The Economics of Legal Uncertainty

Jiwon Lee (Princeton University) David Schoenherr (Princeton University) Jan Starmans (Stockholm School of Economics)

June 16, 2023

- Link between law and economic development recognized since 19th century
- Max Weber attributed emergence of modern industrial capitalist system to rule of law and legal certainty (Trubek, 1972)
- Even under rule of law, legal uncertainty remains due to judicial discretion or changes in law over time
 - Trade off between judicial discretion and legal certainty fundamental to modern legal philosophy
- Despite its ubiquity, few attempts have been made to study link between legal uncertainty and economic activity

- Parsimonious model that generates different types of legal uncertainty
- Theory insights
 - Legal uncertainty reduces economic activity
 - Systematic and idiosyncratic sources of legal uncertainty may have different effects depending on agents' ability to diversify
- Exploit institutional setting and data from Korea to test model's predictions in context of credit markets and bankruptcy law
- Empirical findings
 - Filing for restructuring more likely in more debtor-friendly courts with lower legal uncertainty
 - Legal uncertainty reduces size of credit markets
 - Credit supply relatively more sensitive to systematic than to idiosyncratic sources of legal uncertainty relative to credit demand

Theoretical Framework

Model Setup

- Producer requires input from supplier (e.g., labor or capital)
 - Supplier's cost of producing input: C > 0
 - Producer's revenue from producing output: $R > C \label{eq:revenue}$
 - Endogenous price of input: P
- With probability π , legal dispute between producer and supplier over $\mathsf{D} > 0$
 - Today, we assume that $\pi = 1$
- Producer's share of D described by random variable $\mathsf{A} \in [0,1]$
 - Λ follows probability distribution described by parameter $\boldsymbol{\theta} \in \mathbb{R}^n$
 - $\boldsymbol{\theta}$ unknown and agents have homogeneous beliefs regarding its probability distribution
- Producer and supplier guided by mean-variance objectives with risk aversion $\gamma > 0$

$$U(Y) = \mathbb{E}[Y] - \frac{\gamma}{2} \operatorname{Var}[Y]$$

Lee, Schoenherr, Starmans

Demand, Supply, and Production

- Producer's payoff
 - Expectation
 - Variance

$$\mathbf{R} - (1 - \mathbb{E}\left[\mathbb{E}[\Lambda|\theta]\right])\mathbf{D} - \mathbf{P}$$

$$D^{2}(\underbrace{\mathbb{E}\left[\operatorname{Var}\left[\Lambda|\theta\right]\right]}_{\operatorname{Var}\left[\mathbb{E}\left[\Lambda|\theta\right]\right]} + \underbrace{\operatorname{Var}\left[\mathbb{E}\left[\Lambda|\theta\right]\right]}_{\operatorname{Var}\left[\mathbb{E}\left[\Lambda|\theta\right]\right]})$$

Realization uncertainty

Parameter uncertainty

- Supplier's payoff
 - Expectation
 - Variance

$$P - C + (1 - \mathbb{E}[\mathbb{E}[\Lambda|\theta]]) D$$

$$\mathsf{D}^{2}\left(\mathbb{E}\left[\operatorname{Var}[\Lambda|\theta]\right] + \operatorname{Var}\left[\mathbb{E}[\Lambda|\theta]\right]
ight)$$

• Production requires

$$R - C \geqslant \gamma D^{2} \left(\mathbb{E} \left[\operatorname{Var} \left[\Lambda | \theta \right] \right] + \operatorname{Var} \left[\mathbb{E} \left[\Lambda | \theta \right] \right] \right)$$

Lee, Schoenherr, Starmans

• Idiosyncratic sources

- Random assignment to judges
- Idiosyncratic factors affecting judge decision making
- Lawyer performance

