Do Investors Care About Corporate Externalities? Experimental Evidence

Jean-François Bonnefon TSE \& IAST
Augustin Landier HEC
Pari Sastry
MIT
David Thesmar
MIT, NBER, CEPR

October 17, 2020

The Question

- Calls for firms to maximize "stakeholder value"
- Warren (2018), Business Roundtable (2019),...

The Question

- Calls for firms to maximize "stakeholder value"
- Warren (2018), Business Roundtable (2019),...
- Then, "shareholder value" is not the right objective
- it excludes shareholders' social concerns

The Question

- Calls for firms to maximize "stakeholder value"
- Warren (2018), Business Roundtable (2019),...
- Then, "shareholder value" is not the right objective
- it excludes shareholders' social concerns
- Yet, if shareholders are altruistic, this could affect prices
- Stock price \neq profits !
- Heinkel et al. (2001), Zivin and Small (2005), Pastor\&Stambaugh (2019), Pedersen\&al (2019)
- "social stock exchanges"
- indirect evidence in event studies + Hartzman\&Sussman (2019)

The Question

- Calls for firms to maximize "stakeholder value"
- Warren (2018), Business Roundtable (2019),...
- Then, "shareholder value" is not the right objective
- it excludes shareholders' social concerns
- Yet, if shareholders are altruistic, this could affect prices
- Stock price \neq profits !
- Heinkel et al. (2001), Zivin and Small (2005), Pastor\&Stambaugh (2019), Pedersen\&al (2019)
- "social stock exchanges"
- indirect evidence in event studies + Hartzman\&Sussman (2019)

This paper: Why and how are investors' social concerns priced?

Hypotheses

What drives the pricing of prosocial preferences?

Hypotheses

What drives the pricing of prosocial preferences?

- Impact investing or value alignment (Brest\&al, 2008)
- impact investing: buy the firm to change it (consequentialist)
- value alignment: reward the firm for good behavior (deontological)

Hypotheses

What drives the pricing of prosocial preferences?

- Impact investing or value alignment (Brest\&al, 2008)
- impact investing: buy the firm to change it (consequentialist)
- value alignment: reward the firm for good behavior (deontological)
- agency problem in asset management (Friedman)

Hypotheses

What drives the pricing of prosocial preferences?

- Impact investing or value alignment (Brest\&al, 2008)
- impact investing: buy the firm to change it (consequentialist)
- value alignment: reward the firm for good behavior (deontological)
- agency problem in asset management (Friedman)
- when firms are better at addressing social concerns
- Hart and Zingales (2017)'s limit to Friedman's argument

Hypotheses

What drives the pricing of prosocial preferences?

- Impact investing or value alignment (Brest\&al, 2008)
- impact investing: buy the firm to change it (consequentialist)
- value alignment: reward the firm for good behavior (deontological)
- agency problem in asset management (Friedman)
- when firms are better at addressing social concerns
- Hart and Zingales (2017)'s limit to Friedman's argument
- when firm's prosocial behavior is clear ?
- greenwashing, CO_{2} offset programs

Hypotheses

What drives the pricing of prosocial preferences?

- Impact investing or value alignment (Brest\&al, 2008)
- impact investing: buy the firm to change it (consequentialist)
- value alignment: reward the firm for good behavior (deontological)
- agency problem in asset management (Friedman)
- when firms are better at addressing social concerns
- Hart and Zingales (2017)'s limit to Friedman's argument
- when firm's prosocial behavior is clear ?
- greenwashing, CO_{2} offset programs
- Testing these hypotheses is hard in the field
- prices conflate profit-reducing \& profit-increasing CSR
- hard to isolate different channels
\rightarrow We run a large-scale experiment on $\approx 1,500$ MTurkers

Experiment Design and results

- Participants are asked to bid for fictitious stocks:
- stock pays cash dividend $\pi-c$ and gives c to a charity
- $\operatorname{Bid}_{i}-\left(\pi_{i}-c_{i}\right)=\beta c_{i}$, where $\beta=$ "altruistic pass-through"

Experiment Design and results

- Participants are asked to bid for fictitious stocks:
- stock pays cash dividend $\pi-c$ and gives c to a charity
- $\operatorname{Bid}_{i}-\left(\pi_{i}-c_{i}\right)=\beta c_{i}$, where $\beta=$ "altruistic pass-through"
- We explore how β changes in various conditions:
- purchase changes firm's behavior, or not (impact)
- participants can donate directly (comparative advantage)
- participants invest on each other's behalf (moral hazard)
- firm may donate or not (clear behavior 1)
- firm donates \& takes at the same time (clear behavior 2)

Experiment Design and results

- Participants are asked to bid for fictitious stocks:
- stock pays cash dividend $\pi-c$ and gives c to a charity
- $\operatorname{Bid}_{i}-\left(\pi_{i}-c_{i}\right)=\beta c_{i}$, where $\beta=$ "altruistic pass-through"
- We explore how β changes in various conditions:
- purchase changes firm's behavior, or not (impact)
- participants can donate directly (comparative advantage)
- participants invest on each other's behalf (moral hazard)
- firm may donate or not (clear behavior 1)
- firm donates \& takes at the same time (clear behavior 2)
\rightarrow We find that:
- on average, $\beta \approx .8$
- bidding consistent with deontological preferences
- independent of impact, comparative advantage, delegation
- clarity matters, but in a simple "additive way"
- expected charity donation, net charity donation
- consistent w models cited earlier

Roadmap

Experiment Description

Results

Conclusion

Roadmap

Experiment Description

Results

Conclusion

Experiment: Overall structure

- recruitment: 1,500 MTurkers in 5 five batches
- participants have to value 3 stocks (in random order)

