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Abstract

To assess the value of information for contracting, it is necessary to study how

contracts change with signal precision. This paper studies the standard setting

of risk neutrality and limited liability, which permits an optimal contracting

approach. One application is to executive compensation, where the contract is

an option. The direct effect of reducing signal volatility is a fall in the option’s

value, which benefits the principal. The indirect effect is on effort incentives.

If the original option is sufficiently out-of-the-money, the agent can only beat

the strike price if he works and there is a high noise realization. Thus, a fall in

volatility reduces effort incentives, lowering the value of information. In contrast,

standard option theory suggests that volatility has greatest effect for at-the-

money options. A second application is to financing, where the contract is debt.

The model has implications for the value of risk management and a firm’s ability

to raise financing.
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Since the seminal contributions of Holmstrom (1979) and Shavell (1979), the moral

hazard literature has shown that superior information on agent performance can reduce

the principal’s cost of implementing a given action. This result has implications for

many contracting applications, such as compensation, financing, insurance, and regula-

tion. While information can be valuable, it is also costly. Thus, to determine whether

investing in information is efficient for the principal, we need to quantify its benefits

so that we can compare it against its costs. This involves solving for how the optimal

contract changes under additional information, and calculating the resulting cost sav-

ings. Relating these savings to the underlying parameters of the agency problem will

identify the situations in which information is most valuable.

As is well-known, solving for the optimal contract in a general setting is highly

complex (e.g. Grossman and Hart (1983)). Without doing so, we cannot determine

how the contract changes in response to superior information, and thus quantify the

cost savings. This paper addresses this open question. We consider the standard

framework of risk neutrality and limited liability, originally analyzed by Innes (1990)

and widely used in a number of settings (e.g. Biais et al. (2010), Clementi and

Hopenhayn (2006), DeMarzo and Fishman (2007a, 2007b), DeMarzo and Sannikov

(2006)). This framework allows us to take an optimal contracting approach and leads

to contracts that we observe in practice. As shown by Innes (1990), this model has two

major applications. The first is an employment setting, where the principal (firm) hires

an agent (manager), in which case the optimal contract involves giving the agent a call

option.1 A fall in the strike price increases the option’s delta and thus the agent’s effort

incentives, but also augments the value of the option and thus his expected wage. Thus,

the strike price is the minimum possible to satisfy the agent’s incentive constraint. The

second is a financing setting where the agent (entrepreneur) raises financing from the

principal (investor), in which case the contract is debt, and the strike price represents

its face value. We initially present the results using the employment application, since

we can discuss the intuition using option theory, but later discuss the implications for

financing.

We model the option contract as based on output and precision as affecting output

volatility, but the results are unchanged if the contract is instead based on a sepa-

rate performance signal and precision affects the volatility of this signal. We consider

1While options are not the only instruments used in practice, Dittmann and Maug (2007) find that
the payoff structure provided by a CEO’s overall compensation package resembles an option.
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general distributions for the performance measure that have a location parameter, i.e.

the location of the distribution (such as its mean) can be changed independently of its

shape. Examples include the normal, uniform, logistic, Cauchy, and Laplace distribu-

tions. Such distributions are a natural setting to study moral hazard, since effort can

be modeled as shifting this location parameter. We show that an increase in precision,

in the sense of second order stochastic dominance, has two effects, each with a clear

economic interpretation. First, a fall in volatility reduces the value of the option and

thus the expected wage: the direct effect. Second, it changes the agent’s incentives,

thus requiring the principal to change the contract to maintain incentive compatibility.

The heart of the paper analyzes this indirect effect. Our optimal contracting approach

allows us to determine how the contract changes with precision, ascertain the direction

of the incentive effect, and show how it depends on the model’s underlying parameters.

The agent’s effort incentives are determined by the difference between the value of

the option on the signal generated by shirking (“option-when-shirking”) and the one

generated by working (“option-when-working”). Increases in signal precision affect the

values of these two options differentially and thus raise or lower effort incentives. Our

main contribution is to derive clean results showing that the direction of the incentive

effect depends on the initial strike price of the option. Since the initial strike price

depends on the severity of the agency problem (a large agency problem, i.e. a high

cost of effort, requires a low strike price to induce effort), we can relate the effect of

precision on incentives to the underlying agency problem.

