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ABSTRACT

We propose a security design model in which a potential acquirer approaches a firm with a value-add plan.

The target has a single owner, who possesses private information: he knows whether his firm is compatible

with the plan, or not. The seller agrees the acquirer will add value but not as much as what the acquirer

expects. Although the acquirer can choose any monotone limited liability security to offer along with cash,

we show that, under general conditions, if a security is employed, it takes the form of non-recourse junior

debt provided by the seller.
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1. Introduction

In 2016, Nasdaq-listed AMRI paid $315 million to acquire an Italian pharmaceutical company called

Euticals, which was owned by LCS. $60 million of the compensation that LCS received was a debt claim

with Euticals as sole collateral. Specifically, AMRI was due to pay $60 million to LCS over three years with

the consequence of default being the return of Euticals back to LCS. Such non-recourse risky seller debt is

part of the financing package in many acquisitions (Jansen, 2020; Everett, 2018) and this paper is the first to

offer an explanation for its use.1

We propose a security design model in which an acquirer (she) makes an asset purchase offer to a

company (the seller, he). The consideration offered to the seller is a mix of cash and a security. The seller

possesses private information: he knows whether the asset is compatible with the acquirer’s value-add plan,

or not. The informed seller and the uninformed acquirer agree that the acquirer will add value if the asset

is compatible, but the seller’s expectation of the value add is less than that of the acquirer.2 If the asset is

incompatible, they agree that no value will be added.

We characterize optimal incentive-compatible offers in which the acquirer can pay using a mix of cash

and securities. We show that, under general conditions, the acquirer always pays with cash and, if she uses

a security in addition to cash, it is always non-recourse junior seller debt. Under these conditions, other

securities (e.g., earnouts, or retained equity) are never optimal means of payment.

To illustrate our model, let us conjecture some additional details concerning the aforementioned acquis-

ition. AMRI (the acquirer) can add value by improving the distribution of Euticals’ products through better

access to the American market. LCS (the seller) possesses private information concerning the probability

1Previous security design studies (e.g., DeMarzo and Duffie (1999), Axelson (2007a), Fulghieri et al. (2019), Malenko and
Tsoy (2018)) do not explain why acquisitions are partly financed by a tranche of risky debt provided by the selling firm’s owner and
secured only by the acquired assets. Among non security design papers, only Fishman (1989) considers seller debt as a means of
payment, but he proposes riskless debt, not risky debt. DeMarzo et al. (2005) study the design of seller securities but their results
do not rationalize the use of seller debt financing. These studies are discussed at length in the next section. Note that seller debt is
distinct from stapled finance, which refers to a loan commitment to prospective acquirers by sell-side investment banks (Povel and
Singh, 2010; Aslan and Kumar, 2017). In stapled finance, the debt provider is a bank (not the seller) and the buyer is free to either
accept this debt offer or to borrow from any other bank.

2This assumption is consistent with the finding that acquirer overconfidence has first-order effects in acquisitions of public
firms (Malmendier and Tate, 2008). See also Camerer and Lovallo (1999)).
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that the Food and Drug Administration (FDA) will approve Euticals’ drug formulations. AMRI can only add

value if the FDA approves the drug (i.e., Eutical’s products are compatible with the value-add plan). Both

parties agree that, absent FDA approval, AMRI adds no value because, then, AMRI’s superior distribution

network is of no avail. The two parties agree that Euticals will benefit from access to the American market,

but AMRI expects that its distribution network will increase revenues more than what LCS expects (i.e., the

acquirer is more confident than the seller about her value-add).

Because the acquirer is more confident than the seller about her value-add plan, she assigns a higher

value than the seller does to any security claim on the acquired asset. The difference between the valuations

of the acquirer and the seller is less with a debt claim than with more information sensitive securities such

as equity. However, with an equity claim, the seller’s compensation is more closely tied to the outcome

of the acquisition. Thus, equity claims are better able to solve the adverse selection problem. The optimal

security design is determined by the resolution of these two opposing forces: acquirer confidence pushing

toward seller debt and adverse selection pushing toward more information sensitive securities like equity.

This paper provides conditions under which the acquirer confidence dominates the adverse selection.

Given the two opposing forces in the model, it is natural that some conditions ensure the optimality of

seller debt. The conditions are, however, not obvious. For example, seller debt optimality is independent

of the magnitude of informational asymmetry relative to acquirer confidence. Seller debt financing can

be optimal when the valuation difference produced by asset compatibility is large, and acquirers are only

slightly more confident than sellers about the value-add plan. In fact, high acquirer confidence leads to

all-cash offers. Furthermore, the conditions we develop are consistent with assumptions used in standard

security design models, and are not particularly restrictive.3

The two key ingredients in our model are also standard in the literature. First, many models posit

that sellers have private information and that this private information consists of a binary signal revealing

3Our conditions are restrictions on the “shape” of cash flow distributions. These conditions are consistent with standard Mono-
tone Likelihood Ratio (MLR) ordering of the distributions of acquirer and seller beliefs for compatible and incompatible assets. As
we show in Online Appendix A, any commonly used distributions satisfy these conditions. For example, the acquirer and seller
agree that cash flows are log-normally distributed, with the log-mean ascribed to asset cash flows being a function of the information
signal (compatible/incompatible) and of the agent (seller/acquirer).
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whether the acquirer can add value or not (Fishman, 1989; Hansen, 1987). The second ingredient is rooted

in a large body of work on overconfidence: agents believe they can add more value than other parties (e.g.,

Malmendier and Tate, 2008; Cai and Vijh, 2007; Hirshleifer et al., 2012). This difference in beliefs is

particularly plausible in our setting because agents have little opportunity to learn about the quality of the

value add plan (Morris, 1995, 1996). These two components are essential. Absent asymmetric information,

optimal offers would be all-cash and never include a security. Absent differences in expectations regarding

the value-add plan, seller debt is an optimal security but not the unique optimal security.4

We make two other important structural assumptions that are not necessary for the optimality of seller

debt financing, but are standard in the acquisition literature (Hansen, 1987; Fishman, 1989). First, acquirers,

rather than sellers, make acquisition offers. Second, acquirers are not cash constrained.5

Outside of standard security design frameworks, which presume that cash flows can be verified, cash

constraints might play a role in determining acquisition offers. When an acquirer lacks the cash to complete

the transaction and cash flows are non-verifiable, securities must be used as a means of payment. Absent

verifiability, debt conjoined with creditor liquidation rights is the only enforceable contract. However, an

explanation based on cash constraints and non-verifiable cash flows cannot explain the empirical fact that

seller debt is non-recourse. Making the loan non-recourse reduces the collateral available to enforce repay-

ment and thus increases the probability that the acquirer strategically defaults ex post, which increases ex

ante financing costs.

Our analysis produces several empirical implications: The acquirer is more likely to propose a combin-

ation of seller debt and cash (compared to all-cash offer) when (a) a mismatch between the seller’s assets

and the acquirer’s value-add plan is more likely; (b) the undervaluation of the seller debt claim, given the ac-

quirer’s beliefs is small; (c) the value of the asset under seller control is more sensitive to the seller’s private

information. Moreover, consistent with empirical evidence (Jansen, 2020; Everett, 2018), our model pre-

dicts that i) acquired assets are kept as standalone entities and not merged with the acquiring firm when

4In the event that the acquirer is less confident than the seller about his own abilities, there is no acquisition. The seller simply
sells his talents to the seller through an employment contract. Online Appendix B provides an analysis of the underconfidence case.

5In the Online Appendix B, we show that seller debt can be an optimal security design in either case, i.e., when informed sellers
propose acquisition offers, or when acquirers’ ability to use cash is limited or absent.
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seller debt is used; ii) seller debt is subordinated to other debt tranches; and iii) seller debt financing is

ubiquitous in acquisitions of privately held firms and subsidiaries of public firms, but not for acquisition of

public firms.6

Our analysis also makes a general contribution to the literature on security design. We cast our model

within the standard asymmetric information security design paradigm: Monotone Likelihood Ratio (MLR)

ordering and limited liability monotone securities (e.g., DeMarzo and Duffie, 1999; Nachman and Noe,

1994; Axelson, 2007b).7 MLR ordering of cash flow distributions ensures that debt is the most information-

ally insensitive security. In this paper, we provide conditions under which the addition of acquirer relative

confidence to this standard framework leads to a non-standard result: the informationally sensitive security

is allocated to the uninformed party.8

Although our model setup seems realistic and describes many empirical settings, we explore how certain

changes would affect our main result. Perhaps the most interesting outcome occurs when we assume that

some value can also be added when the target firm is incompatible. In this case, another payment package

can be optimal: a debt offering with two tranches, which are i) a non-recourse risky debt tranche, and ii) a

subordinated seller debt tranche; i.e., seller debt is present but as mezzanine debt.

Our baseline model assumes that acquirers can withdraw offers, i.e., we only consider mechanisms

that satisfy an ex-post participation constraint (Compte and Jehiel, 2007). Under this assumption, making

a single offer targeted at the sellers with compatible assets or an offer targeted at the seller regardless of

compatibility are the only optimal offer mechanisms. In the robustness section, we analyze the case where

an acquirer cannot withdraw her offer. We show that, in this case, it can be optimal for the acquirer to

make two offers: a profitable offer when assets are compatible, and a loss-making offer when assets are

6As the debt is used to separate asset types, the collateral is limited to the target asset. Also, since the risk-free component of
the cash flows is information insensitive, it does not play a role in separating asset types. The risk-free component can therefore be
financed by third parties (e.g., senior debt tranche provided by a bank) and the seller debt is therefore subordinated.

7Working within the standard framework sets our analysis apart from other papers that have examined the effect of relaxing
MLR ordering (e.g., Fulghieri et al., 2019). In such papers, debt may not be the most informationally insensitive security.

8As discussed in Section 6.3, our conditions can be used in other settings where there is asymmetric information but the prefer-
ences and/or beliefs of agents vary: (1) when the informed party is more dual risk averse (Yaari, 1987); (2) when the uninformed
party is generally more optimistic than the informed (contrasting our setting where belief divergence is limited to the value-add
plan); and (3) when the acquirer and seller have different state dependent liquidity discount factors.
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incompatible. In essence, the offer targeting the seller with incompatible assets is a “bribe” to induce him

not to accept the offer targeted at sellers with compatible assets. However, we find that dropping the ex post

participation constraint has no effect on the optimality of seller debt.

Our analysis focuses on assets owned and controlled by a single agent. The use of seller debt financing

for assets with several shareholders is harder to analyze and outside the scope of this paper. If shareholders

are widely dispersed, it is doubtful that they have any material private information. In this case, there would

be no benefit from using seller debt financing. If share ownership was concentrated in the hands of a few

strategic block holders, then shareholders could have significant private information. However, in this case,

the analysis would be complicated by the strategic tendering behavior of these blockholders. In addition,

because acceptance of the tender offer would lead to the target shareholders owning a large number of

potentially liquid “seller-debt bonds,” the effects of liquidity on the incentive compatibility of shareholders

with incompatible assets rejecting the tender offer would lead to a difficult problem to solve.

In practice, seller debt financing is rare in acquisitions of publicly traded companies, but prevalent in

acquisitions of companies with a single principal owner, as is typically the case for subsidiaries of public

firms and for privately held firms.9

The next section reviews the related literature. Section 3 describes a simplified numerical version of

the model. The full model follows in section 4. Section 5 provides the solution to the model. Section 6

discusses the model assumptions and their relaxation. Section 7 concludes.

9Empirically, seller debt financing is present in about half of the transactions targeting private firms (Jansen, 2020; Everett, 2018)
and in acquisitions targeting public subsidiaries (Coates, 2012), but it is not used in acquisitions of public firms. The aggregate
acquisition value of private firms and subsidiaries of public firms exceeded the aggregate acquisition value of public firms for the
first time in the 2010s: $5 trillion versus $4 trillion (Source: SDC Platinum). We reviewed SEC 8-K filings and found instances of
seller financing for carve-outs of public firms, but no instances of public firm acquisitions using seller financing.
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2. Literature review

2.1. Branch 1: Optimal level of equity retention by an entrepreneur

This first branch of related literature was started by Leland and Pyle (1977), who consider the optimal

level of equity to be retained by an entrepreneur. This literature has been expanded in many directions (e.g.,

Admati and Pfleiderer, 1994; Grinblatt and Hwang, 1989; Demange and Laroque, 1995; Casamatta, 2003;

Edmans and Liu, 2011). The key features of these models are information asymmetry (entrepreneurs know

more about value) and moral hazard (entrepreneurs do not work as hard if they retain less equity). In our

setting, moral hazard is not an issue because buyers acquire and manage the whole firm, not part of it.

The following three papers in this branch are related to our work. First, DeMarzo and Duffie (1999), a

security design paper, show that when issuers can signal via retention, issuing a debt-like claim collateralized

by assets can be optimal. They allow for a variable scale of investment, which leads to a continuous equity

retention decision and a separating equilibrium in which better firms retain more, and invest less. This

contrasts with our setting: sellers do not choose the fraction of the company to be sold — they sell the

entire company. Yet, sellers in our model are also revealing private information by retaining a debt claim. In

DeMarzo and Duffie (1999), like in many security design models, the security issued to uninformed agents

is debt. In contrast, our model shows that the security held by the informed agent is debt. Our results thus

contrast with the standard intuition about the allocation of cash flows under asymmetric information.

Second, Coval and Thakor (2005) design a model with optimistic entrepreneurs who require funding

from pessimistic investors. Their setting shares a common feature: a more confident agent buys an asset

from a less confident agent; although in our setting the difference in confidence relates specifically to the

acquisition value add. Their paper is not focused on security design, and they show that the optimistic agent

(the entrepreneur) retains an equity tranche. The risky debt is held by a bank, not by the seller.

Third, Baldenius and Meng (2010) model the equity retention decision of an entrepreneur raising capital

from an active agent whose effort can add value. They assume equity is the only financing option. Like in

their model, we have an acquirer adding value and a seller with private information.
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2.2. Branch 2: Means of payments in acquisitions

This second branch, started by Hansen (1987), considers the means of payment in acquisitions. Most

related studies argue that the means of payment provides a signal (e.g., Eckbo et al. (1990), Rhodes-Kropf

and Viswanathan (2004), Shleifer and Vishny (2003), Officer (2004)). These papers focus on the choice

among an exogenously fixed set of securities and cash. In contrast, our model is that of a security design. We

determine the optimal security for financing the control transfer under the most general conditions possible.