• Systematic sources

- Appointment of new judges
- Change in law
- Change in public officer

Diversification

- ${\scriptstyle \bullet \ }$ N producers and N suppliers
 - Each supplier supplies fraction $\frac{1}{N}$ of input to each producer
- Legal uncertainty producer specific
 - Supplier's share of supplier in relationship with producer i: $\frac{1-\Lambda_i}{N}$
 - Random variables $\Lambda_i,\,i\in N,$ independent and identically distributed conditionally on θ
- Variance of supplier's payoff

$$\operatorname{Var}\left[P-C+\sum_{i=1}^{N}\frac{1-\Lambda_{i}}{N}D\right]=\frac{D^{2}}{N}\mathbb{E}\left[\operatorname{Var}\left[\Lambda|\theta\right]\right]+D^{2}\operatorname{Var}\left[\mathbb{E}\left[\Lambda|\theta\right]\right]$$

• Production requires

$$\mathsf{R}-\mathsf{C} \geqslant \gamma \mathsf{D}^2 \left(\frac{1}{2} \left(1 + \frac{1}{\mathsf{N}} \right) \mathbb{E} \left[\operatorname{Var} \left[\Lambda | \boldsymbol{\theta} \right] \right] + \operatorname{Var} \left[\mathbb{E} \left[\Lambda | \boldsymbol{\theta} \right] \right] \right)$$

Lee, Schoenherr, Starmans

- ${\scriptstyle \bullet} \,$ Consider a signal S
 - Observed by agents in economy
 - Informative about producer's share $\Lambda {:}\ \mathrm{Var}\left[\mathbb{E}\left[\Lambda|S\right]\right] > 0$
- Legal uncertainty decreases in expectation

 $\mathbb{E}\left[\operatorname{Var}\left[\Lambda|S\right]\right] = \operatorname{Var}\left[\Lambda\right] - \operatorname{Var}\left[\mathbb{E}\left[\Lambda|S\right]\right] < \operatorname{Var}\left[\Lambda\right]$

• Employ specific Bayesian learning model to motivate measures in empirical analysis

- Introduce possibility of change in legal regime
- "Future" legal regime
 - Occurs with probability \boldsymbol{q}
 - Producer's share Λ_f with unknown parameter θ_f
- "Current" legal regime
 - Occurs with probability $1-{\mathsf{q}}$
 - Producer's share Λ_c with unknown parameter θ_c
- Production requires

$$R - C \geqslant \gamma D^2 \left(q \operatorname{Var}[\Lambda_f] + (1 - q) \operatorname{Var}[\Lambda_c] + q(1 - q) \left(\mathbb{E}[\Lambda_c] - \mathbb{E}[\Lambda_f] \right)^2 \right)$$

Institutional Setting

- Bankruptcy cases handled by 14 District Courts
 - Nine District Courts handle only cases in local court district
 - Five District Courts handle cases from several court districts in a region
- Jurisdiction determined by geography
 - Debtor's principal office or place of business
- Some firms have a choice between two courts

- No specialized bankruptcy judges in Korea unlike U.S.
 - Judges are considered to be generalists
 - Rotate through different courts and different court divisions throughout career
 - Appointment to bankruptcy court requires no prior exposure to bankruptcy law
- Two-year term in office for most bankruptcy judges
- Bankruptcy cases randomly assigned to judges
 - Exception: debtor related to pending case

- Debtor Rehabilitation and Bankruptcy Act implemented in 2006
- ${\circ}\,$ Liquidation and restructuring procedures similar to Ch. 7 and Ch. 11 in U.S.
- Judges have discretion to accept, terminate, extend deadlines, etc.
 - A lot of power given to judges
- Case duration
 - Mean: 19 months
 - Median: 10 months

Data and Calibration

- Sample period: April 2006 to December 2015
- Bankruptcy filing data from Court of Korea registry
- Bankruptcy case data from Court of Korea
 - Detailed information on every step of process with dates
- Accounting and loan data from Korea Information Service (KIS)
 - Annual accounting data
 - Monthly loan data at firm-bank level
 - Information on location of principal office (bankruptcy jurisdiction)
- Annual loan and interest rate data at firm-bank level from firms' annual reports (Moon and Schoenherr, 2022)

- Code decisions of judges as debtor-friendly or creditor-friendly
 - 327 judges
 - 23,900 (relevant) decisions
 - Yields a debtor-friend liness measure for a given judge between $0\ {\rm and}\ 1$
- Examples debtor-friendly decisions
 - Approve debtor's restructuring plan
 - Prohibit seizure of assets
 - Successful graduation from procedure
- Examples creditor-friendly decisions
 - Reject debtor's restructuring plan
 - Allow seizure of assets
 - Failed graduation from procedure

