The Limits of Limited Liability: Evidence from Industrial Pollution

Pat Akey
University of Toronto

lan Appel Boston College

Introduction [1/2]

"The limited-liability company is one of man's greatest inventions."

— The Economist, 2016

Introduction [1/2]

"The limited-liability company is one of man's greatest inventions."

— The Economist, 2016

- However, an inherent moral hazard problem
 - ▶ Firms' assets may not be enough to cover claims
 - Incentive for privately profitable, socially costly behavior

Introduction [1/2]

"The limited-liability company is one of man's greatest inventions."

— The Economist. 2016

- However, an inherent moral hazard problem
 - ▶ Firms' assets may not be enough to cover claims
 - Incentive for privately profitable, socially costly behavior
- A number of mitigating factors:
 - Minimum capital requirements
 - ► Regulation
 - Legal liability

Introduction [2/2]

- Owners liable for corp acts in limited circumstances
 - Largely confined to closely held corps and parent-sub relationships

Introduction [2/2]

- Owners liable for corp acts in limited circumstances
 - Largely confined to closely held corps and parent-sub relationships

• This paper: Study parent liability for subs' environmental cleanups

Introduction [2/2]

- Owners liable for corp acts in limited circumstances
 - Largely confined to closely held corps and parent-sub relationships

- This paper: Study parent liability for subs' environmental cleanups
- Our question: How does limited liability in the parent-sub context affect subs' incentives to pollute and economic activities?

Empirical setting

The setting: U.S. v. Bestfoods (1998)

- Strengthened LL protection for some parents under CERCLA
- Overruled circuit courts that previously adopted weaker standards

Empirical setting

The setting: U.S. v. Bestfoods (1998)

- Strengthened LL protection for some parents under CERCLA
- Overruled circuit courts that previously adopted weaker standards

Methodology: Exploit circuit split in diff-in-diff framework

- 5–9% increase in toxic emissions
 - → Driven by less-solvent subs

- 5–9% increase in toxic emissions
 - ightarrow Driven by less-solvent subs
- Lower investment in pollution abatement

- 5–9% increase in toxic emissions
 - → Driven by less-solvent subs
- Lower investment in pollution abatement
- No evidence of change in production or reallocation across plants

- 5–9% increase in toxic emissions
 - ightarrow Driven by less-solvent subs
- Lower investment in pollution abatement
- No evidence of change in production or reallocation across plants
- Results driven by parents with high risk of distress
 - ightarrow Consistent with a harm-shifting motivation

Stronger limited liability protection associated with:

- 5–9% increase in toxic emissions
 - → Driven by less-solvent subs
- Lower investment in pollution abatement
- No evidence of change in production or reallocation across plants
- Results driven by parents with high risk of distress
 - ightarrow Consistent with a harm-shifting motivation

Findings highlight moral hazard problems associated with limited liability protection.

Institutional Background

CERCLA – Overview

Comprehensive Environmental Compensation, Response, and Liability Act

(AKA Superfund)

CERCLA - Overview

Comprehensive Environmental Compensation, Response, and Liability Act

(AKA Superfund)

Passed by Congress in 1980; response to Love Canal disaster

CERCLA - Overview

Comprehensive Environmental Compensation, Response, and Liability Act

(AKA Superfund)

- Passed by Congress in 1980; response to Love Canal disaster
- **Goal** = Address ex-post cleanup of toxic sites

CERCLA - Overview

Comprehensive Environmental Compensation, Response, and Liability Act

(AKA Superfund)

- Passed by Congress in 1980; response to Love Canal disaster
- **Goal** = Address ex-post cleanup of toxic sites
- Currently 1,300+ sites on the National Priorities List (NPL) that are eligible for cleanup

CERCLA – Legislative goal

CERCLA – Legislative goal

1. Clean up legacy sites

▶ 1979 EPA study: 30–50K abandoned sites in US; 1200–2000 posed public health risk

CERCLA - Legislative goal

1. Clean up legacy sites

▶ 1979 EPA study: 30–50K abandoned sites in US; 1200–2000 posed public health risk