2.2.1. Debt as a means of payment

Fishman (1989) solves a model of preemptive bidding in acquisitions of public firms. In his setting,

firms sometimes finance acquisitions with seller debt. Fishman’s model assumes that the acquirer knows

the payoff from the acquisition conditioned on seller type (compatible versus incompatible). Any seller

debt issued to finance the acquisition will default if the assets are incompatible, and will never default if

assets are compatible. As Fishman acknowledges, seller debt in this setting is equivalent to contracting

directly on the seller’s private information. In this framework, absent potential rival acquirers, seller debt is

always an optimal security design and cash offers are never optimal. This contrasts with our setting in which

acquirers and sellers do not know the future payoffs on assets. Instead, the agents rely on noisy signals of

future payoffs. Consequently, no security choice can perfectly reveal future payoffs. Our model explains

the conditions under which cash flow distributions will lead to the optimality of seller debt, which cannot be

addressed in Fishman’s setting. The driver of our results is the tension between disagreement about the size

of the value add, and the seller private information about compatibility. 10

Almeida et al. (2011) argue that when financially distressed firms are acquired by similar yet more liquid

firms, the acquirer prefers to use credit lines over cash. Their key mechanism relates to the different levels of

dilution attributable to securities, similar to our model. However, in their model, the credit line is provided

by a bank, contrasting with the risky tranche of debt offered by the acquirer to the seller in our model.

10Fishman (1989) is commonly cited for showing that using a security, such as acquirer’s stock, can be optimal (e.g., Table 4
Betton et al., 2008). The model is not cited for showing that debt is the optimal means of payment. Risk-free seller debt financing
is an artifice of Fishman’s model to simplify the analysis of preemptive bidding by implementing state contingent contracting.
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2.2.2. Equity as a mean of payment

Gorbenko and Malenko (2017) study how acquirer’s financial constraints affect the decision to pay in

cash versus their own stock. They find that in the presence of competition among acquirers, the use of cash

is more likely when (1) there are synergies; (2) acquirers can add value, and (3) there are fewer financial

constraints. Our model also allows for the possibility of acquirer’s value-add (and synergies). We show that

seller debt financing occurs even absent financial constraints. Adding financial constraints should further

increase the probability of using seller debt financing.

Hege et al. (2008) develop a two-sided asymmetric information model for the sale of an operating asset.

They argue that payment in the form of acquirer’s stock signals favorable information about the asset, and

that investors obtain significant gains only in stock-based deals. Their model, like others in this branch, does

not allow for the possibility of seller debt financing, despite this being a prominent means of payment in

acquisitions.11

2.2.3. Securities as means of payment in auctions

In an auction setting where competing informed buyers make offers to a seller, DeMarzo et al. (2005)

model bidding with securities. Buyers bid by offering the seller security claims on the cash flow produced

by the auctioned good. Thus, if one reinterprets their model as a model of competing buyers for target firm

assets, DeMarzo et al. (2005) model can be seen as a model of the optimal design of seller securities. In

their model, the seller is uninformed. In our analysis, the buyer is uninformed. In DeMarzo et al. (2005)

the seller moves first by committing to an auction mechanism and fixing a menu of seller securities. Buyers

bid by selecting securities from the menu. In our analysis, the buyer (i.e., acquirer) moves first by offering

security (and/or cash) to the seller in exchange for an asset. In DeMarzo et al. (2005), the objective is to

maximize the revenue of the seller. In our setting, the objective is to maximize the payoff of the buyer.

11Papers discussing the frequency of seller debt in M&A transactions are Coates (2012) and Jansen (2020). Other types of claims
on the acquired asset are rarely used in acquisitions. Only about 4% of M&A transactions have an earnout as part of the acquisition
agreement. Earnouts are more prominent when (1) the targets are private; (2) the targets operate in industries with high growth or
high return volatility; and (3) the acquirer and target are from different industries (Kohers and Ang, 2000; Cain et al., 2011; Cadman
et al., 2014; Bates et al., 2018).
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The results of their analysis and ours are different. DeMarzo et al. (2005) show that the revenue max-

imizing seller securities are “steep,” e.g., levered equity. The worst security design in their framework is

the “flattest” feasible security: seller debt. In contrast, in our baseline setting, optimal offers always consist

of mixtures of cash and seller debt. Thus, if DeMarzo et al. (2005) is reinterpreted as a model of seller

security-financed asset acquisitions, then their model fails to provide an explanation for the ubiquity of cash

and seller debt financing in firm acquisitions.

2.2.4. Trade credit

There are some similarities between trade credit and seller debt financing: the seller receives a debt claim

issued by the buyer. However, a trade creditor’s claim is against the buyer’s firm. Seller debt is secured by

the asset purchased. Biais and Gollier (1997) develop a model of trade credit in which both suppliers and

banks have private information about the quality of buyers. The empirical literature finds evidence that firms

extend trade credit because of an information advantage relative to banks. In particular, Petersen and Rajan

(1997) show that credit-rationed firms are more likely to use trade credit.

2.3. Branch 3: Capital raising and security choice

This third branch, started by Myers and Majluf (1984), considers the type of securities to issue when a

firm wants to raise capital to invest in a profitable opportunity. Myers and Majluf (1984) suggest that firms

should issue debt rather than equity because debt is less sensitive to private information. Subsequent work

includes DeMarzo (2005), Inderst and Mueller (2006), and Axelson (2007a). In all of these papers, the only

source of financing that is considered is external (i.e., institutional investors and banks provide the debt and

equity). In addition, companies never raise capital in these models if they are not cash constrained. In our

model, even a non-cash constrained company would raise some debt from the seller.
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2.4. Branch 4: Security design and belief disagreement

Branch 4 considers the effect of belief disagreement on security design. Garmaise (2001) models se-

curity design in a rational beliefs setting in which agents need not have common priors over asset returns.

Simsek (2013) analyzes the joint effects of belief disagreement and risk aversion on security design. Ortner

and Schmalz (2018) model the effects of seller optimism on security tranching. Ellis et al. (2019) consider

the effects of belief disagreement on security design from a general equilibrium perspective.

In contrast to our paper, these papers assume symmetric information while a main driver of our results

is seller private information about the compatibility of the asset. The contextual framing of these papers is

also different. The seller security in these models consists of a bundle of assets held by a large financial

institution. Security issuance is mainly motivated by liquidity constraints. In our analysis, security issuance

is motivated by adverse selection and sellers are not liquidity constrained. Also, the scope for belief dis-

agreement in our analysis is more modest: acquirer and seller only disagree about returns when an asset is

compatible and control of the assets is transferred to the acquirer.

2.5. Branch 5: Informed agents holding informationally insensitive claims

This branch of the literature focuses on providing conditions under which the standard security design

conclusion — informed agents receive informationally sensitive claims (e.g., equity, warrants) and unin-

formed agents receive informationally insensitive claims (e.g., debt) is reversed. Yang (2020) considers

uninformed liquidity constrained sellers who issue securities to sophisticated buyers that produce informa-

tion about the seller’s assets by investing in information production. To minimize the cost of information

production, optimal security designs allocate the least informationally sensitive security (i.e., debt) to the

informed buyers.12 Yuan (2020) considers a similar problem in which buyers are endowed with private

signals about the value of uninformed seller’s assets. Because debt minimizes the winner’s curse problem

that results from bidding competitions between informed buyers, debt is the optimal security design.

Like the papers in this strand of the literature, our paper features a reversal of the standard security design

12Fulghieri and Lukin (2001) consider a similar problem in a debt/equity choice model.
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result. In addition, both our paper and these papers are motivated by stylized facts that seem inconsistent with

standard security design results. The existing literature examines debt financing provided by sophisticated

investors to financially unsophisticated firm owners. This contrasts with our setting in which the seller debt

financing is provided by asset owners who have privileged information about their own assets.

In addition, our setting and the drivers of our results are quite different. In our setting, the liquidity

unconstrained acquirer issues a security only to facilitate the acquisition of a specific asset from its owner.

Thus, buyer competition, the driver of results in these related papers, plays no role in our analysis. Never-

theless, we show that, like competition between sophisticated security buyers, minor belief disagreements

between sellers and acquirers can reverse standard security design results.

2.6. Mechanism design for private equity fund acquisitions

Axelson et al. (2009) study a mechanism design for private equity fund acquisitions. They argue that

target companies are levered in order to minimize the agency conflict between fund managers and their

capital providers (i.e., the institutional investors). They do not distinguish between different sources of debt

capital, but the lender’s role in their model prevents the private equity firm from doing bad deals. Seller debt

financing is not allowed in their model, but if it were, it might be optimal in their setting as well.

3. The simplest model

In this section we solve the simplest model possible to illustrate the intuition underlying our results. We

consider only two security designs: seller debt and seller retained equity. The model is not a security design

model because it simply compares to seller securities used in practice. However it does capture the basic

intuition behind the results we formalize in the next section.

3.1. The setup

Consider a world with two dates, 0 and 1, populated by an acquirer and a seller that are risk neutral.

The seller is endowed with an asset about which he has private information. This information can be either

11
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compatible, C, or incompatible, I. The acquirer assigns a prior probability of π ∈ (0,1) that the state is C.

Thus the acquirer’s utility (i.e., payoff) equals her expected cash flow, X , from the asset at date 1.13

The cash flow from the asset at date 1 can take one of three values: low (l = 0), medium (m = 1), or

high (h = 2). If the seller’s payoff from accepting the acquirer’s offer is less than his reservation value, the

seller rejects the acquirer’s offer. We represent the seller’s reservation value in states C and I with RC
S and

RI
S, respectively. We assume that RC

S > RI
S.14 The acquirer makes a take-it-or-leave-it offer to the seller at

date 0. The specific parameters used in this example are presented in Table 1.

Table 1
Parameters for the example.

Variable Description Value in example

X Random cash flow under acquirer control See Table 2

RC
S Seller’s reservation demand when the state is C

1
2

RI
S Seller’s reservation demand when the state is I

5
16

π Acquirer’s prior probability that the state is C
1
2

The seller and acquirer agree that the asset is more valuable in state C if control is transferred to the

acquirer, and that the acquirer does not add value in state I. However, they disagree about how much value

the seller can add in state C. The seller is more pessimistic than the acquirer, as shown in Table 2.

Note that the divergence in acquirer and seller expectations is larger with respect to the best outcome

than with respect to the worst outcome. In state C, the acquirer assesses the odds of an incompatible outcome

(l = 0) at 3 : 13, while the seller assesses the odds of an incompatible outcome at 4 : 12. In contrast, the

acquirer is much more confident about the odds of the best outcome (h = 2): 9 : 7 (acquirer) vs. 3 : 13

(seller).

A purchase offer consists of a cash payment, p at date 0, and a security, s, issued on the date 1 asset cash

13The discount rate for future cash flows is set to one for all agents; i.e., there is no discounting.
14The reservation value of the seller can be interpreted as either the value of the asset under seller control or the price at which

the asset could be sold to another acquirer with smaller value-add capacity.
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Table 2
This table shows the probability distribution of cash flow under acquirer control, X = l,m,h, where l = 0, m = 1,
and h = 2, under probability distributions for each state of world (C or I) based on the seller and acquirer beliefs.

Agent

State Seller Belief Acquirer Belief

P[X = l (= 0) m(= 1) h(= 2) l (= 0) m(= 1) h(= 2)

C
4

16
9

16
3

16
3
16

4
16

9
16

I
12
16

3
16

1
16

12
16

3
16

1
16

flow. If the seller accepts security s, then for each possible asset cash flow, x, the seller receives s(x).

3.2. Payoffs with a cash-only offer

A cash-only offer at the seller’s reservation value in state C (RC
S ) induces the seller to accept the offer

and thus transfer control in both states (C and I).15 Because the acquirer is more confident about the future

prospects of the asset, ceteris paribus, she prefers to compensate the seller with cash rather than with a

share of the asset’s payoffs. Computing the acquirer’s payoff from an all-cash offer is then straightforward.

Let fA(X |s) be the probability that the acquirer assigns to the cash flow X equals x ∈ {l,m,h}, given state

s ∈ {C, I}. Using the parameters in Tables 1 and 2, the acquirer’s payoff from the optimal pooling offer is

the average of the acquirer’s payoff in the two states, C and I. The acquirer’s payoff in state C is given by

fA(h|C)h+ fA(m|C)m+ fA(l|C) l−RC
S = 0.875.

The acquirer’s payoff in state I is given by

fA(h|I)h+ fA(m|I)m+ fA(l|I) l−RC
S =−0.1875.

15Note that because the seller’s reservation value in state I is less than his reservation value in state C, any all-cash offer that the
seller accepts in state C is also accepted in state I. Thus, any cash offer that is accepted when the acquirer can add value, i.e., in
state C, is also accepted when the acquirer cannot add value, i.e., in state I. Also note that when the state is I, the acquirer pays
more for the asset than she expects to generate from acquiring it.

13

Electronic copy available at: https://ssrn.com/abstract=3731086



Thus the acquirer’s payoff from a pooling offer equals

π (0.875)+(1−π)(−0.1875) = 0.34375.

3.3. Payoffs with a “cash plus seller debt” offer

Consider an offer consisting of cash, p, and a seller debt claim, sDt., where sDt. = min[x,k] and k rep-

resents the face value of the debt claim. No offer with a security component can produce a higher payment

than a cash offer if the offer is accepted in both states (C and I). Thus, a seller debt offer is preferred to a

cash offer only when it induces acceptance by the seller in state C and rejection by the seller in state I.

The acquirer obtains the asset only in state C, and her payoff equals the residual equity claim on the cash

flow: x− sDt.(x) = max[x− k,0]. Thus, we can formulate the acquirer’s problem as a simple programming

problem:

Max
p≥0,k≥0

π

(
fA(h|C) max[h− k,0]+ fA(m|C) max[m− k,0]+ fA(l|C) max[l− k,0]− p

)
(1)

fS(h|C) min[h,k]+ fS(m|C) min[m,k]+ fS(l|C) min[l,k]+ p≥ RC
S (2)

fS(h|I) min[h,k]+ fS(m|I) min[m,k]+ fS(l|I) min[l,k]+ p≤ RI
S (3)

Equation (1) represents the objective function of the acquirer. Equations (2) and (3) represent the incentive-

compatible constraints for the seller to accept the offer when the state is C and to reject the offer when

the state is I. Solving this optimization problem produces a unique solution: debt with a face value of

k∗ = 3
8 = 0.375 combined with a cash payment of p∗ = 7

32 = 0.21875. The payoff for the acquirer under

this solution equals 109
256 ≈ 0.42578. Thus, if the acquirer makes a cash-plus-debt offer, the expected payoff

(with the optimal debt offer) is 0.42578, which is higher than with a cash-only offer.
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3.4. Payoffs with a “cash plus retained equity” offer

Let sDt. = α x, where α represents the fraction of equity retained by the seller. The problem of finding

the optimal cash-plus-equity offer can be expressed as follows:

Max
p≥0,0≤α≤1

π

(
fI(h|C)(1−α)h+ fI(m|C)(1−α)m+ fI(l|C)(1−α) l− p

)
fS(h|C)α h+ fS(m|C)α m+ fS(l|C)α l + p≥ RC

S

fS(h|I)α h+ fS(m|I)α m+ fS(l|I)α l + p≤ RI
S

The solution is a seller retained equity stake of α = 0.30 combined with a cash payment of p∗ =

7
32 = 0.21875. The expected payoff to the acquirer (with the optimal fraction of retained equity) is 119

320 =

0.371875, which is higher than with a cash-only offer. This result is due to the high probability of buying

the asset at an inflated price in state I overwhelming the cost of issuing an undervalued equity claim (given

the acquirer’s beliefs). However, the acquirer prefers seller debt financing over retained equity.