 $\bullet~$ Mean: 0.643

- Court mean $\in [0.46, 0.87]$
- Court standard deviation $\in [0.00, 0.64]$

Lee, Schoenherr, Starmans

- $\bullet\,$ Debtor's share for judge $j\in J{:}\,\,\lambda_j$
 - Bernoulli distribution with probability $q_{\rm j}$
 - Judge type q_j distributed according to beta distribution with parameters α_j and β_j
 - Common prior α_0 and β_0
- Beliefs updated according to Bayes rule
 - Number of judge decisions: N_i
 - Number of debtor-friendly decisions: F_j
 - Share of debtor-friendly decisions: $\bar{\mathsf{F}}_j$

$$\mathbb{E}\left[q_{j}\right] = \frac{\alpha_{j}}{\alpha_{j} + \beta_{j}} = \frac{\alpha_{0} + \beta_{0}}{\alpha_{0} + \beta_{0} + N_{j}} \frac{\alpha_{0}}{\alpha_{0} + \beta_{0}} + \frac{N_{j}}{\alpha_{0} + \beta_{0} + N_{j}} \bar{F}_{j}.$$

• Calibration of prior: $\alpha_0 + \beta_0 = 7.834$

Dep. var.: $\mu_{j,t>T/2}$	I	II	III
$\mu_{j,t\leqslant T/2}$	0.8505^{***}	0.8384^{***}	1.1116^{***}
	[0.1548]	[0.1454]	[0.1916]
Court FE	no	yes	-
Observations	327	327	327
R-squared	0.097	0.155	0.458

Average number of judges' decisions in court $c(N_{c,t})$

0.90.80.70.60.50.40.30.20.122 24 Δ Month Month

Completed fraction of judges' term in court c ($\tau_{c,t}$)

Empirical Analysis

- Does courts' debtor-friendliness and legal uncertainty affect firm decision making?
- Examine whether debtor-friendliness and legal uncertainty can predict time-series variation in restructuring filings across different courts
- Exploit fact that some firms have a choice between two bankruptcy courts
- Evidence on forum shopping in different institutional contexts

Legal Uncertainty and Restructuring Filings

Dep. var.: $F_{c,t}$	I		III
$\mu_{c,t-1}$	7.0558***	7.9931***	4.0066***
	[1.6511]	[2.2709]	[1.2282]
$\sigma_{c,t-1}$	-8.3979***	-9.5341^{***}	-3.1517***
	[1.6076]	[2.1019]	[1.1368]
$N_{c,t-1}$	0.5700	1.0130	0.4431
	[0.4661]	[0.6541]	[0.3538]
$\tau_{c,t-1}$	1.4742^{***}	1.5392^{***}	0.2486
	[0.4346]	[0.5682]	[0.3073]
Court FE	yes	yes	yes
Month FE	yes	-	-
Court Zone-Month FE	no	yes	yes
Observations	1,183	1,183	1,183
R-squared	0.752	0.828	0.706

$$F_{c,t} = \alpha_c + \alpha_t + \delta \cdot \mu_{c,t-1} + \theta_1 \cdot \sigma_{c,t-1} + \theta_2 \cdot N_{c,t-1} + \theta_3 \cdot \tau_{c,t-1} + \varepsilon_{c,t}$$

Lee, Schoenherr, Starmans

- Assess whether equilibrium levels of credit associated with debtor-friendliness and legal uncertainty
- Exploit monthly frequency of measures and loan data
- Estimation at firm-bank level (intensive plus extensive margin)
- Estimation at firm level