2. Deter creation of future sites

- "Induce the highest standard of care" (Senator Stafford)
- ▶ "Powerful incentives to deter risky industrial and commercial practices that can result in releases" (EPA, 2011)

CERCLA cleanups are costly

• Love Canal cleanup cost: \$400 million

CERCLA cleanups are costly

- Love Canal cleanup cost: \$400 million
- More recent examples of CERCLA claims:
 - ► Hercules Chemical Corp: \$900 million
 - Marcal Paper Mills Inc: \$943 million
 - Chemtura Corp: \$2.0 billion
 - Asarco LLC: \$3.6 billion

Paying for cleanups

Two statutory mechanisms to pay for cleanups:

Paying for cleanups

Two statutory mechanisms to pay for cleanups:

1. Superfund

 Trust fund that pays for cleanup if responsible party is unable or can't be identified

Paying for cleanups

Two statutory mechanisms to pay for cleanups:

1. Superfund

 Trust fund that pays for cleanup if responsible party is unable or can't be identified

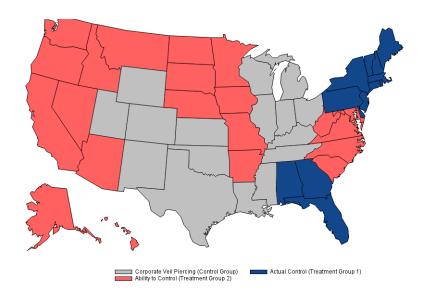
2. Liability rules

- CERCLA also imposes liability on "owners or operators"
- ► Federal circuit courts adopted different standards for parent liability

Circuit courts adopted different standards for parent liability:

Circuit courts adopted different standards for parent liability:

1. **Ability-to-Control (ATC)** — imposed liability on parents that had the power to control the activities of the polluter.


Circuit courts adopted different standards for parent liability:

- 1. **Ability-to-Control (ATC)** imposed liability on parents that had the power to control the activities of the polluter.
- Actual-Control (AC) imposed liability on the parent if the subsidiary did not act independently (e.g., overlapping directors)

Circuit courts adopted different standards for parent liability:

- 1. **Ability-to-Control (ATC)** imposed liability on parents that had the power to control the activities of the polluter.
- Actual-Control (AC) imposed liability on the parent if the subsidiary did not act independently (e.g., overlapping directors)
- 3. **Veil Piercing** imposed liability if the corporate veil could be pierced under state law

Map of liability standards

United States v. Bestfoods (1998)

Rejected Ability-to-Control and Actual-Control standards

United States v. Bestfoods (1998)

Rejected Ability-to-Control and Actual-Control standards

- Parents liable for cleanups under veil piercing standard
 - Requires showing abuse of corporate form (e.g., fraud, undercapitalization, "alter ego")

United States v. Bestfoods (1998)

Rejected Ability-to-Control and Actual-Control standards

- Parents liable for cleanups under veil piercing standard
 - Requires showing abuse of corporate form (e.g., fraud, undercapitalization, "alter ego")
- Direct operation of sub's facility by parent also grounds for liability
 - ► E.g., employee of parent (but not sub) controls hazardous waste operations of sub

Methodology & Data

Empirical strategy

We use Bestfoods as a natural experiment in a diff-in-diff framework:

$$Y_{c,p,t,i} = \beta \text{ Bestfoods}_{p,t} + \alpha_p + \alpha_{i,t} + \alpha_{c,t} + \epsilon_{c,p,t,i}$$

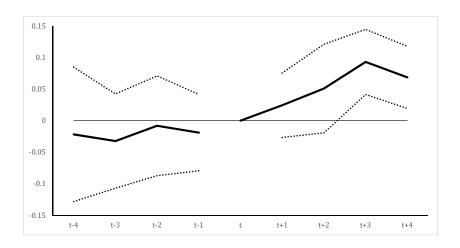
- Bestfoods_{p,t} equals one after decision for ATC/ AC subs
 - ► Liability standard based on plant's location
- α_p plant fixed-effect
- $\alpha_{c,t}$ chemical×year fixed-effect
- $\alpha_{i,t}$ parent company×year fixed-effect
- Some specifications include industry × year fixed-effects

Data sources

- Plant toxic emissions EPA Toxic Release Inventory
 - ▶ Pounds of ground, water, and air emissions at chemical level
 - ▶ 7,833 parent corps; average 3 subs using 4 chemicals
- Pollution abatement activities EPA P2 database
 - ► Facilities report if they undertook abatement related to operating practices, production process, etc.
- Plant production EPA P2 database
 - ▶ Facilities report "production ratios" e.g., $\frac{\# Refrigerators Produced_t}{\# Refrigerators Produced_{t-1}}$

Results

Does parent liability affect subsidiary toxic emissions?