Table 3
Summary of the results for the different offer structures for the numerical example

Panel A: Offer type

Equity + Cash Debt + Cash All cash

Result: Acquire in C only Acquire in C only Acquire in C and I

Terms: p = .219,α = 0.30 p = .219,k = 0.375 p = 0.50

Acquirer payoff: 0.372 0.426 0.344

Panel B: Value of seller security

Equity + Cash Debt + Cash

Acquirer: state C 0.41 0.30

Seller: state C 0.28 0.28

Seller: state I 0.09 0.09
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3.5. What drives the results?

The Table 3, Panel A summarizes the characteristics of the three types of acquisition packages, along

with the acquirer’s payoff in each case. In Panel B, we report the valuations of the seller securities: retained

equity in the first column and seller debt financing in the second column. In state C, the acquirer believes

that the retained equity (21.9% of the shares) is worth 0.41. Because the seller assigns a lower probability

to the high outcome, he believes that this equity stake is worth less: 0.28. An incompatible firm would not

be sold, but if it were, the seller valuation of 21.9% of the equity would be 0.09.

The seller debt has a face value of 0.375, and the acquirer believes that the probability of the target not

ending up with the bad outcome under her control is 13/16; hence, this debt is worth (13/16)×0.375 = 0.30

(since she will not repay anything if the firm is incompatible). The seller disagrees and believes that the

incompatible outcome is less likely to be avoided; he assigns a probability of 12/16 to the likelihood of

avoidance. Hence, the seller values the debt (when the firm is compatible) at (12/16)×0.375 = 0.28.

The seller believes the debt to be worth 0.28, whereas the acquirer believes it to be worth 0.30. Seller

debt financing imposes a cost on the acquirer relative to the symmetric information scenario, where the seller

could make a cash offer conditioned on the state being C. Yet, as the difference between the acquirer’s debt

valuation and the seller’s debt valuation is smaller than the difference between their respective valuations of

retained equity, they opt for seller debt financing.

In the limit case in which the seller and the acquirer are in agreement regarding the value-add plan, the

difference in valuations for the debt contract and the equity contract is the same. As a result, when there is

perfect agreement, seller debt may still be offered but is no longer uniquely optimal.

We do not develop the case in which the acquirer is more pessimistic than the seller because in this case,

no transaction would occur.

3.6. Limitations

Although this numerical example illustrates the fundamental drivers of the subsequent results, it leaves

three issues unresolved. First, we only consider two security designs — seller debt and retained equity —
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even though many other securities could be used to finance asset acquisitions. If one of these other securities

dominates seller debt, then this analysis cannot reliably verify the optimality or predict the use of seller debt

financing. Second, we have only established the dominance of debt financing for one parameterization and

have not specified any general conditions for this dominance. Third, the distribution of cash flows is discrete,

whereas the number of security designs that are perfectly equivalent (in that they produce exactly the same

payoffs to both the acquirer and the seller) is infinite. We illustrate this fact in Figure 1. Consider security

sa, which assigns the same security payments to the seller as the equity security for cash flows x = 0,1,2.

Because the acquirer and the seller, in this example, agree that cash flow equals 0, 1, or 2 with probability

1, sa is equivalent to seller retained equity from both the acquirer’s and seller’s perspective. Because of this

sort of equivalence, it is impossible to identify uniquely optimal security designs.

Figure 1
In the figure, the three dots represent the combinations of cash flows, x, and security payoffs, s(x), when x = 0,1,2.
The three points constitute the supports of cash flow distributions of the acquirer and seller. sEq. represents
the equity contract modeled in the example. Any contract specifying the same payment to the acquirer when
x = 0,1,2 is equivalent to the equity contract; one such contract is the alternative contract, sa, depicted in the figure.

seq.

sa
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x
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4. The baseline model

The formal analysis we develop in this section and in section 5 addresses the limitations described in

Section 3.6. We consider acquirer offers that feature not only debt and seller equity but all securities that

satisfy the standard limited-liability and monotonicity conditions imposed in the security design literature.

Second, we use continuous cash flow distributions under which unique optimal security designs can be iden-

tified. Working with continuous distributions also permits us to relate our conditions for the optimality of

seller debt to the parametric distributions of cash flows and asset values commonly used in finance research.

Third, we provide precise sufficient conditions for the optimality of seller debt financing.

4.1. Formal setup

We consider the problem of an acquirer, A, structuring the purchase of control rights over an asset from

a seller, S. Both the seller and the acquirer are risk-neutral and have a discount rate of zero. The seller

knows which of two possible states his firm is in: C, the “compatible” state, or I, the “incompatible” state.

The acquirer’s prior probability distribution over the two states assigns probability π to the state’s being

C. Negotiations between the acquirer and the seller occur at date 0 and concern the sale of the cash flows

realized at date 1.16

Conditioned on control being transferred to the acquirer, the distribution of cash flows at date 1 is

F j
i , i,= S,A, j = C, I, where j represents the state of the world and i represents one of the parties to the

transaction. For example, FC
A represents the acquirer’s distribution of cash flows conditioned on control

being transferred and the state being C. Thus, the acquirer and seller have different subjective probability

measures over the distribution of cash flows from the asset if control is transferred to the acquirer.17

Conditioned on control being retained by the seller, we represent the distribution of cash flows by H j
i ,

i,= S,A, j =C, I. For example, HC
S represents the seller’s distribution of cash flow conditioned on the seller

16These cash flows represent the seller’s claim on an asset’s cash flow. If the seller’s claim on the asset is unencumbered, then
“cash flows” represents all cash flows from the asset. If, however, the seller’s claim is subordinated to a senior debt claim, then
“cash flows” represents cash flows in excess of the preexisting claim of senior debt on the asset’s cash flows.

17The differences in acquirer and seller valuations in our formal analysis can also be interpreted in terms differences risk prefer-
ences. See Section 6.3.
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retaining control of the asset and the state being C. Given risk neutrality, the seller’s reservation payoff from

rejecting an offer from the acquirer equals the seller’s expected payoff from the asset under seller control.

We represent this payoff by Ri
S, j = I,C, i.e.,

R j
S =

∫
xdH j

S(x).

Similarly, when control is transferred, we represent the expected cash flow, which equals the cash flow’s

value, given state j, j =C, I, given the beliefs of i, i = A,S by µ
j

i , i.e.,

µ
j

i =
∫

xdF j
i (x).

At date 0, the acquirer makes a first and final offer to the seller which, if accepted, transfers control of

the asset from the acquirer to the seller. The acquirer offers a package consisting of a cash payment, p≥ 0,

and a security, s. The cash payment is made at date 0. The security is a claim on the date 1 cash flows

produced by the asset. If the offer is accepted, control of the asset is transferred to the acquirer, and the

seller receives a cash payment of p at date 0, and the security payoff, s, at date 1.

At date 1, the cash flow x is realized. If the offer was rejected at date 0, the entire cash flow accrues to the

seller. If the offer was accepted, and the cash flow is x, the seller receives a payment of s(x) and the acquirer

receives x− s(x). Thus, the distribution of cash flows depends on (i) the identity of the agent (acquirer, A or

seller, S), (ii) the state of the world (C or I), and (iii) whether control is transferred to the acquirer.

We impose the standard assumptions in the security design literature on the admissible set of securities,

i.e., we assume monotonicity (x ↪→ s(x) is non-decreasing, and x→ x− s(x) is non-decreasing) and limited

liability (0 ≤ s(x) ≤ x) (e.g., Nachman and Noe, 1994; DeMarzo and Duffie, 1999; Axelson, 2007b). We

assume that all distributions — F j
i , H j

i , i = S,A, j = C, I — have finite expectations, are supported by

R+, and have continuous densities that are positive over (0,∞). For any distribution F , we denote F̄ its

complementary distribution, also known as the survival distribution (F̄ = 1−F).

Note that in our setting, there is no riskless component of cash flows. Because the acquirer is not
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financially constrained and because the value of the riskless component of the cash flows does not vary with

the acquirer’s beliefs or with the seller’s private information, a riskless component of cash flows has no

effect on our analysis. To allow cash flows to have a riskless component is straightforward: let X represent

the cash flow of the acquired asset and xr > 0 represent the lowest possible cash flow generated by the asset.

Our results below would simply become how security design distributes X−xr between the acquirer and the

seller. In practice, in the presence of a riskless cash flow component, one would expect the acquisition of

this component to be financed by a riskless debt claim underwritten by the acquirer’s lead bank.

4.2. Security density

The monotonicity restrictions on s imply that for any two distinct cash flows, x′ and x′′, such that x′′ > x′,

it must be the case that 0 ≤ s(x′′)− s′(x) ≤ x′′− x′. In other words, the slope of s is bounded between 0

and 1. Limited liability implies that s(0) = 0. These conditions imply that s is absolutely continuous and,

for this reason, s has a density. This density is a measurable function, which we call the security density w,

where w(x) ∈ [0,1] satisfies:

s(x) =
∫ x

0
w(t) dt.

Security densities make it quite tractable to characterize optimal security designs and can be heuristically

interpreted as marginal allocations of cash flows. If the cash flow equals x, w(x) represents the proportion of

cash flows between x and x+dx (dx≈ 0) allocated to the seller. A debt security allocates all marginal cash

flows to the seller, w = 1, until cash flows equal the debt face value, at which point the security allocates no

marginal cash flows to the seller w = 0 (see Figure 2).

First note that, the value of a security under a given distribution of cash flows, F , equals

∫
∞

0
s(x)dF(x).

Result 2 in Appendix A shows that we can also express the value of a security s under distribution

20

Electronic copy available at: https://ssrn.com/abstract=3731086



Figure 2
The security density, w, and the security, s.

x

s

O
x

1

w
O

function F in terms of the security density and complementary distribution function, F̄ = 1−F , via the

identity

∫
∞

0
s(x)dF(x) =

∫
∞

0
w(x) F̄(x)dx. (4)

Expressing the design problem as an optimization over security densities (and complementary distri-

bution functions) simplifies the solution. Imposing monotonicity and limited liability constraints on the

security issued, s, is equivalent to restricting the range security density, w, to [0,1], i.e., 0≤ w(x)≤ 1.18

4.3. Stochastic orderings of cash flows

In our analysis, one distribution of cash flows is considered “better” than another if it dominates the

other distribution in the Monotone likelihood Ratio (MLR) ordering. The MLR ordering is ubiquitous in the

security design, auctions, and principal/agent literature (e.g., Milgrom, 1981).

A distribution MLR (strictly) dominates another distribution if the ratio between the probability density

functions of the dominant and dominated distributions is (strictly) increasing. Under the dominant and

dominated distributions, MLR ordering implies that the relative likelihood of cash flows exceeding a given

18The feasible set of densities equals all measurable functions bounded by 0 and 1, so expressing the feasible set of densities
is much simpler than expressing the feasible set of monotone limited liability functions. Equality and order conditions related to
security densities should be interpreted in the almost sure sense, e.g., w = 0 means that the Lebesgue measure of {x ∈ R+ : w 6= 0}
equals 0.
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threshold increases as the threshold moves from the downside to the upside of the cash flow distribution.

We say that one distribution asymptotically dominates another if the density ratio converges to infinity

as the cash flow at which the densities are evaluated converges to infinity. Interpreted in Bayesian terms, this

implies that for any non-degenerate prior beliefs, a sufficiently large cash flow draw leads a decision maker

to be nearly certain that the draw came from the dominant distribution. MLR dominance implies asymptotic

dominance for many commonly employed distributions, e.g., the Lognormal, Gamma, Exponential, Weibull.

4.4. Definitions and assumptions

4.4.1. Definitions

Definition 1. Let W represent the set of measurable functions, w : R+ → [0,1], an acquirer offer is an

ordered pair (w, p), w ∈W and p≥ 0.

Definition 2. The value of the security offered by the acquirer is given by

v j
i (w) =

∫
∞

0
w(x) F̄ j

i (x)dx, i = A,S, j =C, I. (5)

Definition 3. Let r j, j = A,C represent the ratio between right tail of the C and I state cash flow distributions

under the beliefs of the acquirer and seller, i.e.,

rA(x) =
F̄C

A (x)
F̄ I

S (x)
, rC(x) =

F̄C
S (x)

F̄ I
S (x)

.

The tail ratios, rA and rC represent the right tails, in state C, of the acquirer’s and seller’s cash flow

distributions normalized by the right tail of the cash flow distribution in state I (i.e., the state where the

acquirer cannot add value).
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4.4.2. Assumptions

Assumption 1 is standard and states that state C is unambiguously better than state I for both parties.

Assumption 1. Cash flows in the two states satisfy the following ordering conditions:

1. FC
A MLR and asymptotically dominates F I

A;

2. FC
S MLR and asymptotically dominates F I

S ;

3. RC
S > RI

S.

The following two assumptions are key to our framework. Assumption 2 states that both the acquirer and

the seller agree that acquisition in state C adds value but the acquirer is more confident about her value-add

capacity than the seller.

Assumption 2. FC
A strictly MLR and asymptotically dominates FC

S , and µC
S > RC

S .

Assumption 3. F I
A = F I

S and µ I
S = RI

S;

Assumption 3 implies that the acquirer’s plan for increasing value critically depends on the target asset

having specific characteristics known only by the seller. In state C, the asset has the characteristics necessary

for value creation; but in state I, it does not. For example, suppose an acquirer seeks to acquire a lab that

produces medical devices. The acquirer believes her superior distribution network can expand the market

reach of the medical device, but this synergy will only be present if the target’s product is reliable —

information about which the seller will know the most.