When the initial strike price is below a threshold, i.e. the agency problem is strong,

precision increases effort incentives. The intuition is as follows. A decrease in precision

(increase in signal volatility) raises the option’s value. The magnitude of the gain

is increasing in the option’s vega, which is highest when the option is at-the-money.

When the initial strike price is low, then if the agent shirks, the option is close to

at-the-money and has a high vega; if he works, the option is in-the-money and has a

low vega. Thus, a fall in precision increases the value of the option-when-shirking more

than the option-when-working, and lowers effort incentives. Intuitively, when volatility

is high, incentives are weak because, even if the agent shirked, he would still earn a high

wage if he received a positive shock. He is not worried about shirking and receiving a

negative shock, because his payoff cannot fall below zero due to limited liability.

When the initial strike price is above a second (higher) threshold, i.e. the agency

problem is weak, effort and informativeness are substitutes due to the reverse intuition.
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The option-when-shirking is deeply out-of-the-money, and the option-when-working is

closer to at-the-money. Thus, the vega of the latter option is greater, and its value

increases faster with volatility, raising incentives. Intuitively, when the strike price is

high, the agent is paid only if he exerts effort and receives a sufficiently positive shock.

When volatility rises (i.e. precision falls), such shocks are more likely, and so the agent

is more likely to be paid. Thus, his effort incentives increase.

For initial strike prices between the two thresholds, precision can either increase

or decrease effort incentives. This is because, for general distributions, a decrease in

informativeness may not have a consistent effect on the signal distribution: while it

shifts mass towards the tails, it could also shift some mass towards the center. Under a

simple regularity condition which guarantees that decreases in informativeness consis-

tently shift mass from the center to the tails, the two thresholds now coincide at a single

point and there is no ambiguous intermediate region. The effect of informativeness on

incentives then depends on whether the initial strike price is above or below this single

threshold. Thus, an increase in precision moves the strike price towards this threshold:

it reduces it if the strike price is initially above the threshold, and raises it if initially

below. A sufficient (although not necessary) condition for regularity is that the signal

distribution has a scale as well as a location parameter, as with the normal, uniform,

and logistic distributions. Intuitively, when volatility can be characterized by a scale

parameter (such as a standard deviation), changes in this parameter consistently move

mass towards the tails. Regularity is also automatically satisfied by a mean-preserving

spread.

Our results have a number of applications for employment contracts. First, it

identifies the settings in which investing in information is optimal for the principal.

When incentives are strong (weak) to begin with, e.g. for CEOs (managers), an increase

in the precision of the performance measure further increases (reduces) incentives,

raising (lowering) the gains from informativeness. Note that it is far from obvious

that the value of information is high for severe agency problems. An analysis focusing

only on the direct effect of informativeness, and ignoring the incentive constraint, would

suggest that the value is highest when the option is at-the-money – i.e. a moderate

initial strike price and a moderate agency problem.

One way in which the principal can invest in information is to engage in relative

performance evaluation (“RPE”), which is costly as it involves forgoing the benefits

of pay-for-luck documented by prior research (e.g. Oyer (2004), Axelson and Baliga
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(2009), and Gopalan, Milbourn, and Song (2010)). Such an analysis is also valuable to

assess the efficiency of real-life contracts. There is very little evidence that RPE is used

for rank-and-file employees, and only modest evidence of its usage for CEOs.2 Bebchuk

and Fried (2004) interpret this rarity as evidence that CEO contracts are inefficient.

However, to evaluate this argument, we need to identify the settings in which the value

of information is smallest, and compare them to the cases in which RPE is particularly

absent in reality. That RPE is more common for CEOs than employees is at least

directionally consistent with the idea that precision is more valuable when the agency

problem is stronger.

Second, in addition to the gains from precision, our analysis also studies the impact

of exogenous changes in precision. An increase in volatility raises (lowers) the incentives

of agents with out-of-the-money (in-the-money) options. If firms recontract in response,

CEOs with in-the-money options should receive the highest increase in incentives.

Third, the results have implications for how precision affects the probability of

firing. The strike price can be thought of as a performance target below which the

agent is fired (since he is paid zero). Simple intuition would suggest that more precise

monitoring will always increase the firing probability, but this intuition ignores the fact

that the target is endogenously chosen. If the target is initially high, precision weakens

effort incentives. Thus, to preserve incentive compatibility, the target must be lowered,

reducing the probability of firing and in some cases outweighing the first effect.