- Main focus of CERCLA: Ground pollution
- Examples:
 - Landfills
 - Surface impoundments
 - Injection wells
 - Spills and leaks released into the ground

Ground pollution increases

	Ln(1+ Lbs Ground Pollution)					
	All Subs		Subs w/ Public Parent		Non-Subs	
	(1)	(2)	(3)	(4)	(5)	(6)
Bestfoods	0.0861*** (0.0193)	0.0812*** (0.0188)	0.220*** (0.0309)	0.224*** (0.0415)	-0.0063 (0.0259)	-0.0184 (0.0324)
Plant FE Chem-Year FE	x x	x x	X X	×	× ×	x x
Parent-Year FE	×	×	×	X	^	^
Industry-Year FE		X		X		×
Observations R-squared	488,739 0.683	488,009 0.688	154,404 0.741	153,951 0.748	107,695 0.630	106,839 0.654

Economic magnitude: Increase of 5–9% relative to sample mean

Coefficient dynamics

Robustness tests

Results are robust to...

- Omitting any individual circuit court
- Limiting treated group to AC or ATC regions
- Using proportion of ground pollution as outcome
- Collapsing observations
- Alternative clustering of SEs (e.g., by state and parent company)

We consider 3 potential channels:

We consider 3 potential channels:

1. Decreased abatement

 Stronger LL protections may weaken incentives to invest in pollution abatement

We consider 3 potential channels:

1. Decreased abatement

 Stronger LL protections may weaken incentives to invest in pollution abatement

2. Increased production

Stronger LL protections decrease cost of polluting

We consider 3 potential channels:

1. Decreased abatement

 Stronger LL protections may weaken incentives to invest in pollution abatement

2. Increased production

Stronger LL protections decrease cost of polluting

3. Reallocation across plants

See paper for details

Channel #1: Abatement

- Pollution abatement = 5-7% of capex
- Measure using the EPA's Pollution Prevention (P2) database
 - \rightarrow Indicator for different types of abatement
- Most common types:
 - 1. **Operating practices** [e.g., improved record-keeping, monitoring]
 - 2. **Production process** [e.g., modified equipment, optimized reaction conditions, used biotech]

Decrease in abatement related to production process

	1(Abatement - Operations) All Subs		1(Abatement - Process)			
			All Subs		Subs w/ Public Parent	
	(1)	(2)	(3)	(4)	(5)	(6)
Bestfoods	0.000998 (0.00533)	0.00194 (0.00713)	-0.00647* (0.00302)	-0.00614** (0.00259)	-0.0130*** (0.00287)	-0.0144*** (0.00314)
Plant FE	×	×	×	X	x	×
Chem-Year FE	×	x	×	×	×	×
Parent-Year FE	×	x	×	×	×	×
Industry-Year FE		×		×		×
Observations	593,533	592,592	593,533	592,592	186,215	185,779
R-squared	0.601	0.611	0.452	0.462	0.397	0.425

Economic magnitude: Decrease of 12–25% in process-related abatement

Channel #2: Economic Activity

- Increased pollution may also reflect more economic activity
 - → Bestfoods decreases cost of polluting

Channel #2: Economic Activity

- Increased pollution may also reflect more economic activity
 - → Bestfoods decreases cost of polluting
- We measure this using the production ratio reported to the EPA

No evidence of change in production

		Production Ratio			
	All S	Subs	Subs w/ P	Subs w/ Public Parent	
	(1)	(2)	(3)	(4)	
Bestfoods	0.0097	0.0028	0.0078	0.0103	
	(0.0073)	(0.0062)	(0.0097)	(0.0100)	
Plant FE	×	×	x	x	
Chem-Year FE	×	×	×	×	
Industry-Year FE		X		x	
Observations	463,955	463,336	146,572	146,141	
R-squared	0.482	0.502	0.450	0.491	