All of the results of the baseline model go through, under the assumption that µ I
S < RI

S, i.e., that it is

common knowledge that acquisition destroys value when the value add plan is not compatible with the

seller’s assets. In fact, assuming that µ I
S < RI

S would favor the use of seller securities, by making the use of

seller securities to separate incompatible and compatible sellers less costly to the acquirer and increasing the

acquirer’s incentive to avoid purchasing incompatible assets. The advantage of imposing Assumption 3 in

the baseline model is that it ensures that the only channel through which the acquisition affects the seller’s

assets, and the only source of disagreement between the acquirer and seller, is the acquirer’s value add plan.
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Assumption 4. r′A(x)/r′C(x) is non-decreasing in x,

Finally, Assumption 4 restricts the set of admissible cash flow distributions to those where the acquirer’s

expectations about the value add exceeds that of the seller in the sense that belief disagreement is primarily

about the magnitude of the upside gains from a successful implementation of the value-add plan. This

assumption is closely related to MLR ordering. We further further discuss this assumption and our other

assumptions in section 6.1.

4.5. Optimal control transfer offers

We use a standard first-and-final offer mechanism: the acquirer makes an offer to the seller, which

the seller accepts or rejects. As discussed in detail in section 6.2, permitting the acquirer to commit to a

menu of contracts that includes a cash payment in excess of the value of the asset contingent on the seller

reporting that the state is I can sometimes produce higher acquirer payoffs than a first-and-final offer. The

first-and-final offer mechanism is optimal for the acquirer only when she cannot commit to paying more for

the asset than asset’s value, conditioned on the offer being accepted, i.e., an ex-post participation constraint

is imposed on the mechanism design problem. However, the imposition of this constraint has no effect on

the central result of this paper: the optimality of seller debt financing holds both in the no-commitment

framework and in the commitment framework (section 6.2). Furthermore, as discussed in section 5.2 on the

market for asset acquisition, no-commitment is the most realistic assumption.

Our offer mechanism also assumes that the acquirer possesses the bargaining power in the acquisition

negotiations. This is consistent with the bargaining-power assumptions in the literature on cash vs. security

acquisition offers (Hansen, 1987; Fishman, 1989). Although assigning the bargaining power to the seller

(by assuming that the seller moves first) would make our analysis incompatible with most of the literature

on acquisitions, it would not rule out the optimality of seller debt. As we show in Online Appendix B, if we

formulate a signaling model in which the informed seller moves first and makes a first-and-final offer to the

acquirer, qualitatively the tradeoffs determining the optimal security design would be similar to tradeoffs in

our model. A seller with compatible assets would aim to achieve two objectives: (1) avoid being mimicked
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by the seller with incompatible assets, and (2) minimize the cost (given the seller’s beliefs) of satisfying the

acquirer’s reservation constraint.

If the seller only considers objective (1), he would prefer to receive the most informationally sensitive

claim possible, i.e., levered equity. However, the seller actually needs to consider both objectives. With

respect to objective (2), seller debt is advantageous because the divergence of valuation between seller and

acquirer is largest for the upside cash flows. Thus, the cheapest way for the seller to satisfy the acquirer’s

reservation constraint, is to assign the upside cash flows to the acquirer, implying that the seller receives

a debt claim. Consequently, the optimal security design when sellers make first and final offers, as in our

setting, depends on resolving the tension between the two objectives.

5. Solving the baseline model

In the first-and-final offer setting, the acquirer’s optimization problem can be solved in three steps.

First, solve for the optimal contract in the case of a pooling offer, i.e., the seller is willing to accept the

offer regardless of the seller’s private information. Second, solve for the optimal contract in the case of a

separating offer, i.e., the seller is willing to accept the offer only if the seller has positive information about

future cash flows. Third, compare the acquirer’s respective payoffs from separating and pooling offers and

identify the conditions under which each is optimal. This is what we do in the next three sub-sections. We

then illustrate our findings with an example.

5.1. Solving for the optimal pooling offer

For pooling offers, i.e., offers that are designed to be accepted by the seller in both states C and I, the

optimal contract is simply an all-cash offer equal to the reservation price of the seller when the state is C.

Formally, for a pooling offer, the acquirer security design problem can be expressed as follows:
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Min
w∈W ,p≥0

π vC
A(w)+(1−π)vI

A(w)+ p,

IC-C: vC
S (w)+ p≥ RC

S ,

IC-I: vI
S(w)+ p≥ RI

S.

P-UCT

If IC-C is satisfied, then IC-I is also satisfied. Thus IC-I is a redundant constraint. Because of acquirer

confidence in her own ability (Assumption 2) and the fact that the acquirer is not financially constrained, the

cheapest way to meet the seller’s reservation constraint in state C is to pay the seller with cash.

Proposition 1. If (w∗, p∗) is an optimal pooling offer, w∗ = 0 (the offer is an all cash offer) and p∗ = RC
S .

5.2. Solving for the optimal separating offer

We define a separating offer as an offer under which it is incentive-compatible for the seller to accept

the offer if the state is C and to reject the offer if the state is I.19

As the acquirer’s claim on asset cash flows is given by x− s(x), the acquirer payoff in state C is:

∫
∞

0
(x− s(x))dFC

A (x)− p =
∫

∞

0
xdFC

A (x)−
∫

∞

0
s(x)dFC

A (x)− p =

µ
C
A −

∫
∞

0
s(x)dFC

A (x)− p = µ
C
A −

∫
∞

0
w(x) F̄C

A (x)dx− p = µ
C
A − (vC

A(w)+ p).

As the probability of the compatible state, C, is π , the expected acquirer payoff equals π (µC
A −(vC

A(w)+ p)).

Therefore, an optimal separating offer is a solution to the following problem:

Max
w∈W ,p≥0

π (µC
A − (vC

A(w)+ p)),

IC-C: vC
S (w)+ p≥ RC

S ,

IC-I: vI
S(w)+ p≤ RI

S.

19Under Assumption 3, the acquirer cannot add value in State I. Thus, the acquirer cannot profitably acquire the firm. We relax
this assumption in Section 6.1.1. We also consider alternative sale mechanisms in Section 6.2.
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Because π and µC
A are constants not affected by the offer, this problem is equivalent to the following

minimization problem:

Min
w∈W ,p≥0

vC
A(w)+ p,

IC-C: vC
S (w)+ p≥ RC

S ,

IC-I: vI
S(w)+ p≤ RI

S.

P-CT

Consequently, the acquirer’s problem can be thought of as minimizing the value of the total compensa-

tion (cash plus security) offered to the seller. This offer is conditioned on the acquirer’s cash flow distribution

in state C, subject to the constraint that her offer is incentive-compatible for the seller.

If information were symmetric, the acquirer could contract on the seller’s asset being compatible.

Thus, constraint IC-I in Problem P-CT would be eliminated. In this case, it is clear that IC-C would

bind, i.e., vC
S (w) + p = RC

S in any solution, implying that the objective function could be expressed as

vC
A(w)− vC

S (w) + RC
S . Because of acquirer confidence, vC

A(w) > vC
S (w) for all w > 0. Thus, the optimal

solution to the minimization Problem P-CT would be the offer w∗ = 0 and p∗ = RC
S , i.e., the optimal offer

would be all cash. Thus, absent asymmetric information, issuing seller securities would never be optimal.

In contrast, our first result shows that, in our asymmetric information setting, all separating offer have a

security component. The proof of this proposition and the proofs of subsequent results are presented in the

Appendix.

Lemma 1. Separating-all-cash offers, i.e., offers (w = 0, p), are infeasible.

Using the following simple lemmas (Lemma 2 and Lemma 3), the separating offer problem, P-CT, can

be simplified to produce a more tractable formulation.

Lemma 2. If (w∗, p∗) is an optimal solution to Problem (P-CT), then IC-C binds, i.e., vC
S (w

∗)+ p∗ = RC
S .

The intuition underlying Lemma 2 is that, if IC-C does not bind, it is possible to scale down the offer,

either by reducing the security or cash component. If the scaling factor is sufficiently small, and IC-C is

satisfied as a strict inequality, IC-C will still be satisfied after scaling down the offer. Scaling down the offer
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discourages the seller from accepting the offer when assets are incompatible, and therefore will not violate

the IC-I constraint. Scaling down the offer will reduce the acquirer’s valuation of the offer to the seller.

Lemma 3. If (w∗, p∗) is an optimal solution to Problem (P-CT), then IC-I binds, i.e., vI
S(w

∗)+ p∗ = RI
S.

The intuition underlying Lemma 3 is that, if IC-I does not bind, an alternative offer is feasible under

which the seller with compatible assets receives the same payoff from a offer with a larger cash component

and a smaller security component. If the increased weight on cash in the alternative offer is sufficiently

small, the IC-I constraint will still be satisfied as a strict inequality. By construction, the cash component

increase will not affect the payoff to a seller with compatible assets. Thus, IC-C remains satisfied. Because

of acquirer confidence, reducing the weight on the security component decreases the acquirer’s valuation of

the offer to the seller.

These two Lemmas imply that vC
S (w)− vI

S(w) = RC
S −RI

S, p = RI
S− vI

S(w), and p ≥ 0. Thus, (w, p) is

optimal if and only if w is a solution to the following reduced problem.

Min
w∈W

vC
A(w)+(RI

S− vI
S(w)),

VM: vC
S (w)− vI

S(w) = RC
S −RI

S,

SLL: vC
S (w)≤ RC

S ,

PR-CT

and p = RI
S− vI

S(w).

The first constraint, value matching (VM), requires that up to the translation produced by the cash

payment, the value of the security offered in the two states must equal the state contingent reservation

valuations of the seller. The second constraint, the seller limited liability constraint (SLL), ensures that the

translation produced by the cash payment can be supported by a nonnegative cash payment. A negative cash

payment would involve the seller making a payment to the acquirer. Note that, given VM, which implies

that vC
S (w)− vC

S (w) = (RC
S −RI

S), the SLL constraint could equivalently be expressed as vC
S (w) ≤ RC

S and

p = RC
S − vC

S (w).
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Inspection of Problem PR-CT illustrates the role of acquirer confidence in our analysis. It the acquirer

were not more confident about the value add than the seller, then vC
A = vC

S , which implies that across all offers

that satisfy VM, the objective function is constant. Thus, any offer that satisfies VM and SSL would be an

optimal solution to Problem PR-CT.

In our setting, which presumes both acquirer confidence and adverse selection, the solution to Prob-

lem P-CT is less obvious. However, Problem PR-CT is an infinite dimensional linear programming problem

and can be solved with standard optimization techniques. Forming the Lagrange associated with prob-

lem PR-CT yields

L (w,γ,η) = vC
A(w)+(RI

S− vI
S(w))

− γ

(
(vC

S (w)− vI
S(w))− (RC

S −RI
S)
)
+η

(
vI

S(w)−RI
S

)
, γ ∈ R, η ≥ 0. (6)

In (6), γ is the multiplier associated with the equality constraint, VM, and η is the multiplier associated with

the inequality constraint, SLL. Standard results in duality theory imply that if w∗ is a security density that

solves PR-CT, then for some γ∗ ∈ R and η∗ ≥ 0, w∗ solves the dual program

Min
w∈W

L (w,γ∗,λ ∗). PRDual-CT

Using the definitions of value provided by equation (5) and some algebraic simplifications yields the

following version of the Lagrange function:

L (w,λ ,η) =
∫

∞

0
w(x)

(
(F̄C

S (x)− F̄ I
S (x))

(
rA(x)− (1−η)

rC(x)−1
− γ

))
dx+

γ (RC
S −RI

S)+(1−η)RI
S,

(7)

and rA(x) =
F̄C

A (x)
F̄ I

S (x)
, rC(x) =

F̄C
S (x)

F̄ I
S (x)

. (8)
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When the expression in the large parentheses is positive, minimization requires setting w at its smallest

feasible value, w = 0. When the expression in the large parentheses is negative, minimization requires

setting w at its largest feasible value, w = 1.

Assumption 2 implies that F̄C
S (x)− F̄ I

S (x)> 0, for x > 0. The sign of the expression in the large paren-

theses thus depends on the sign of the ratio, R, defined by

R(x) =
rA(x)− (1−η)

rC(x)−1
− γ, x > 0. (9)

Because rA > rC and η ≥ 0, the following lemma holds:

Lemma 4. If w∗ is an optimal security density, then there exists γ∗ > 1 and η∗ ≥ 0 such that

w∗(x) =


0 R(x)− γ∗ > 0,

1 R(x)− γ∗ < 0.
, (10)

where R(x) =
rA(x)− (1−η)

rC(x)−1
. (11)

The next lemma provides a technical result which is the foundation of all of our subsequent characteriz-

ations. Its implications are graphically represented in Figure 3.

Lemma 5. R, (defined by equation (11) in Lemma 4), has the following properties: (i) If η ≥ 0,

limx→∞ R(x) = ∞. (ii) If η = 0, R is increasing. (iii) If η > 0, limx→0+ R(x) = ∞ and R is U-shaped.

A key result for characterizing security designs in the baseline model is that the SLL constraint is re-

dundant given Assumption 3.

Lemma 6. All feasible offers that satisfy value-matching (VM) constraint strictly satisfy the seller limited

liability (SLL) constraint.
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x

R

RHxL - Γ* < 0

k*O

A. SLL does not bind, η∗ = 0

x

R

RHxL - Γ* < 0

k0

* k1

*O

B. SLL binds, η∗ > 0

Figure 3
The ratio function, R, and the seller limited liability constraint, SLL. In Panel A, SLL does not bind
and R is strictly increasing. In Panel B, SLL is a binding constraint and R is U-shaped. The shaded
area is the region where all marginal cash flows are paid to the seller, i.e., where w = 1 (Lemma 4).

Lemma 6 holds because Assumption 3 ensures that it is always possible to find a security that satisfies

the limited liability constraint, (SLL) and satisfies VM. Under the seller’s beliefs, value, even under seller

control, is higher in state C than in state I. In state C, if control is transferred, value is even higher, but not in

state I. For this reason, securities exist that make the gap between security value in state C and security value

in state I, vC
S − vI

S, larger than the gap between the seller’s reservation values, RC
S −RI

S, in the two states. By

scaling down the security component of the offer, a value gap that is too large to satisfy VM can always be

reduced until the VM condition is satisfied.

Lemma 6 ensures that the multiplier associated with the slack SLL constraint, η , is 0 at a solution to

Problem PR-CT. When η∗ = 0, Assumption 4 ensures that R is increasing and thus crosses the x-axis once

from below (see Figure 3). This ensures (Lemma 4) the optimality of seller debt.

Proposition 2. Optimal separating offers exist. An optimal separating offer consists of a cash component

(p∗ > 0) and a security component, s∗, with density given by w∗,

w∗(x) =


1 x < k∗

0 x > k∗
and thus s∗(x) = min[x,k∗];k∗ > 0.
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Thus, the optimal separating offer always consists of a mixture between cash and seller debt financing.

Proposition 2 states that the acquisition is financed by a mixture of cash and non-recourse risky seller

debt that is senior to other risky claims, but junior to any non-risky debt (e.g., bank financing). In practice,

the post acquisition capital structure of the target would consist of i) a tranche of senior debt, whose face

value matches the riskless part of the cash flow provided by the acquirer’s lead bank; ii) a subordinated

non-recourse debt tranche provided by the seller; and iii) equity provided by the acquirer.