Dep. var.: $\log(L_{ib,t})$	Ι	II	III	IV
Sample	all	high risk	med risk	low risk
$\mu_{c,t-1}$	0.1611^{***}	0.5927^{***}	0.0206	0.0587
	[0.0298]	[0.0653]	[0.0474]	[0.0452]
$\sigma_{c,t-1}$	-0.0697^{***}	-0.1563^{***}	-0.0291^{**}	-0.0216
	[0.0087]	[0.0194]	[0.0139]	[0.0132]
$N_{c,t-1}$	0.0127^{***}	0.0322^{***}	0.0128^{***}	0.0048
	[0.0028]	[0.0061]	[0.0044]	[0.0041]
$\tau_{c,t-1}$	-0.0088^{***}	-0.0344^{***}	-0.0042	0.0016
	[0.0025]	[0.0055]	[0.0040]	[0.0037]
Firm FE	yes	yes	yes	yes
Bank FE	yes	yes	yes	yes
Court Zone-Month FE	yes	yes	yes	yes
Clustered SE	firm	firm	firm	firm
Observations	37,333,079	6,331,954	13,098,991	17,902,13
R-squared	0.540	0.578	0.563	0.518

 $\log(\mathsf{L}_{\mathfrak{i}\mathfrak{j},\mathfrak{t}}) = \alpha_{\mathfrak{i}} + \alpha_{\mathfrak{j}} + \alpha_{z,\mathfrak{t}} + \delta \cdot \mu_{c,\mathfrak{t}-1} + \theta_1 \cdot \sigma_{c,\mathfrak{t}-1} + \theta_2 \cdot \mathsf{N}_{c,\mathfrak{t}-1} + \theta_3 \cdot \tau_{c,\mathfrak{t}-1} + \varepsilon_{\mathfrak{i}\mathfrak{j},\mathfrak{t}}$

Lee, Schoenherr, Starmans

Credit: Firm Level

$\log(L)$	i,t) =	$\alpha_i + \alpha_i$	$x_{z,t} + \delta \cdot$	$\mu_{c,t-1}$	$+ \theta_1 \cdot \sigma_c$	$t_{t-1} + \theta_2$	${}_{2} \cdot N_{c,t-1}$	$+ \theta_3 \cdot \tau_c$	$\varepsilon_{t,t-1} + \varepsilon_{i,t}$
-----------	--------	-----------------------	--------------------------	---------------	-----------------------------	----------------------	--------------------------	---------------------------	---

$\begin{array}{c} \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	I all	II high risk	III med risk	IV low risk
$\mu_{c,t-1}$	0.2014***	0.9135***	0.0245	0.1017
$\sigma_{c,t-1}$	[0.0435] -0.0632*** [0.0128]	[0.0793] -0.2065*** [0.0226]	$\begin{bmatrix} 0.0664 \end{bmatrix} \\ 0.0069 \\ \begin{bmatrix} 0.0191 \end{bmatrix}$	[0.0681] -0.0245 [0.0203]
$N_{c,t-1}$	[0.0128] 0.0079^{*} [0.0042]	[0.0220] 0.0432^{***} [0.0077]	-0.0010 [0.0064]	[0.0203] 0.0049 [0.0066]
$\tau_{c,t-1}$	-0.0263*** [0.0041]	-0.0611*** [0.0080]	-0.0125^{**} [0.0062]	-0.0208*** [0.0064]
Firm FE	yes	yes	yes	yes
Court Zone-Month FE	yes	yes	yes	yes
Clustered SE	firm	firm	firm	firm
Observations R-squared	4,784,434 0.827	$\begin{array}{c} 662,338 \\ 0.879 \end{array}$	$1,600,905 \\ 0.841$	2,518,222 0.791

Lee, Schoenherr, Starmans

- Thus far, examined equilibrium quantities
- Not possible to disentangle demand and supply from quantities
- Exploit data on prices (interest rates) from annual loan data
- Aggregate court-level measures at annual level

Credit: Demand and Supply

$R_{i,t} = \alpha_i + \alpha_j + \alpha_{z,t}$	$+ \delta \cdot \overline{\mu}_{c,t} + \theta_1 \cdot$	$\overline{\sigma}_{c,t} + \theta_2 \cdot \overline{N}_{c,t}$	$t_{t} + \theta_3 \cdot \overline{\tau}_{c,t} + \epsilon_{i,t}$
--	--	---	---