Also no effect on estimated employment from D&B

Interpretation

• Evidence suggests emissions not driven by increased production

Interpretation

- Evidence suggests emissions not driven by increased production
- Potentially reflects fixed costs associated with future cleanups
 - "Land cleanup is distinct from many environmental regulatory programs because much of the cleanup cost burden is comprised of fixed costs" (EPA 2011)

Interpretation

- Evidence suggests emissions not driven by increased production
- Potentially reflects fixed costs associated with future cleanups
 - "Land cleanup is distinct from many environmental regulatory programs because much of the cleanup cost burden is comprised of fixed costs" (EPA 2011)
- Also less need for current abatement with fixed costs
 - ► E.g., changes to production process

Cross-sectional tests

1. Subsidiary solvency

- ▶ Parent liability more likely for less solvent subsidiaries
- Measure solvency at plant-level using Paydex Score

Cross-sectional tests

1. Subsidiary solvency

- Parent liability more likely for less solvent subsidiaries
- Measure solvency at plant-level using Paydex Score

2. Parent distress risk

- Firms in distress have incentive to shift harm to other stakeholders
- May view investments in abatement as less important than short-term financing needs

Results driven by less-solvent subs

	C	Dall	1/ 1	-+ D)		
	Ground Pollution		1(Abateme	nt - Process)		
	(1)	(2)	(3)	(4)		
		Low Pla	ant Paydex			
Bestfoods	0.0859**	0.0893*	-0.0170**	-0.0168**		
	(0.0365)	(0.0491)	(0.0062)	(0.0069)		
	, ,	,	, ,	,		
Observations	154,256	153,809	154,256	153,809		
R-squared	0.666	0.677	0.524	0.547		
		High Pl	Plant Paydex			
Bestfoods	-0.0503*	-0.0563	0.00829	0.0194		
	(0.0270)	(0.0325)	(0.0143)	(0.0132)		
Observations	140,396	140,032	140,398	140,034		
R-squared	0.708	0.714	0.519	0.544		
Plant FE	X	×	×	×		
Chem-Year FE	X	×	×	×		
Parent-Year FE	X	×	×	×		
Industry-Year FE		X		X		

Results driven by parents with higher distress risk

	Ground Pollution		1(Abatemer	nt - Process)			
	(1)	(2)	(3)	(4)			
5 6 4	Low Parent Z-Score						
Bestfoods	0.378***	0.389***	-0.0300***	-0.0300***			
	(0.0756)	(0.111)	(0.0078)	(0.0059)			
Observations	69,690	69,225	69,690	69,225			
R-squared	0.782	0.787	0.454	0.497			
iv squared	0.702	0.707	0.454	0.431			
	High Parent Z-Score						
Bestfoods	0.125**	0.111*	-0.0090	-0.0116			
	(0.0489)	(0.0554)	(0.0083)	(0.0143)			
	(313133)	(5.555.)	(3.3333)	(5.52.5)			
Observations	65,753	65,345	65,754	65,346			
R-squared	0.584	0.605	0.413	0.454			
rv squarea	0.501	0.005	0.110	0.151			
Plant FE	X	×	×	X			
Chem-Year FE	X	×	×	x			
Parent-Year FE	X	X	×	×			
Industry-Year FE		X		×			

Conclusion

• We study tradeoffs of limited liability in the parent-sub context

Conclusion

- We study tradeoffs of limited liability in the parent-sub context
- Key findings:
 - ► Stronger liability protection associated with higher sub emissions
 - Drop in abatement; no change in production or allocation of emissions across plants
 - Effects driven by less-solvent subs and parents with higher risk of distress

Conclusion

- We study tradeoffs of limited liability in the parent-sub context
- Key findings:
 - Stronger liability protection associated with higher sub emissions
 - Drop in abatement; no change in production or allocation of emissions across plants
 - Effects driven by less-solvent subs and parents with higher risk of distress
- Findings highlight moral hazard problem associated with limited liability, though aggregate welfare effects unclear