5.3. The choice between a pooling offer and a separating offer

The acquirer chooses between a pooling offer and a separating offer by comparing the respective payoffs.

A separating offer ensures that the offer is accepted only in state C, which occurs with probability π . Thus,

the payoff to the acquirer is equal to:

π (µC
A − (vC

A(w
∗)+ p∗)),

where (w∗, p∗) is the optimal separating offer. By Lemma 2, vC
S (w

∗)+ p∗ = RC
S . Thus, the acquirer’s payoff

with the optimal separating offer is,

π (µC
A − (vC

A(w
∗)− vC

S (w
∗))−RC

S ). (12)

The acquirer’s payoff with the pooling offer is simply the expected value of the cash flows less the cash

payment, p = RI
S, to the seller. Thus, the acquirer’s payoff from a pooling offer equals

π (µC
A −RC

S )+(1−π)(µ I
A−RC

S ).

Assumption 3 implies that µ I
A = RC

S . Thus, we can express the acquirer’s payoff in a pooling equilibrium as

π µ
C
A +(1−π)RI

S−RC
S . (13)
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Equations (13) from (12) imply the following proposition.

Proposition 3. A separating offer containing seller debt is optimal if and only if

(1−π)(RC
S −RI

S)−π(vC
A(w

∗)− vC
S (w

∗))≥ 0,

where w∗ is the security specified in Proposition 2. If the inequality is reversed, an all-cash offer is optimal

(with p∗ = RC
S ).

Proposition 3 provides a simple characterization of the conditions under which the seller debt financing

is used. Propositions 1 and 2 show that seller debt financing should always be used in a separating offer

and never be used in a pooling offer. Thus, seller debt financing is used if and only if the offer is separat-

ing. Hence, the condition for the optimality of separating offers in Proposition 3 is also the condition that

determines whether seller debt financing is optimal. Hence, Proposition 3 shows that seller debt financing is

employed when (a) π (the likelihood that the state is C) is low, (b) when the “mispricing” conditioned on the

acquirer’s beliefs of the seller debt security is small, and (c) when the gap between the reservation values of

the seller in the two states (C and I) is large.

5.4. Baseline example

To illustrate the design of optimal offers, we provide the following example. The parameters in this

example are given in Table 4. We assume that cash flows are exponentially distributed in both states under

the beliefs of both the acquirer and the seller. This implies that the complementary distribution functions are

as follows:

F̄ i
j (x) =


exp[− x

µ i
j
] x≥ 0

1 x < 0
, i =C, I, j = A,S. (14)

We start by verifying that the distributions in the example satisfy Assumptions 1, 2, 4, and 3. First, as

cash flows are exponentially distributed and given that the assumed parameters satisfy µC
A ≥ µ I

A and µC
S ≥ µ I

A,

Assumption 1 is satisfied. Second, as cash flows are exponentially distributed and given that µC
A ≥ µC

S and
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Table 4
Parameters for Example 5.4. All cash flow distributions are exponential.

Valuations of the asset’s cash flow

Control transferred Control not transferred

State Probability Acquirer Seller Seller

C π = 0.25 µC
A = 2.00 µC

S = 1.50 RC
S = 1.25

I 1−π = 0.75 µ I
A = 1.00 µ I

S = 1.00 RI
S = 1.00

µ I
A ≥ µ I

S, Assumption 2 is satisfied. Third, from the data in Table 4, we can verify that Assumption 3 is

satisfied. Finally, to see that Assumption 4 is satisfied, note that equation (14) shows that

rA(x) = exp
(

x
(

1
µ I

A
− 1

µC
A

))
, rC(x) = exp

(
x
(

1
µ I

S
− 1

µC
S

))
.

Thus,

log(r′A(x)) = x
(

1
µ I

A
− 1

µC
A

)
+ log

(
1

µ I
A
− 1

µC
A

)
log(r′C(x)) = x

(
1
µ I

S
− 1

µC
S

)
+ log

(
1
µ I

S
− 1

µC
S

) .

Thus,

x ↪→ r′A(x)/r′C(x) is increasing ⇐⇒
(

1
µ I

A
− 1

µC
A

)
>

(
1
µ I

S
− 1

µC
S

)
.

Inspection of the parameters in Table 4 shows that this condition is satisfied.

Proposition 2 shows that the optimal security design is seller debt financing. Using the identity provided

by equation (4), we see that the value of seller debt, to the seller, as a function of its face value in states

j =C, I, is given by

Vdebt j
i (k) =

∫
∞

0
min[x,k]dF j

i (x) =
∫

∞

0
w(x) F̄ j

i (x)dx =
∫ k

0
F̄ j

i (x)dx

= µ
j

i

(
1− exp

[
− k

µ
j

i

])
, i = A,S, and j = I,C. (15)

Using equation (15) and solving for the value of debt that satisfies condition VM in Problem PR-CT yields
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k = k∗ = 2.079.

If the offer is accepted, which occurs if and only if the state is C, the acquirer’s payoff conditioned on

state C is the total value of cash flows, less the value of the seller’s security and the cash payment. Thus, the

acquirer’s payoff conditioned on state C, usep
A (C), is given by

usep
A (C) = µ

C
A − vC

A(w
∗)− p∗ = µ

C
A −VdebtCA(k

∗)− p∗ ≈ 0.582.

Under a separating offer, the acquirer’s payoff conditioned on state I equals 0. Thus, the acquirer’s expected

payoff using an optimal separating offer is given by

usep
A = π usep

A (C)≈ 0.146.

Note that if the seller’s information was public, the acquirer would make a cash offer equal to the seller’s

reservation price in state C, RC
S . Conditioned on state C, acceptance would result in an acquirer payoff

of µC
A −RC

S = 0.75. Thus, conditioned on the state being C, ensuring that an optimal separating offer is

incentive-compatible costs the acquirer (µC
A −RC

S )−usep
A (C) = 0.75−0.582 = 0.168. This cost results from

the acquirer’s higher valuation of state C cash flows. Consequently, the acquirer needs to issue securities to

discourage the seller from accepting the offer in state I.

Next, we need to verify that this payoff is superior to the payoff obtained from a pooling offer. As shown

in Section 5.1, under the parameters in the example, the acquirer’s payoff from a pooling offer equals

upool
A = π µ

C
A +(1−π)µ

I
A−RC

S = 0.

Hence, the optimal policy for the acquirer is to make the separating offer: a seller debt claim with face value

2.079 plus a cash payment of 0.125. The offer is accepted if and only if the state is C.
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6. Robustness

We have studied the financing of acquisitions through first-and-final offers when (1) acquirers are more

confident about their value-add capacities if they gain control than the sellers, and (2) sellers have private

information about the asset. We find that if the seller retains a claim on the asset, it will always be a non-

recourse junior debt claim. In this section, we consider the robustness of our results along two dimensions.

First, we discuss the relaxation of each of our assumptions, and in particular, relaxing Assumption 3. Second,

we consider a different sale mechanism: commitment offer instead of first-and-final offer. Finally, we

discuss alternative interpretations of the results.

6.1. Discussion of assumptions

6.1.1. The acquirer can always add value (modifying Assumption 3)

The most interesting assumption to relax is Assumption 3. The case we solve here is one in which the

acquirer can also add value when the asset is incompatible (but less than when it is compatible). Formally,

Assumption 3 is replaced by the following assumption :

Assumption 5. F I
A MLR and asymptotically dominates F I

S , and µ I
S > RI

S.

Using the results already derived, specifically Lemma 5, we can examine the consequences of the change

in assumptions. First, note that all results in the paper prior to Lemma 6 are valid under both Assumptions 3

and 5. As shown by Lemma 6, if the value-add is only in state C, (i.e., Assumption 3 is satisfied) then

the seller limited liability constraint (SLL) is strictly satisfied. So, if the value-add in state I is sufficiently

small, SLL continues to be strictly satisfied. Lemma 5 then implies that seller debt financing plus cash is the

optimal security design.

However, when the value-add in state I becomes sufficiently large, SLL may become a binding con-

straint. In this case, a new offer design can emerge: optimal separating offers have no cash component and

the seller’s claim is subordinated to a risky debt debt claim, which would be provided by someone other

than the seller (e.g., a private debt fund or a bank).
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Proposition 4. When Assumption 3 is replaced by Assumption 5 and no debt contract exists which satis-

fies both value matching (VM) and seller limited liability (SLL) conditions of the offer design problem in

Problem (PR-CT), then optimal separating offers have no cash component, i.e., p∗ = 0 and the acquisition

is fully debt financed. A third party provides junior (risky) debt) and the seller provides subordinated debt,

which we label “seller mezzanine debt,”:

w∗(x) =


1 x ∈ (k∗0,k

∗
1)

0 x /∈ (k∗0,k
∗
1)

and thus s∗(x) = min[max[x− k∗0,0],k
∗
1];0 < k∗0 < k∗.

Proposition 4 states that the acquisition needs to be fully debt financed and that the seller’s claim must

be subordinated to a risky debt claim not held by the seller. In practice, this sort of financing would, in all

likelihood, be implemented by i) a tranche of senior debt, whose face value matches the riskless component

of the cash flows; ii) junior debt not provided by the seller, which is risky, and non-recourse (e.g., Stapled

Finance); and iii) risky non-recourse debt subordinated to this junior debt held by the seller.

Absent Assumption 3, separating offers may not exist. In fact, when the baseline model assumptions

about the relationship between the state and the value-add are reversed, the following result shows that no

separating offers exist.

Result 1. If the value-add, conditioned on seller beliefs, is smaller in state C than in state I, µC
S −RC

S <

µ I
S−RI

S, then no separating offer exists.

When the conditions of Result 1 are satisfied, although the seller believes that asset value under both

acquirer and seller control will be higher in state C than in state I, the seller believes that increase in value

caused by control transfer will be higher in state I. In this case, the incentive of the seller to induce control

transfer in state I so large that, seller securities cannot separate I and C.

The overall conclusion from the results in this section is that when the seller’s private information is crit-

ical for the acquirer’s plan to add value, offers of cash plus seller debt are always optimal. When the critical
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assumption is relaxed somewhat, seller debt plus cash is still the optimal offer. If the seller’s information

becomes even less critical, all debt offers with a mezzanine structure can be optimal. If Assumption (3) is

reversed instead of relaxed, i.e., the seller believes that the value-add is concentrated in state I, separating

offers of the sort we analyze, do not exist. Thus, we conjecture that asset acquisitions by acquirers whose

value add potential is a substitute rather than a complement to the target’s asset quality (e.g. turn-around

artists) are less likely to rely on seller debt financing and more likely to opt for more complex seller financing

options or all cash offers.

To illustrate, we use the same distributional assumptions as described in Example 5.4, i.e., cash flows

are exponentially distributed. Thus, the complementary distribution functions for cash flows are defined by

equation (14). The value of a subordinated debt claim s of the form s(x) = min[max[x− k1,0],k2] can be

computed using the identity provided by equation (4), Thus yields the value Vsub j
i of subordinated debt to

j = A,S and i =C, I, given k1 and k2.

Vsub j
i (k0,k1) =

∫ k1

k0

F̄ j
S (x) = µ

j
S

(
exp

(
− k0

µ
j

S

)
− exp

(
− k1

µ
j

S

))
, i = A,S, and j = I,C (16)

Parameter values for the example are provided by Table 5. The satisfaction of Assumption 4 follows

from the Exponential distribution assumption as in Example 5.4. Satisfaction of Assumptions 1, 2, and 5

can be verified by inspecting Table 5

Table 5
Parameters for Example 5. All cash flow distributions are exponential

Valuations of the asset’s cash flow

Control transferred Control not transferred

State Probability Acquirer Seller Seller

C π = 0.35 µC
A = 1.75 µC

S = 1.50 RC
S = 1.074

I 1−π = 0.65 µ I
A = 1.00 µ I

S = 1.00 RI
S = 0.779

Using equation (15) to solve for the amount of debt that satisfies condition VM of Problem PR-CT, we

obtain the solution ko = 2.465. The security density for this debt claim is given by wo(x) = 1 if x < ko
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and w(x) = 0 if x > ko. Using equation (15) and computing the value of the debt claim to the seller in

state I shows that vI
S(w

o) = 0.915 > 0.779 = RI
S; thus, the SLL condition in Problem PR-CT is violated

which implies that the SLL constraint is binding. Proposition 4 implies that the optimal security design is

subordinated debt, i.e., the form of the security is min[max[x−k0,0],k1 and the optimal security density has

the form w(x) = 1, if x ∈ (k0,k1), and w(x) = 0 if x /∈ (k0,k1).

The value of a subordinated debt claim is given by equation (16). Solving for (k0,k1) that satisfy both

VM and SLL with equality yields, k∗0 = 0.15 and k∗1 = 2.5. Because SLL binds, p∗ = 0.

If the separating offer is accepted, which occurs if and only if the state is C, the acquirer’s payoff

conditioned on state C, usep
A (C) and expected payoff are given by:

usep
A (C) = π (µC

A − vC
A(w

∗)− p∗ = µ
C
A −VsubC

A(k
∗
0,k
∗
1)− p∗)≈ 0.563,

usep
A = π usep

A (C)≈ 0.197,

where Vsub is defined in equation (16). If the seller’s information were public, conditioned on state C, the

seller’s payoff would equal µC
A −RC

S = 0.676. Thus, conditioned on state C, the cost the acquirer of making

the separating offer incentive compatible equals 0.676−0.563 = 0.113.

the distributional assumptions controlling signal and belief conditioned cash flow distributions (Assump-

tions 1, 1, and 4,

6.1.2. Distributional conditions (Assumptions 1, 2, and 4)

Assumption 1 simply defines compatible and incompatible states. Assumptions 2 and 4 capture our

basic narrative: relative acquirer confidence concerning upside cash flows combined with seller private

information lead to seller debt financing. We make no claim that, absent these assumptions, our results

would hold.

Assumptions 1 and 2 are standard MLR ordering conditions used ubiquitously in the security design

literature (Innes, 1990; DeMarzo and Duffie, 1999; Inderst and Mueller, 2006; Yang, 2020; Daley et al.,

2016).
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In our framework, these standard MLR ordering conditions imply that x ↪→ f C
A (x)/ f C

S (x) x ↪→ f C
S (x)/ f s

S(x)

are strictly increasing. This implies the following right-tail ratio condition:

x ↪→
1−FC

A (x)
1−FC

S (x)
and x ↪→

1−FC
S (x)

1−F I
S (x)

are strictly increasing. (17)

Thus, we see from the definitions of rA and rI (Definition 3, that a consequence of imposing the standard

MLR ordering conditions is that

x ↪→ (rA(x)/rC(x)) is increasing. (18)

Equation (17) implies upside increasing belief divergence: the divergence in beliefs between the ac-

quirer and seller, and in the two states, C and I, is larger for events related to the upside of the cash flow

distribution. For example, consider the seller’s beliefs: if, conditioned on acquisition, the seller believes that

the probability cash flows exceed 2 million is twice as large in state C as it is in state I, then seller’s assess-

ment of the probability that cash flows exceed 4 million must be more that twice as large. Now consider

the divergence between acquirer and seller beliefs: if conditioned on acquisition in state C, the acquirer’s

assessment of the probability that cash flows exceed 2 million is twice as large as the seller’s assessment,

then the acquirer’s assessment that cash flows will exceed 4 million must be more than twice as large.

