g}	mkt^{g}	
shockt	1.96***	2.83***	0.18***	2.37***	2.79***	0.28***	
	(0.23)	(0.59)	(0.05)	(0.26)	(0.67)	(0.06)	
$S_{it-1} \times shock_t$	1.15***	1.53^{***}	0.12^{***}	0.54^{***}	0.90***	0.06^{*}	
	(0.21)	(0.45)	(0.04)	(0.26)	(0.03)		
S_{it-1}	0.13^{***}	0.14^{***}	0.16^{***}	0.16^{***}	0.16^{***}	0.18^{***}	
	(0.01)	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	
Firm FE	Y	Υ	Υ	Y	Y	Y	
R-sq. (%)	10.89	9.11	6.80	8.59	6.98	7.21	
Obs.	13,530	$13,\!530$	$13,\!530$	68,873	68,873	68,873	

Elasticity of Profits and Value Added Validation of LS and ELS as Measures of Labor Leverage

		Elasticit	ties of profi	ts and valu	s and value added			
-		$\hat{\Theta}^{\Pi}$			$\hat{\Theta}^{\mathrm{Y}}$			
-	Ι	II	III	Ι	II	III		
$\operatorname{gdp}_t^{\operatorname{g}}$	9.29***			7.55***				
	(0.17)			(0.15)				
$\mathrm{tfp}_t^{\mathrm{g}}$	× /							
		16.01***			12.50^{***}			
		(0.30)			(0.23)			
MKT_t			1.18^{***}			0.85^{***}		
			(0.02)			(0.01)		
R-sq. (%)	0.09	0.07	0.04	0.07	0.05	0.03		
Obs.	$54,\!406$	$54,\!406$	$54,\!406$	$54,\!406$	$54,\!406$	$54,\!406$		

Donangelo, Gourio, and Palacios

Labor Share and Measures of Risk

			D	1:		
			Po	rtfolio		
Factor	L	2	3	4	Η	H-L
	Pan	el B: Aver	age Betas	of Portfoli	os Sorted o	on ELS
MKT	1.05^{***}	1.31^{***}	1.37^{***}	1.44^{***}	1.52^{***}	0.47^{***}
	(0.07)	(0.05)	(0.05)	(0.05)	(0.07)	(0.07)
SMB	0.73^{***}	1.05^{***}	1.21^{***}	1.32^{***}	1.56^{***}	0.83^{***}
	(0.13)	(0.12)	(0.13)	(0.14)	(0.13)	(0.05)
HML	-0.43^{***}	-0.67^{***}	-0.60**	-0.57^{**}	-0.55^{**}	-0.12
	(0.15)	(0.21)	(0.23)	(0.23)	(0.24)	(0.10)
$tfp^{\rm g}$	3.81	4.93^{*}	5.15^{**}	5.38^{**}	5.93^{**}	2.12^{**}
	(2.41)	(2.44)	(2.26)	(2.39)	(2.43)	(0.80)
$gdp^{\scriptscriptstyle \mathrm{g}}$	1.78	2.17	2.86	2.88	3.56	1.78^{**}
	(1.93)	(2.13)	(2.00)	(1.96)	(2.20)	(0.83)
$wage^{g}$	0.84	0.18	4.02	3.14	3.66	2.83
	(1.82)	(3.38)	(3.19)	(2.93)	(3.36)	(2.09)

Donangelo, Gourio, and Palacios

Labor Share and Stock Returns

Excess Stock Returns (VW), Firms Sorted on Labor Share, 1963-2012

		Portfolio							
	L	2	3	4	Н	H-L			
LS_{t-2}	6.11^{***}	7.80^{***}	6.26^{***}	5.73^{**}	10.18^{***}	4.06^{*}			
	(1.91)	(1.90)	(2.01)	(2.67)	(2.46)	(2.20)			
ELS_{t-2}	6.98^{***}	7.36^{***}	7.00^{***}	7.47^{***}	10.23^{***}	3.25^{*}			
	(1.79)	(1.78)	(1.74)	(2.11)	(2.54)	(1.92)			

Structural Model

Model Setup Economic environment

• Pricing kernel:

$$\frac{d\Lambda_t}{\Lambda_t} = -rdt - \eta dZ_t^{\scriptscriptstyle\lambda}$$

$$\frac{dW_t}{W_t} = \mu_{\rm w} dt + \sigma_{\rm w} \rho_{\rm w} dZ^{\lambda} + \sigma_{\rm w} \sqrt{1 - \rho_{\rm w}^2} dZ^{\rm w},$$

Donangelo, Gourio, and Palacios

Model Setup Output and Productivity

• Value added: $Y_t = X_t \left(\alpha L_t^{\rho} + (1 - \alpha) K_t^{\rho} \right)^{\frac{1}{\rho}}$,

Model Setup Output and Productivity

• Value added: $Y_t = X_t \left(\alpha L_t^{\rho} + (1 - \alpha) K_t^{\rho}\right)^{\frac{1}{\rho}}$, $\gamma = \frac{1}{1-\rho}$ K-L Elasticity of Substitution

Model Setup Output and Productivity

• Value added: $Y_t = X_t \left(\alpha L_t^{\rho} + (1 - \alpha) K_t^{\rho}\right)^{\frac{1}{\rho}}$, $\gamma = \frac{1}{1-\rho}$ K-L Elasticity of Substitution

• Productivity:

$$\frac{dX_t}{X_t} = \mu_{\rm x} dt + \sigma_{\rm x} \rho_{\rm x} dZ^{\lambda} + \sigma_{\rm x} \sqrt{1 - \rho_{\rm x}^2} dZ^{\rm x}.$$