Dep. var.: R _{i,t}	Ι	II	III	IV
Sample	all	high risk	med risk	low risk
$\overline{\mu}_{c,t}$	0.0114^{***}	0.0212^{***}	0.0038	-0.0016
	[0.0040]	[0.0057]	[0.0085]	[0.0074]
$\overline{\sigma}_{c,t}$	-0.0016	-0.0028*	0.00002	-0.0006
	[0.0011]	[0.0016]	[0.0022]	[0.0021]
$\overline{N}_{c,t}$	-0.0016	-0.0028*	0.0027	-0.0014
	[0.0011]	[0.0015]	[0.0024]	[0.0021]
$\overline{\tau}_{c,t}$	0.0022^{**}	0.0026^{**}	0.0010	0.0024
	[0.0009]	[0.0012]	[0.0020]	[0.0018]
Firm FE	yes	yes	yes	yes
Court Zone-Month FE	yes	yes	yes	yes
Clustered SE	firm	firm	firm	firm
Observations	41,076	22,143	7,223	11,710
R-squared	0.694	0.707	0.664	0.660

Lee, Schoenherr, Starmans

- Finally, examine whether legal uncertainty affects real outcomes
- Exploit data on firm investment
- Aggregate court-level measures at annual level

Real Effects

$I_{i,t} = \alpha_i + \alpha_j + \alpha_{z,t} + \delta$	$\cdot \overline{\mu}_{c,t-1} + \theta_1$	$\overline{\sigma}_{c,t-1} + \theta_2 \cdot$	$N_{c,t-1} + \theta_3$	$\overline{\tau}_{c,t-1} + \epsilon_{i,t}$
---	---	--	------------------------	--

Dep. var.: I _{i,t}	Ι	II	III	IV
Sample	all	high risk	med risk	low risk
	·			
$\overline{\mu}_{c,t}$	-0.0030	0.0613^{***}	-0.0225	-0.0092
	[0.0071]	[0.0162]	[0.0161]	[0.0089]
$\overline{\sigma}_{c,t}$	-0.0075***	-0.0218^{***}	-0.0033	0.0029
	[0.0020]	[0.0046]	[0.0045]	[0.0025]
$\overline{N}_{c,t}$	0.0049^{**}	0.0243^{***}	0.0048	0.0037
	[0.0022]	[0.0050]	[0.0051]	[0.0028]
$\overline{\tau}_{c,t}$	-0.0004	-0.0071*	-0.0031	0.0028
,	[0.0020]	[0.0043]	[0.0048]	[0.0025]
Firm FE	yes	yes	yes	yes
Court Zone-Month FE	yes	yes	yes	yes
Clustered SE	firm	firm	firm	firm
Observations	720,239	158,209	144,487	417,543
R-squared	0.279	0.250	0.295	0.295

Lee, Schoenherr, Starmans

- Agents' prior and learning
 - Different priors
 - Fully informed types
- Court choice
 - Only firms without court choice
- Macro-economic conditions and legal uncertainty
 - GDP growth and courts' debtor-friendliness and assignment uncertainty uncorrelated
 - Control for industry-time fixed effects
- Differences in bank quality
 - Control for bank-month fixed effects exploiting variation across courts
- Differences in judge quality
 - Measures uncorrelated with case length
- Large firms
 - Exclude large firms

Discussion and Implications

- ${\scriptstyle \bullet \,}$ Judicial system
 - Random judge assignment generates idiosyncratic legal uncertainty
 - Regular judge rotations generate systematic legal uncertainty
- Legal system
 - Limited judicial discretion reduces both assignment and decision uncertainty
 - Legal precedent may reduce uncertainty
 - Reliance on precedent may make legal uncertainty more systematic
- Legislation
 - Fewer and less drastic changes in legislation reduce uncertainty about legal regime
- Transparency
 - Establishing predictable patterns that govern judicial process reduces legal uncertainty
- Boundary of firm
 - Size and boundary of firm may affect legal uncertainty
- Intermediation
 - Large institutions such as insurance companies and banks can diversify legal uncertainty

- Legal uncertainty reduces economic activity
- Idiosyncratic and systematic sources of legal uncertainty
 - Idiosyncratic sources of legal uncertainty less relevant when diversified
- Credit markets
 - Demand (firms) relatively more sensitive to idiosyncratic sources of legal uncertainty
 - Supply (banks) relatively more sensitive to systematic sources of legal uncertainty