Right-tail ratio ordering of signal-conditioned cash flow distributions is, in fact, the necessary and

sufficient condition for debt to dominate all of other securities in a Myers-Majluf security design set-

ting (Nachman and Noe, 1994). Thus, the fact that our model assumes that divergence in beliefs and in-

formation between the acquirer and seller is concentrated on upside cash flows is a consequence of the fact

that our model makes a standard distributional assumption in the security design literature.

Our only “non-standard” distributional assumption is Assumption 4. We impose this assumption in order

to ensure that belief divergence about the value add is also upside increasing, i.e., even after dividing the tail

ratio’s of the seller and acquirer in state C by the tail ratio in state I, the state in which the value add cannot

be implemented.
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Assumption 4 strengthens condition (18) — a consequence of standard MLR ordering conditions —

by requiring x ↪→ r′A(x)/r′C(x) to also be increasing. This restriction is analogous to maximum likelihood

order ordering. Assumption 4 requires the ratio between r′A and r′C to be non-decreasing. If F and G

are any two absolutely continuous distributions with common supports, strict MLR ordering requires the

ratio F̄ ′/Ḡ′ = f/g to be non-decreasing on the distributions’ common support. Thus, one interpretation

of Assumption 4 is that it is a requirement that the MLR ordering condition defining acquirer confidence

(Assumption 2 is preserved when the complementary acquisition distributions of both the seller, F̄C
S , and

acquirer, F̄C
A are “normalized” by dividing them by the complementary acquisition distribution when assets

are incompatible, F̄ I
S .

As we show in the on-line supplement to this paper, Assumption 4 is a surprisingly weak restriction

on cash flow distributions. Essentially all of the distribution families used in economics and finance that

satisfy the standard security design assumptions (i.e., those that are supported by the non-negative real

line, have finite expectations, and satisfy the MLR ordering conditions (i.e., Assumptions 1 and 2)) satisfy

Assumption 4.20

However, Assumption 4 is not redundant. In the Appendix, we provide an example of distributions that

satisfy our standard assumptions but fail to satisfy Assumption 4. In this example, the acquirer and seller

largely agree on the upside return from the project conditioned on control transfer. The acquirer believes

that the primary effect of acquisition is reducing the likelihood of low project returns. The seller thinks that

the acquirer has overestimated the magnitude of this effect.

6.2. Alternative sale mechanism

We focused on first-and-final offers because they are optimal sale mechanisms from the perspective of

the acquirer within the class of mechanisms that satisfy an “ex-post participation constraint” (Compte and

Jehiel, 2007). An ex-post participation constraint rules out designs in which either party wants to renege

20The distribution families we consider in the on-line supplement include the Chi-squared, Exponential, Gamma, Gompertz,
Half Normal, Lognormal, and Weibull. We were not able to analytically verify that the Log-logistic family satisfies Assumption 4.
However, even in this case, numerically, we are not able to produce a violation of Assumption 4.
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after an agreement has been reached. In other words, we restrict our attention to mechanisms that are ex-post

incentive compatible.

In this sub-section, we investigate mechanisms that are not ex-post incentive compatible: acquirers and

sellers commit to always follow through on the deal even if it is no longer in their best interest—we call

these offers commitment offers.

We restrict our attention to mechanisms in which the seller reports the state of his company (compatible

or incompatible) and receives an offer conditional on his report. The revelation principle (Myerson, 1979)

shows that we need only consider truth-telling equilibria of direct mechanisms, i.e., mechanisms in which

the seller reports the state, C or I, and receives an offer conditioned on his report. This restriction is therefore

without loss of generality.

To solve the problem, we need to (a) determine the form of the offer (i.e., cash or security) conditioned

on each of the two seller reports; and (b) determine the action to which the acquirer will commit in response

to the seller’s report.

Absent the ex-post participation constraint, an acquirer can offer a seller more than RI
S, conditioned on

the seller reporting that the state is I. Obviously, if the seller reports that the state is I the acquirer no longer

wants to pay more than RI
S since this is the value of the firm is in that state.

First consider (a). Assumption 3 implies that, in state I, the acquirer is indifferent between cash and

security offers. However, cash offers, conditioned on the report of state I minimize mimicry incentives.

To see this, consider two offers, one with a security component and the other all cash. If these offers,

conditioned on I, have equal value to the seller, then Assumption 2 implies that the offer with a security

component has a higher value to the seller when conditioned on C. Thus, the incentive of seller with state C

to report I is minimized if the offer to the seller, conditioned on reporting I, is all cash.

Next, note that in order to satisfy the I-participation constraint, an offer conditioned on reporting I, that

specifies control transfer must at least equal RI
S. Moreover, an offer in excess of RC

S to the seller conditioned

on a report of I is never optimal. Offering the seller RC
S in the form of cash, in response to both reports,

supports a truth-telling equilibrium and costs the acquirer less than offers in excess of RC
S . Thus, an offer,
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conditioned on reporting I and specifying control transfer, consists of a cash payment, pI , where RI
S ≤ pI ≤

RC
S .

Second, consider (b). The offer should specify control transfer conditioned on reporting C as the acquirer

can only profit from the acquisition if the asset is acquired in state C. By Assumption 3, the value of the asset

in state I is the same under acquirer and seller control, and equals RI
S. Thus, absent incentive constraints,

whether the asset is acquired in state I is matter of indifference.

However, mechanisms that permit the seller to retain the asset are not optimal, because they make the

incentive compatibility conditions for the seller more difficult to satisfy. If the mechanism calls for the

seller to retain control after a report of I, a seller reporting I when the state is C would receive the cash

flows from the asset, worth RC
S , plus the non-negative payment ∆ associated with reporting I. If ∆ > 0, the

seller’s payoff from reporting C when the state is I, would be RC
S +∆I > RC

S . If the offer mechanism specifies

control transfer when the report is I, the seller’s payoff from reporting I when the state is C equals pI ≤ RC
S .

Thus, a mechanism specifying that the seller retain control after a report of I, always makes satisfying the

incentive constraints more difficult. Since, the value of the asset in state I is the same under buyer and seller

control, under both acquirer and seller beliefs, mechanisms that permit the seller to retain control are strictly

dominated by mechanisms that transfer control in state I. Of course, if pI = RI
S (i.e., ∆ = 0) mechanisms

that specify transfer in state I are completely equivalent to mechanisms that specify retention in state I.

When the mechanism specifies control transfer in both states and pI = RI
S, the mechanism is ex-post in-

centive compatible and is payoff equivalent to the separating offer in the baseline model. However, whenever

pI > RI
S the mechanism does not satisfy ex-post incentive compatibility. Thus, the question of how com-

mitment affects security design can be reduced to the following question: How does permitting the acquirer

to commit a cash payment, conditioned on the report of I, in excess of the state-I value, affect the optimal

design of acquisition offers?

We now show that, in some cases, making a commitment offer by offering cash payment pI > RI
S con-

ditioned on a report of I can produce a higher payoff for the acquirer than first-and-final offers analyzed in

the baseline model. Thus, in some cases, acquirers can gain from being able to credibly commit to offers
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that are not in their ex-post interest to follow through on. However, permitting commitment offers has no

effect on the structure of optimal offers. As in the baseline model, seller debt financing is always an optimal

security design, and all offers have a positive cash component.

Proposition 5. Assuming acquirer commitment, an optimal offer mechanism consists of two offers, perhaps

identical, one conditioned on the seller reporting state C, and the other conditioned on the seller reporting

state I. Under both offers, acceptance of the offer leads to a transfer of the asset to the acquirer.

The state-I offer is an all-cash and offer pI . The state-C offer has a positive cash component, pC, and, if

the offer has a security component, the security offered is seller debt. An optimal offer might entail a state-I

payment, pI , in excess of the seller’s state I reservation value, RI
S, i.e., acquirer might commit to overpaying

the seller when the seller reports state I.

Committing to overpay in state I can sometimes increase the ex-ante payoff of the borrower. Overpay-

ment for reporting I is costly to the acquirer, but can reduce the seller’s incentive to report C when the state

is I. This permits the acquirer to reduce the size of the security component of the state C offer, which is

undervalued by the seller given the acquirer’s beliefs.

The question of whether such commitment offers are plausible reduces the question of whether sellers

believe that acquirers will complete the acquisition when the very act of seller acceptance reveals that the

acquirer is better off if the deal fails. In practice, merger agreements between the parties followed by the

construction of the a final, legally binding, merger contract. It seems plausible that, if the acquirer wanted

to thwart completion of the deal at this stage, the acquirer would be able to do so.

Comparing the asset sellers in our setting to “fly-by-night” general partners in private equity funds, as

discussed in Axelson et al. (2009), one might argue that there are many potential acquirable assets which do

not match the acquirer’s business plans (i.e., type I assets). If it is common knowledge that acquirers buy

type I assets at inflated prices, owners of type I assets, i.e., “fly-by night asset sellers,” would be quick to

offer their assets to the acquirer. Thus, committing to overpayment could increase the proportion of I types

in the pool of potential acquired assets. And this effect might outweigh any gains from commitment.

The arguments considered here suggest that commitment offers are problematic. However, these argu-
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ments do no decisively settle the question of whether commitment offers are plausible. In fact, the question

of whether acquirers can commit is difficult to resolve. Fortunately, we do not have to resolve this question

because our results do not depend on the question’s resolution: Commitment and no-commitment mechan-

isms produce the same optimal acquisition offers, cash plus seller debt.

6.3. Alternative Interpretations

In our framework, the acquirer and seller have conditionally divergent valuations — even when the

acquirer and seller condition their expectations on the same state of the world, C and I, and control transfer

decision, they value cash flows differently. We interpret this divergence as belief disagreement. However,

belief disagreement is not the only interpretation of the model consistent with our formal results. With minor

technical modifications, the model can also be interpreted as a model of a risk neutral acquirer attempting

to acquire the assets of a Yarri dual risk-averse seller (Yaari, 1987).21

Although dual risk aversion is extensively employed to model auction mechanisms (Gershkov et al.,

2020), insurance contracting (Attar et al., 2011), and is a foundation for some asset pricing models (Epstein

and Zin, 1990), we prefer the belief disagreement interpretation. A large body of empirical evidence suggests

that people are more optimistic about their ability to add value than others (Malmendier and Tate, 2008).

We are aware of no evidence suggesting that acquirers are generally less dual risk-averse than sellers.

An alternative approach for producing conditional valuation divergence, used in the literature on tranch-

ing securities (e.g., Biais and Mariotti, 2005; Yang, 2020), is to assume that the sellers and buyers are

risk-neutral, have common beliefs, but the seller faces liquidity constraints. In this case, buyer valuations

equal expected cash flows, but seller valuations equal expected cash flows multiplied by a constant liquidity

discount factor, δ ∈ (0,1). This liquidity-based approach applied to our problem, would yield very different

conclusions than the conclusions reached by our model. Because of the liquidity discount factor, optimal

designs would minimize the size (measured by expected value) of the seller’s security claim, subject to in-

21Yaari’s dual theory of choice under risk, which is otherwise identical to the Von Neumann-Morgenstern (VM) expected utility
theory, replaces the VM axiom of independence with respect to convex probability mixtures with independence with respect to
co-monotone payoff mixtures. For an intuitive presentation, see Gershkov et al. (2020).
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centive compatibility, monotonicity, and participation constraints. Standard security design arguments show

that size will be minimized by maximizing the information sensitivity of the seller’s claim. MLR ordering

implies that the maximally information-sensitive security design is an option on upside cash flows that grants

the seller all marginal cash flows above the exercise price, i.e., the acquirer would receive a very large senior

debt claim with control rights, and the seller a small highly levered equity claim with no control rights.

7. Conclusion

Acquisitions targeting companies with a single principal owner (e.g., subsidiaries of public firms and

most private firms) have increased over time and have become more prominent than the acquisitions of public

firms. These acquisitions are frequently motivated by the acquirer’s expectation to increase the value of the

target. In such cases, it seems reasonable to presume that (1) the acquirer’s capability to add value critically

depends on characteristics of the asset acquired; (2) the current asset owner has superior information about

these characteristics; and (3) the acquirer is more confident than the seller about her ability to add value if

the sellers assets are compatible with the acquirer’s value add plan.

Our analysis shows that in this scenario, even when acquirers are not liquidity-constrained or limited

to certain security designs, optimal offers always take the form of cash and non-recourse debt. Most im-

portantly, the debt is junior, secured solely by the asset acquired, and issued by the owner of the firm. This

result is consistent with the preponderance of seller debt financing in the acquisitions of privately held firms

and subsidiaries of public firms. This phenomenon does not appear to have an alternative explanation that is

grounded in direct applications of extant theoretical models to asset acquisitions.
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Appendix A. Definitions and Preliminary Results

These results and assume the restrictions imposed on distribution functions imposed in the model, i.e.,

all distributions are supported by the non-negative real line and are absolutely continuous.

Result 2. ∫
∞

0
s(x)dF(x) =

∫
∞

0
w(x) F̄(x)dx.

Proof. Note that definition of the security density implies that

∫
∞

0
s(x)dF(x) =

∫
∞

0

(∫ x

0
w(t)dt

)
dF(x) =

∫∫
0<x<∞
0<t≤x

w(t)dt dF(x) =
∫∫

t≤x<∞

0<t<∞

w(t)dF(x)dt =

∫
∞

0
w(t)

(∫
∞

t−
dF(x)

)
dt =

∫
∞

0
w(t) F̄(t−)dt =

∫
∞

0
w(t) F̄(t)dt.

The first inequality follows from the definition of security densities. The second inequality follows from

Fubini’s theorem on the integration. The third inequality is just a restatement of the region of integration.

The fourth inequality again follows from Fubini’s theorem. The fifth inequality follows from the definition

of F̄ . The final inequality follows from F̄ being continuous and thus F̄(x−) = F̄(x) for all x. Even if F

was not assumed to be continuous, the inequality would still follow because F̄ is nonincreasing and hence

is measurable and discontinuous only on, at most, a countable set of points. Thus, the discontinuities of F̄

have measure zero, and because, w(t)dt is an absolutely continuous measure, the discontinuity points have

no effect on the value of the integral.