Type	Profit	Charity Donation	Cash Dividend
Neutral	π	0	π
Ethical	π	$c>0$	$\pi-c$
Unethical	π	$c<0$	$\pi-c$

- valuation measured through BDM bidding mechanism

1. participant bids b
2. machine draws random \tilde{p}
3. participant wins the auction if $b>\tilde{p}$ and pays \tilde{p}
\rightarrow under risk-neutrality and rational expectations, $b=$ valuation

More detailed description

1. define 2 wallets with initial endowments:

- the participant's wallet: \$2
- the charity's wallet: \$1
- in order to allow for corporate "unethical" behavior
- participants pick one of 6 charities

2. we then provide as simple example of BDM bidding

- neutral firm (no spillover to charity wallet)
- two cases: wins or loses auction vs random price
- step-by-step explanation of effect on both wallets

More detailed description

3. practice quiz

- makes sure all consequences are understood
- also: first live test in lab
- a pilot survey to clarify exposition based on practice quiz results
- 2 examples among 4 cases at random:
- one ethical $(\pi=1.5, c=.4)$ and one unethical firm $(\pi=.7, c=-.4)$
- one successful ($1>.5$), one failed bid $(1<2)$
- need to calculate effect on both wallets
- cannot proceed until ace the quiz (3 attempts max)
- pass rate $=80 \%$ in 2019, 50\% in 2020
- but we obtain identical results in identical conditions
- also: identical results among 120 MFin students

More detailed description

4. actual experiment: 3 bids

- neutral / unethical / ethical firms
- in random order to control priming
\checkmark random profits $\pi \in\{.5, .6, .7, .8, .9,1\} ; c \in\{.1, .2, .3, .4, .5\}$

5. end: recap final amounts of both wallets

Six conditions

1. baseline (148, June 2019)
2. impact (152, July 2019)

- charity wallet affected only if bid goes through
- practice quiz makes sure this is well understood

3. comparative advantage ($148,8 / 5 / 2019$)

- allowed to donate directly at the end

4. moral hazard (155, 8/5/2019)

- wallet = wallet of next participant in the list

5. clear behavior 1: (339, June-July 2020)

- positive and negative donation at the same time

6. clear behavior 2: (435, June-July 2020)

- either positive or negative donation
$\rightarrow 4,098$ rounds of bidding

Roadmap

Experiment Description

Results

Conclusion

Charity Donation is Priced in our Setting

$\rightarrow \alpha=0.02^{* *}, \beta=.79^{* * *}$
\rightarrow investors price charity donation symmetrically

impact does not affect pricing

$\underbrace{\operatorname{Bid}_{i}-\left(\pi_{i}-c_{i}\right)}_{\text {Excess bid }}=\alpha+\beta \times \underbrace{c_{i}}_{\text {Charity donation }}+\epsilon_{i}$			
	Excess Bid	Excess Bid	P-value
CharityValue	$0.797^{* * *}$	$0.893^{* * *}$	0.347
	(0.072)	(0.073)	
Constant	$-0.070^{* * *}$	-0.036	
	(0.026)	(0.025)	
Condition	Baseline	Impact Investing	
N	393	372	

- in second condition: charity receives c only if bid is succesfull
- no difference \rightarrow Value alignment $>$ Impact investing
- remember: participants understand the difference (quiz)

comparative advantage to donate has no effect

	(1)	
ExcessBid	ExcessBid	
CharityDonation	$0.645^{* * *}$	$0.797^{* * *}$
	(0.0756)	(0.0719)
Constant	0.00442	$-0.0705^{* * *}$
	(0.0268)	(0.0259)
Condition	Baseline	Donation
Observations	342	393

- Baseline: CSR is only way to donate, allowing donation should \searrow pricing of Charity Value
- but no significant difference here
- Participants do not substitute corporate for personal donation

moral hazard does not drive pricing

	(1)			
ExcessBid				ExcessBid
:---:				

- If doing good with other peoples' money, delegation should pricing of Charity Value
- but no significant difference here
- managing other peoples' money does not make participants bid higher

uncertainty affects pricing

- col 1: baseline with certain donation
- col 2: uncertain donation: $c_{i 1} \geq 0$ or $c_{i 2} \leq 0$ with $p=1 / 2$

	(1)	
ExcessBid	(2)	
ExcessBid		

\rightarrow Participants price expected donation like certain

ambiguity affects pricing

- col 1: baseline with plain donation c_{i}
- col 2: ambiguous donation, both $c_{i 1} \geq 0$ and $c_{i 2} \leq 0$

	(1)	
	ExcessBid	(2)
ExcessBid		

\rightarrow Participants price net donation like plain

Roadmap

Experiment Description

Results

Conclusion

Conclusion

- in our experiment, corporate donation is 80% priced
- not due to confusion: we check with quiz
- Such pricing consistent with deontological preferences
- independent of impact, moral hazard, comparative advantage
- Uncertain, ambiguous CSR is priced additively
- Consequences:
- Shareholder value maximization incorporates shareholders' non-monetary preferences
- possible to extend portofolio theory to non-pecunary benefits of stocks

References I

Hart, Oliver and Luigi Zingales, "Companies Should Maximize Shareholder Welfare Not Market Value," Journal of Law, Finance, and Accounting, 2017, 2 (2), 247-274.

Heinkel, Robert, Alan Kraus, and Josef Zechner, "The effect of green investment on corporate behavior," Journal of financial and quantitative analysis, 2001, 36 (4), 431-449.

Warren, Elisabeth, "Companies Shouldn?t Be Accountable Only to Shareholders," Wall Street Journal, 2018, Aug 14.

Zivin, Joshua Graff and Arthur Small, "A Modigliani-Miller theory of altruistic corporate social responsibility," The BE Journal of Economic Analysis \& Policy, 2005, 5 (1).