Model Setup Labor Share and Operating Profits

Labor Share dynamics:

$$\frac{dS_t}{S_t} = \mu_{\rm s} dt + \sigma_{\rm s\lambda} dZ^{\lambda} + \sigma_{\rm sw} dZ^{\rm w} + \sigma_{\rm sx} dZ^{\rm x}$$

Model Setup Labor Share and Operating Profits

Labor Share dynamics:

$$\frac{dS_t}{S_t} = \mu_{\rm s} dt + \sigma_{\rm s\lambda} dZ^{\lambda} + \sigma_{\rm sw} dZ^{\rm w} + \sigma_{\rm sx} dZ^{\rm x}$$

Strict L-K complementarity (0 < γ < 1) implies X-S relations:

$$\begin{split} \sigma_{\rm sx} &= -\left(1-\gamma\right)\sigma_{\rm x}\sqrt{1-\rho_{\rm x}^2} < 0, \quad ({\rm LS\ lower\ in\ high\ productivity\ firms\ (X-S)})\\ \sigma_{\rm sw} &= \left(1-\gamma\right)\sigma_{\rm w}\sqrt{1-\rho_{\rm w}^2} > 0, \quad ({\rm LS\ higher\ in\ high-wage\ paying\ firms\ (X-S)}) \end{split}$$

Model Setup Labor Share and Operating Profits

Labor Share dynamics:

$$\frac{dS_t}{S_t} = \mu_{\rm s} dt + \sigma_{\rm s\lambda} dZ^{\lambda} + \sigma_{\rm sw} dZ^{\rm w} + \sigma_{\rm sx} dZ^{\rm x}$$

Strict L-K complementarity (0 < γ < 1) implies X-S relations:

$$\begin{split} \sigma_{\rm sx} &= -\left(1-\gamma\right)\sigma_{\rm x}\sqrt{1-\rho_{\rm x}^2} < 0, \quad ({\rm LS\ lower\ in\ high\ productivity\ firms\ (X-S)})\\ \sigma_{\rm sw} &= \left(1-\gamma\right)\sigma_{\rm w}\sqrt{1-\rho_{\rm w}^2} > 0, \quad ({\rm LS\ higher\ in\ high-wage\ paying\ firms\ (X-S)}) \end{split}$$

+ Relative smoothness of wages implies

$$\sigma_{s\lambda} = -(1-\gamma)\left(\rho_{x}\sigma_{x} - \rho_{w}\sigma_{w}\right) < 0, \quad \text{(LS is countercyclical (T-S))}$$

Donangelo, Gourio, and Palacios

Model Calibration

Donangelo, Gourio, and Palacios The Cross-Section of Labor Leverage

Model Calibration

- Motivation:
 - **1** Use model as a proof-of-concept for theory
 - Study relation between endogenously determined LS and labor leverage and stock returns

Model Calibration

- Motivation:
 - **1** Use model as a proof-of-concept for theory
 - Study relation between endogenously determined LS and labor leverage and stock returns
- SMM details:
 - Number of simulations per calibration pass: 10,000
 - Number of firms per simulation: 10,000
 - Number of years per simulations: 100
 - Number of periods per year: 12

Calibration Results

	Data					Ν	Iodel		
Р	anel A: Sn	noothness	and Cycli	cality of M	lacroeconon	ic Variab	les		
Variable	gdp^g	$\mathrm{tfp}^{\mathrm{g}}$	wage ^g	$\operatorname{profit}^{\mathbf{g}}$	$^{\rm gdp^g}$	$\mathrm{tfp}^{\mathrm{g}}$	wage ^g	profit ^g	
gdp ^g	1.000				1.000				
tfp^{g}	0.862	1.000			0.983	1.000			
wage ^g	0.275	0.480	1.000		0.256	0.367	1.000		
profit ^g	0.628	0.621	-0.063	1.000	0.995	0.959	0.190	1.000	
σ	0.030	0.017	0.015	0.105	0.030	0.024	0.020	0.036	
Slope on gdp ^g *	1.000	0.494	0.141	2.222	1.000	0.784	0.171	1.183	
Panel B: CS Std. Dev. of Firm-Level Value-Added Growth							h		
0.131					0.151				
Pane	el C: Mear	and Cro	ss-Sectiona	al Standard	d Deviation	of Labor	Share		
Mean		(0.594			0.583			
σ		0	0.186			0.181			
	Panel D: H		of Substitu	ition Betw	een Labor a	nd Capita	al		
	ΘΠ	$\hat{\Theta}^{Y}$	ρ	EOS	Θ ^Π	$\hat{\Theta}^{Y}$	ρ	EOS	
	10.19	5.68	-1.50	0.40	2.17	1.47	-1.45	0.405	
Panel	E: Sensiti	vity of O	perating P	rofit Grow	th to GDP a	and TFP	Shocks		
	Ę	gdp ^g tfp ^g			Į	$^{\rm gdp^g}$			
gdp_t^g		1.96				1.88			
	:	1.15				0.80			
tfp ^g			1	.53				2.17	
$S_{it-1} \times tfp_t^g$			2	.83				0.84	
S_{it-1}		0.13	(0.14	-	0.01	-	0.01	

Donangelo, Gourio, and Palacios

Calibration Results

	Data	Model
Portfolio S	Sorts (Unlevered Stoc	ek Returns / Asset Returns)
L	2.83	2.45
2	3.69	2.93
3	4.69	3.28
4	4.14	3.67
Η	4.72	4.38
H-L	1.89	1.93

Conclusion

Donangelo, Gourio, and Palacios The Cross-Section of Labor Leverage

Conclusion

- L-K Complementarity + Smooth Wages ⇒ Labor-Induced Form of Operating Leverage ("Labor Leverage")
- Novel theoretically motivated measure of firm-level labor leverage
- Sevidence for the economic significance of labor leverage for cash flows and for equity returns