Definition 4. Let F1 and F2 be any two distributions over R+. If

F̄1(x)≤ (<)F̄2(x), x > 0,

then F1 (strictly) first-order stochastically dominates (FSD) F2.

Definition 5. Let F1 and F2 be any two distributions over R+. If for x > 0,

h1(x)≤ (<)h2(x), where h1(x) =
f1(x)
F̄1(x)

and h2(x) =
f2(x)
F̄2(x)

.

then F1 (strictly) hazard rate dominates F2; differentiation shows that F1 hazard rate dominates F2 if and

only if the function

x ↪→ F̄1(x)
F̄2(x)

is increasing , x ∈ [0,∞).
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Definition 6. If

lim
x→∞

F̄1(x)
F̄2(x)

= ∞,

then F1 asymptotically hazard rate dominates F2.

Definition 7. Let fi, i = 1,2, be the probability density functions of Fi, i = 1,2 If the function x ↪→
f1(x)/ f2(x) is (strictly) increasing, then then F1 (strictly) monotone likelihood ratio (MLR) dominates F2.

Definition 8. Let fi, i = 1,2, be the probability density functions of Fi, i = 1,2 If limx→∞ f1(x)/ f2(x) = ∞,

then F1 asymptotically MLR dominates F2 F2.

Result 3. If F1 (strictly) MLR dominates F2 then F1 (strictly) hazard rate dominates F2

Proof. Theorem 1.C.1 in Shaked and Shanthikumar (2007).

Result 4. F1 asymptotically MLR dominates F2 then F1 asymptotically hazard rate dominates F2.

Proof. because limx→∞ F̄1(x) = limx→∞ F̄2(x) = 0, this result follows from the L’Hospital’s rule.

Appendix B. Distributional Assumptions: Examples and Counterexamples

Preliminaries

Constructing distributions that do not satisfy Assumption 4 but satisfy all the other assumptions of our

model is challenging. As shown in the online supplement, there appear to be no standard location/ scale

families of of distributions that will serve as examples. Thus, we need to construct an example from first

principles. We will use the probability transform function approach to stochastic orderings to construct

our example. This requires explaining probability transforms and how they relate to stochastic orders. We

provide this explanation in this section.

In this subsection, where we develop these results, we will use F and G to represent to arbitrary distri-

butions that satisfy the technical conditions imposed by in the paper—the distributions are supported by the

non-negative real line, have finite means, and are absolutely continuous.

Definition 9. A function τ : [0,1]→ [0,1] is a survival probability transform function if τ(0) = 0, τ(1) = 1,

τ is strictly increasing, is continuous on [0,1], and has a finite derivative on (0,1).22

22Typically authors do not assume differentiability. All assertions in this section would go through without the differentiability
assumption but the arguments would be come slightly more complicated. Since we are only interested in smooth survival probability
transformations, we restrict our analysis to the differentiable case.
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Remark 1. Note that. for any two distributions (satisfying the paper’s technical conditions), F and G, the

function τ(p) = F̄
(
Ḡ−1(p)

)
(where Ḡ−1 represents the functional inverse of Ḡ) is a survival probability

transform function and F̄(x) = τ
(
Ḡ(x)

)
. Thus, any two distributions can be related through a survival

probability transform function.

Result 5. F MLR dominates G if and only if there exists a concave survival probability transform function

such that F̄(x) = τ
(
Ḡ(x)

)
.

Proof. This result is well known and fairly obvious (Lehmann and Rojo, 1992). The only part of this result

that we will use is necessity. This is easy to establish. If F̄(x) = τ
(
Ḡ(x)

)
and τ is a survival probability

transform function, then F(x) = 1−τ
(
Ḡ(x)

)
, which implies that f (x) = g(x)τ ′

(
Ḡ(x)

)
. Because x ↪→ Ḡ(x) is

decreasing, the likelihood ratio, f/g, can only be increasing if p ↪→ τ ′(p) is decreasing, i.e., τ is concave.

Result 6. If τ is a survival probability transform function, and F̄(x) = τ
(
Ḡ(x)

)
, then F asymptotically

dominates G, i.e., F̄(x)/Ḡ(x)→ ∞, if and only if τ ′(0) = ∞.

Proof. F̄(x)/Ḡ(x)= τ
(
Ḡ(x)

)
/Ḡ(x), which can be expressed as F̄(x)/Ḡ(x)= φ

(
Ḡ(x)

)
where φ(p)= τ(p)/p,

p ∈ (0,1]. Thus, because Ḡ(x)→ 0 as x→∞ and because Ḡ and φ is continuous, F̄(x)/Ḡ(x)→∞ as x→∞

if and only if φ(p)→ ∞ as p→ 0, i.e., τ(p)/p→ ∞ as p→ 0, which is equivalent to τ ′(0) = ∞.

Result 7. Let hF = f/F̄ , and hG = g/Ḡ represent the hazard rates of F and G respectively, if F̄(x)= τ
(
Ḡ(x)

)
and τ(p) = pγ , γ > 0, then hF(x)/hG(x) = p.

Proof. This result follows by a straightforward calculation.

The ratio condition–Assumption 4

Expanding the ratio definition in Assumption 4 shows that the condition can be expressed as

r′A(x)
r′C(x)

=
F̄C

A (x)
F̄C

S (x)
Ψ(x),

Ψ(x) =
hI

S(x)−hC
A(x)

hI
S(x)−hC

S (x)
,

(B1)

where h j
i represents the hazard function for the cash flow distributions of agent i = S,A in state j = C, I.

Assumption 2 ensures that x ↪→ F̄C
A (x)/F̄C

S (x) is increasing. Assumption 1 and 2 also imply the distributions

are hazard rate ordered, so hI
S(x)> hC

S (x)> hC
A(x), x > 0. Thus, Ψ(x)> 1, x > 0.

Remark 2. Thus, distributions related by a concave power law survival probability transform functions

always satisfy Assumption 4. To see this, first note that inspecting equation (B1) shows see that a sufficient,

53

Electronic copy available at: https://ssrn.com/abstract=3731086



but by no means necessary, condition for Assumption 4 to hold (i.e., x ↪→ r′A(x)/r′C(x) to be increasing) is

that Ψ is non-decreasing. Using Result 7 and inspecting equation (B1), we see that this sufficient condition

will be satisfied if tails of the three distributions are related by a power law survival probability transform

function, i.e., F̄C
S (x) = (F̄ I

S (x))
β and F̄C

S (x) = (F̄C
A (x))γ . In order for our other assumptions to hold, notably

MLR dominance ordering (Assumptions 1 and 2, Remark 5 shows that must be the case that γ < 1, β < 1,

i.e., the power law functions are concave.

Constructing the example

For ease of presentation we break the construction of the counterexample into a series of steps:

Step-1 The κ function. We start with a function that has its concavity concentrated around a single point,

the κ function defined below.

κ(p;k,s) = −1
s

log
[

exp(−s p)+ exp(−sk)
]
, p ∈ [0,1], k ∈ (0,1), s > 0.

Because the Log-sum-exp function is strictly convex (pg. 72: Boyd and Vandenberghe, 2004) it is

clear that κ function is strictly concave. Inspection shows that the function is strictly increasing.

The κ function is also obviously smooth. Moreover, as the scale parameter, s, increases to infinity,

the κ function converges pointwise to a kinked function x ↪→min[k, p]. Thus, all the concavity of κ

becomes concentrated around k as s grows without bound.

Step-2 Normalizing κ . κ is strictly increasing and strictly concave but κ does not satisfy κ(0) = 0 and

κ(1) = 1; so κ is not a survival probability transform function. Thus, we add an affine function to κ

to ensure that the resulting function, which we call τo, equals 0 at 0 and 1 at 1, i.e.,

τo(p;k,s) = α +β p+κ(p;k,s), α = −κ(0;k,s), β = 1+κ(0;k,s)−κ(1;k,s). (B1)

Step-3 Ensuring an infinite derivative at 0. Because adding an increasing affine function to a strictly con-

cave strictly increasing function leaves the function strictly concave and strictly increasing, and

τo(0;k,s) = 0 and τo(1;k,s) = 1, τo is a strictly concave survival probability transform function.

However, it is not the case that τ ′o(0;k,s) = ∞. To ensure this property we transform τo by a power

transformation, to obtain τ , the general form of survival function we will use to construct our counter-

example:

τ(p;k,s,γ) = τo(p;k,s)γ =

(
α +β p+κ(p;k,s)

)γ

, γ ∈ (0,1). (B2)

Because the composition of a strictly concave, strictly increasing function with a strictly concave,

strictly increasing function yields a strictly concave strictly increasing function, and a power function
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with a power between 0 and 1, is strictly concave and strictly increasing, τ is a strictly concave,

strictly increasing survival transform function with the property that τ ′(0;k,s) = ∞.

Step-4 Choosing the parameters and distributions. We need the κ function to be “almost” kinked at k, so

we picked a large scaling factor, s = 20. A low power coefficient makes it harder to construct our

counterexample because lowering the coefficient increases concavity away from the kink point k. We

only need the power coefficient to ensure that τ ′(0;k,s) = ∞ and any p ∈ (0,1) will accomplish this

objective. So we set γ = 0.95. To ensure that the concavity around k is isolated from the concavity

on the upside produced by γ , we set k fairly low at k = 1
3 . Thus, we define τ∗ as follows:

τ
∗(p) = τ(p;k =

1
3
,s = 20,γ = 0.95). (B3)

τ∗ is depicted in Figure 4.

0. 0.2 0.4 0.6 0.8 1.k
p

0.2

0.4

0.6

0.8

1.0
Τ*

Figure 4
τ∗, the survival probability transform function used in the counterexample. The horizontal
axis represents probability, p. The vertical axis represents the value of the survival prob-
ability transformation. The function τ∗ is defined by equations (B1), (B2), and (B3)

Step-5 The distributions. Using τ∗, we define the distributions used in the counterexample as follows: first

we set F I
S equal to a Gamma distribution with shape parameter 2 and scale parameter 1

2 and use

survival probability transform functions to define the other distributions.23

F̄ I
S (x) = 4

∫
∞

x
t e−2 t dt, F̄C

S (x) =
√

F̄ I
S (x), F̄C

A (x) = τ
∗(F̄C

S (x)
)
. (B4)

Because the square-root function is strictly concave and strictly increasing over [0,1] and has an

infinite derivative at 0, Results 5 and 6 imply that FC
S MLR and asymptotically dominates F I

S . Step 3

23Because all of the restrictions on the distributions, other than the technical restrictions, are relational, the choice of any one of
the three distributions is fairly arbitrary. We picked a Gamma distribution for F I

S because the Gamma distribution leads to easily
visualized effects in the graphs that follow.
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and Results 5 and 6 imply that FC
A MLR and asymptotically dominates FC

S . Thus, Assumptions 1

and 2 are satisfied. However, as the next figure shows, the ratio r′A/r′I is not monotone, and thus

Assumption 4 is not satisfied.

1 2 3 4 5
x

1.6

1.8

2.0

2.2

2.4

rA ' � rG '

Figure 5
Counterexample. The figure presents an example of cash flow distributions that satisfy all of
the conditions imposed in the baseline model except Assumption 4. The horizontal axis repres-
ents cash flows, x. The vertical axis represents the ratio, r′A/r′C, which Assumption 4 requires to
be increasing in x. The distributions used to construct the example are defined by equation (B4).

Some intuition for the counterexample can be provided by examining the PDFs of the probability density

functions constructed for the counterexample. These densities are graphed in the next figure,

f
A

G

f
S

G

f
S

B

Μ
S

G
Μ

S

B
3 4 5Μ

A

G
6 7

x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 6
PDFs of the distributions used in the counterexample. The horizontal axis represents cash flows,
x. The figure graphs the PDFs of the three cash flow distributions used in the counterexample: f C

A
(solid line), f I

S (dashed line), and f I
S (dotted line). These distributions are defined by equation (B4).

Figure 6 reveals that the source of disagreement in beliefs between the seller, S, and the acquirer, A,

regarding the effects of control transfer in state C. Both believe that acquisition adds value on the upside.

The acquirer is a bit more optimistic about the size of the value add. Disagreement between acquirer and

seller largely results from the acquirer assigning a much smaller probability to extremely low cash flows post

acquisition and a much higher probability to “mediocre” cash flows close to the mean cash flow anticipated

by the acquirer, µC
A .
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Appendix C. Proofs of Results

Proof of Proposition 1. Suppose an optimal offer contains a security component, i.e., it is not the case that

w∗ = 0 Define the offers (wt , pt), t ∈ (0,1) as follows, wt = (1− t)w∗ and pt = p∗+ t vC
S (w

∗). Then vC
S (wt)+

pt = vC
S (w

∗)+ p∗ and vI
S(wt)+ pt > vC

S (w
∗)+ p∗ so both incentive constraints are satisfied by (wt , pt). At

the same time the difference between value of the control transfer to the seller under (w∗, p∗), vC
A(w

∗)+ p∗−
(vC

A(wt)+ pt) = t (vC
A(w

∗)− vC
S (w

∗))> 0, contradicting the optimality of (w∗, p∗).

To see that p∗ = RC
S , simply note that the seller must accept the offer in both states C and I. By the

assumption that RC
S ≥ RI

S, this implies that the cash offer must at least equal RC
S . Any higher offer is clearly

dominated by offering RC
S .

Proof of Lemma 1. Under an all cash offer, the incentive constraints reduce to p ≥ RC
S and p ≤ RI

S. By

Assumption 1, RI
S > RC

S . Thus, these conditions cannot be simultaneously satisfied.

Proof of Lemma 2. To obtain a contradiction, suppose that IC-C does not bind in some optimal solution

(w∗, p∗). In this case, vC
S (w

∗)+ p∗ > RC
S . In order for IC-C to be satisfied by (w∗, p∗), it must be the case

that vC
S (w

∗) > 0 or p∗ > 0. First suppose that vC
S (w

∗) > 0. Consider offers of the form (λ w∗, p∗), where

λ ∈ (0,1). vC
S (w

∗)+ p∗ > RC
S implies that, for λ sufficiently close to 1, vC

S (λ w∗)+ p∗ > RC
S . Thus (λ w∗, p∗)

satisfies IC-C. Because, w∗ ∈ [0,1], λ w∗ ∈ [0,1], thus λw∗ ∈ W . Because, IC-I is satisfied by (w∗, p∗),

vI
S(w

∗)+ p∗ ≤ RI
S. Thus, because vI

S(λ w∗)+ p∗ < vI
S(w

∗)+ p∗, IC-I is also satisfied by (λ w∗, p∗). Thus,

(λ w∗, p) is a feasible offer.

Because vC
A(λ w∗) = λ vC

A(w
∗) < vC

A(w
∗), vC

A(λ w∗)+ p∗ < vC
A(w

∗)+ p∗, contradicting the optimality of

(w∗, p∗). Now suppose that p∗ > 0. Repeat the same argument by comparing (w∗, p∗) to (w∗, p∗− ε), for

ε > 0 but sufficiently small so that vC
S (w

∗)+ p∗− ε ≥ RC
S .

Proof of Lemma 3. To obtain a contradiction suppose that IC-I does not bind in some optimal solution

(w∗, p∗).The hypotheses that w is not almost surely equal to 0, implies that vC
A(w

∗) > 0, vC
S (w

∗) > 0 and

vI
S(w

∗)> 0. Define the offers (wt , pt), t ∈ (0,1) as follows, wt = (1− t)w∗ and pt = p∗+ t vC
S (w

∗).

By Lemma 2, vC
S (w

∗)+ p∗ = RC
S . By construction vC

S (w
∗)+ p∗ = vC

S (wt)+ pt . Thus under offer (wt , pt),

IC-C binds. By hypothesis, IC-I does not bind, i.e, vI
S(w

∗)+ p∗ < RI
S. For t sufficiently small, it will also be

the case that vI
S(wt)+ pt ≤ RI

S. Thus (wt , pt) is feasible for t > 0 and sufficiently small. Now compare the

values of the objective function under (w∗, p∗) and (wt , pt). This comparison yields,

(vC
A(w

∗)+ p∗)− (vC
A(wt)+ pt) = t (vC

A(w
∗)− vC

S (w
∗)).

Because t > 0, Assumption 2 implies that t (vC
A(w

∗)− vC
S (w

∗))> 0, contradicting the optimality of (w∗, p∗)
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Proof of Lemma 4. Derivation provided in main body of the paper.

Proof of Lemma 5. Let N represent the numerator of the ratio defining R (equation 9) and let D represent

the denominator, i.e.,

R(x) =
N(x)
D(x)

=
rA(x)− (1−η)

rC(x)−1
− γ, x > 0.

Asymptotic dominance (Assumption 2 implies that

lim
x→∞

rC(x) = ∞ and lim
x→∞

rA(x)
rC(x)

= ∞.

This observation and inspection of the definition of R shows that, limx→∞ R(x) = ∞.

Next note that hazard rate order dominance, ensured by Assumption 2, implies that rC(x)> 1, for x > 0.

Thus, D(x)> 0 for x > 0. Assumption 2 also ensures that r′C(x)> 0, x > 0. Thus

D(x)> 0 and D′(x)> 0, x > 0 (C1)

Next note that, if η = 0,

D(0+) = N(0+) = 0. (C2)

By the Monotone L’Hospital Rule (Proposition 1.1: Pinelis, 2002) equations (C1) and (C2) imply that a

sufficient condition for N/D = R to be increasing is that x ↪→ N′(x)/D′(x) is increasing. Next note that

N′(x)/D′(x) = r′A(x)/r′C(x). By hypothesis, x ↪→ r′A(x)/r′C(x) is increasing. Thus, R is increasing.

Now suppose that η > 0. In this case, as x→ 0+, N is bounded away from 0 and, because rC(0) = 1,

limx→0+ D(x) = 0; thus, R(x) = N(x)/D(x)→ ∞ as x→ 0+. Next, note that D is not affected by η Thus,

condition (C1) is also satisfied in this case; however, when η > 0, N(0+) 6= 0. Another variant of the

monotone L’Hospital Rule (Table 1: Pinelis, 2006) nevertheless shows that x ↪→ N′(x)/D′(x) = rA(x)/rC(x)

increasing is still a sufficient condition for R = N/D being strictly quasiconvex. Because limx→∞ R(x) = ∞

and limx→0+ R(x) = ∞, strict quasiconvexity implies that R is U-shaped.

Proof of Lemma 6. Let w, p be an offer satisfying VM. VM implies that p = RI
S − vI

S(w) = RC
S − vC

S (w).

So, if VM is satisfied, SLL binds if and only if p = 0. Assumption 3 implies that µ I
S = RI

S. Therefore

vI
S(w) ≤ µ I

S = RI
S and, unless the security density allocates the entire cash flow from the project to the

seller, i.e. w = 1, p = RI
S−vI

S(w
∗)> 0. Thus, if SLL binds then w = 1. However, Assumption 2 implies that

µC
S > RC

S . Thus, if w = 1, vC
S (w) = µC

S . VM implies that p = RC
S −vC

S (w) = RC
S −µC

S < 0, which is impossible

because, by definition, the cash component of a feasible offer is non-negative.
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Proof of Proposition 2. We will first show that a separating offer exists. Define the function ∆ : W → R by

∆(w) = vC
S (w)− vI

S(w)

Note that

sup∆(W ) = ∆(1) = µ
C
S −µ

I
S inf∆(W ) = ∆(0) = 0. (C3)

W is a convex and ∆ is is a linear functional. The image of a convex set under a linear functional is

convex and thus connected. Hence, ∆(W ) = [0,µC
S − µ I

S]. A security density satisfying VM exists if and

only if there exists w ∈W such that ∆(w) = RC
S −RI

S. From these facts we can conclude that

a security density, w,exists which satisfies VM⇐⇒ 0≤ RC
S −RI

S ≤ µ
C
S −µ

I
S. (C4)

Assumption 3 implies that µ I
S = RC

S and Assumption 2 implies that µC
S > RC

S . Thus, (C4) is satisfied and

hence a security density exists that satisfied VM. Lemma 6 shows that SLL is satisfied by all w ∈W . Thus,

a feasible solution to Problem PR-CT, i.e., a separating offer, exists.

Lemma 6, implies that even absent the SLL constraint, all feasible offers strictly satisfy SLL. Hence,

constraint SLL in problem PR-CT is slack, which implies, by standard results in Duality theory, that its

multiplier η∗ = 0. By Lemma 5 this implies that R is strictly increasing. It is not possible for R− γ∗ ≥ 0

for all x > 0, because, by Lemma 4 this would imply that w∗ = 0, which is not possible by Lemma 1. As

shown earlier in the proof, w∗ = 1 is not consistent with the satisfaction of the VM constraint. Because R is

continuous and strictly increasing, there exists a unique value of x which we call k∗ such that R(x)−γ∗ ≤ 0;

for x ≤ k∗, and R(x)− γ∗ > 0, for x > k∗. Thus Lemma 4 implies that all optimal security densities, w∗,

have the form specified in the proposition.

Proof of Proposition 3. Derivation provided in the manuscript.

Proof of Proposition 5. Consider a truth-telling equilibrium of direct mechanism that specifies, M(Î) =

(0, pI) and M(Ĉ) = (w, pC). The objective function, incentive (IC) and participation (PC) constraints for

this mechanism are given below:

Max
M

π

(
µ

C
A −

(
vC

A(w)+ pC)
))

+(1−π)(RI
S− pI),

ICRev-C: vC
S (w)+ pC ≥ pI,

ICRev-I: pI ≥ vI
S(w)+ pC,

PCRev-C: vC
S (w)+ pC ≥ RC

S ,

PCRev-I: pI ≥ RI
S.

Rev-1
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It is apparent that a mechanism in which pI > RC
S is never optimal. Consider the alternative mechanism,

M(Ĉ) = (0,RC
S ) M(Ĉ) = (0,RC

S ). Because the candidate mechanism satisfies PCRev-C, and because investor

optimism implies that vC
A(w)− vC

S (w) ≥ 0, and because pC ≥ RI
S, vC

A(w)− vC
S (w)+ vC

S (w)+ pC) > RC
S and

RI
S− pI ≤ 0. The objective function is lower under the candidate mechanism than under the alternative

mechanism. Because the payment to the firm type invariant and at least equal to the firms reservation value

in both states the alternative mechanism is feasible. Thus the candidate mechanism is not optimal. Also note

that PCRev-I implies that pI ≥ RI
S, thus constraint ICRev-C is redundant. Using these observations we can

reformulate the problem as follows:

Max
w,pI ,pC

π

(
µ

C
A −

(
vC

A(w)+ pC)
))

+(1−π)(RI
S− pI),

ICRev-I: pI ≥ vI
S(w)+ pC,

PCRev-C: vC
S (w)+ pC ≥ RC

S ,

PCRev-I: pI ∈ [RI
S,R

C
S ].

Rev-2

We can simplify the problem by formulating it as a cost minimization problem. This program is provided

below
Min

w,pI ,pC
π
(
vC

A(w)+ pC)
)
+(1−π) pI,

ICRev-I: pI ≥ vI
S(w)+ pC,

PCRev-C: vC
S (w)+ pC ≥ RC

S ,

PCRev-I: pI ∈ [RI
S,R

C
S ].

Rev-Cost

Forming the Lagrange dual for this problem yields:

L (w, pC, pI) = π
(
vC

A(w)+ pC
)
+(1−π) pI +λ1

(
vI

S(w)+ pC− pI
)
−λ2

(
vC

S (w)+ pC−RC
S
)
. (C5)

Thus, the dual problem can be expressed as

Min{L (w, pC, pI) : pC ≥ 0, pI ∈ [RI
S,R

C
S ],w ∈ [0,1]}. LRevMin

First note that

Result 8. In any solution to Problem Rev-Cost, constraint PCRev-C binds.

Proof. If PCRev-C were not binding then it would be possible to reduce either pC or scale down the contract

by some mount and leave the constraints satisfied and lower the cost function.

Next note that any solution to Problem Rev-Cost, the cash payment to the seller conditioned on a report
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of C must be positive.

Result 9. If w, pC, pI is a solution to Rev-Cost then pC > 0.

Proof. To obtain a contradiction, assume that (w, pC, pI) is a solution to Problem Rev-Cost and pC = 0.

Under this assumption, Result 8 implies that vC
S (w) = RC

S . Because µC
S > RC

S (Assumption 2), it must be

the case that the security s does not assign the entire cash flow to the seller s(x) 6= x, or equivalently w 6= 1.

Therefore vI
S(w)< µS

I = RI
S, where the last equality follows from Assumption 3. Therefore vC

S (w)−vI
S(w)>

RC
S −RI

S. This implies that there exists a scaled down version of the security density, w, δ w, which satisfies

vC
S (δ w)− vI

S(δ w) = RC
S −RI

S, δ ∈ (0,1). (C6)

Define an alternative solution, (wo, po
C, po

I ), as follows: po
I = RC

S , wo = δ w, and

po
C = RC

S − vC
S (w

o) = RI
S− vI

S(w
o), (C7)

where the final equality follows from equation (C6). Note that, po
C > 0, po

I ∈ [RI
S,R

C
S ], and that

po
I = vI

S(w
o)+ po

C and vC
S (w

o)+ po
C = RC

S .

Thus (wo, po
C, po

I ) is feasible for Problem Rev-Cost.

Conditioned on the state being C, Result 8 implies that the cost to the acquirer under (w, pC, pI) equals

vC
A(w)+ pC = vC

S (w)+ pC +(vC
A(w)− vC

S (w)) = RC
S +(vC

A(w)− vC
S (w)). (C8)

Conditioned on the state being C, the cost to the acquirer under (wo, po
C, po

I ) equals

vC
A(w

o)+ po
C = RC

S +(vC
A(w

o)− vC
S (w

o)) = RC
S +(vC

A(δ w)− vC
S (δ w)) = RC

S +δ (vC
A(w)− vC

S (w)). (C9)

Thus, comparing equations (C8) and (C9), using Assumption 2 and the fact that δ < 1, shows that, condi-

tioned on state C, cost under (wo, po
C, po

I ), cost is less than than under (w, pC, pI). Conditioned on the state

being I, the cost under (w, pC, pI) equals pI ≥ RC
S = po

I . Thus, cost conditioned on state I under (wo, po
C, po

I )

is weakly less than cost under (w, pC, pI). Hence (wo, po
C, po

I ) is not a solution to Problem (Rev-Cost).

Next note that Result 9 implies that in any optimal solution of the dual problem defined by (LRevMin)

must satisfy ∂L /∂ pC = 0, inspecting equation (C5) shows that ∂L /∂ pC = 0 is equivalent π +λ1−λ2 =

0, or λ2 = λ1 + π . Substituting this relationship be between the multipliers into the right-hand side of
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equation (C5) yields(
π
(
vC

A(w)− vC
S (w)

)
−λ1

(
vC

S (w)− vI
S(w)

))
+(π +λ1) RC

S + pI (1− (λ1 +π )) .

Next note that the approach to simplification used in the proof of Proposition 2 shows that

π
(
vC

A(w)− vC
S (w)

)
−λ1

(
vC

S (w)− vI
S(w)

)
= π

∫
w(x)

( (
F̄C

S (x)− F̄ I
S (x)

) ( rA(x)−1
rC(x)−1

− λ1

π

))
dx. (C10)

The sign of the expression in the large parentheses on the right-hand side of equation C10 is determined

by the sign of x ↪→ (rA(x)−1)/(rC(x)−1) which equals R (defined in equation 9) when η = 0. Thus, by

Lemma 5, R is increasing and crosses the x-axis once from above. Lemma 4 thus shows that a density of

the form w(x) = 1 if x < k and w(x) = 0 otherwise minimizes the Lagrange, i.e. the optimal security design

is debt. This observation and Result 9 establish the Proposition.

Proof of Proposition 4. First note that only three results derived in this appendix—Lemma 6, Proposition 5,

and Proposition 2—use Assumption 3. Thus, we can use all other preceding results in this proof without

risking circularity. Next note that, absent Assumption 3, the conclusion of 6 need not hold. An offer

solves (PR-CT) without the SLL constraint being imposed if and only if it solves the dual problem with the

multiplier for the SLL constraint, η , set to 0. Lemma 5 shows that when η∗ = 0, the optimal security design

is seller debt. Thus, condition (4) implies that the optimal design with the SLL constraint not imposed, is not

feasible. Hence, in an optimal solution to the dual problem, Problem PRDual-CT, the multiplier associated

with the SLL constraint η∗ > 0, Lemma 5 thus implies that R is U-shaped, decreasing and then increasing.

Lemma 5 also implies that limx→0+ R(x) = ∞ and limx→∞ R(x) = ∞. Thus, the set {x ∈ R+ : R− γ∗ < 0}
is an interval not including 0 and {x ∈ R+ : R− γ∗ = 0} has measure 0. Let k∗0 > 0 represent the lower

boundary of this interval and let k∗1 > k∗0 represent its upper boundary. Lemma 4 implies that w∗ = 1 on the

interval and (almost surely) equals 0 off the interval. Thus Lemma 4 shows that optimal security densities

have the form specified in the proposition.

Proof of Result 1. See equation (C4) in the proof of Proposition 2.
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