Fourth, for tractability, the analysis features a binary effort level. In the continuous-

effort analog, we show that the threshold for the initial strike price – that determines

whether precision increases or decreases effort – is the expected value of the signal.

If the initial strike price is above (below) this threshold, increases in precision lower

(raise) the strike price towards the threshold, i.e. towards the expected signal value.

Thus, such increases (e.g. improvements in stock market efficiency) move the option

closer to at-the-money. Bebchuk and Fried (2004) argue that the almost universal use

of at-the-money options is suboptimal, versus out-of-the-money options which pay the

agent only upon good performance. Our analysis suggests that at-the-money options

can be close to optimal if precision is high. This result also suggests that accounting

or tax considerations that favor at-the-money options need not induce suboptimal

contracting.

2While Aggarwal and Samwick (1999) and Murphy (1999) document almost no use, the more recent
study of Gong, Li, and Shin (2011) find that 25% of S&P 1500 firms explicitly use RPE. See Edmans
and Gabaix (2016) for a review of the evidence on RPE.
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Our results also have implications for financing contracts, where the investor has

risky debt. Debt contracts are based on output (e.g. cash flow) rather than a separate

signal. Thus, our model sheds light on the settings in which the investor’s incentive

to reduce output volatility is highest, for example through hedging, signing long-term

contracts with customers and suppliers, and investing in a less risky production tech-

nology. Such risk management has several interpretations: the investor can implement

risk management herself since she retains control rights on output; she stipulates in

the contract that the entrepreneur implement the above measures; or she has a menu

of projects that she can finance and thus can choose project risk.

An analysis based on the direct effect would suggest that risk management is most

valuable when the face value of debt is close to expected firm value (i.e. firms at the

bankruptcy threshold), as then the value of debt is most sensitive to volatility. This

is consistent with standard intuition (e.g. Stulz (1996)) that risk reduction incentives

are increasing in loan size (up to the bankruptcy threshold), because the lender has

more at stake. This intuition is incomplete due to the incentive effect. When the

agency problem is strong and thus the face value of debt is low, risk management

raises effort incentives, further increasing its value over and above the direct effect.

Thus, surprisingly, risk management may be more valuable for firms that are some

distance from bankruptcy, and when the investor has little debt at stake.

This result also has implications for a firm’s ability to raise external financing. In

standard models (e.g. Innes (1990), Holmstrom and Tirole (1997), Tirole (2006)), a

strong agency problem reduces a firm’s pledgeable income (i.e. leads to a low face value

of debt) since the entrepreneur must retain a sufficient share of output to induce effort.

Our results suggest that, when the agency problem is strong, the investor is more likely

to reduce risk, increasing effort incentives and thus the firm’s pledgeable income and

face value of debt. Thus, the endogenous response of risk management mitigates the

negative effect of agency problems on pledgeable income.

Dittmann, Maug, and Spalt (2013) also consider the incentive constraint when as-

sessing the benefits of a specific form of increased precision – indexing stock and options

– and similarly show that indexation may weaken incentives. They use a quite different

setting, which reflects the different aims of each paper. Their primary goal is to cal-

ibrate real-life contracts, and so their model incorporates risk aversion to allow them

to input risk aversion parameters into the calibration. However, under risk aversion,

it is difficult to solve for the optimal contract. They therefore restrict the contract
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to comprising salary, stock, and options, and hold stock constant when changing the

contract to restore the agent’s incentives upon indexation. They acknowledge that the

actual savings from indexation will be different if the principal recontracts optimally.

In contrast, our primary goal is theoretical. We incorporate risk neutrality and limited

liability, allowing an optimal contracting approach to solve analytically for how the con-

tract changes in response to information. In addition, our theory is somewhat broader

and allows the analysis of reductions in volatility through other means than indexa-

tion, for example investing in a superior monitoring technology, and for an application

to debt contracts. Our main contribution is not to explain the rarity of indexation,

but to characterize the contracting settings in which improving signal precision is most

valuable, once we take into account the change in the contract necessary to maintain

incentive compatibility.

This paper proceeds as follows. Section 1 presents the model, and Section 2 shows

that the optimal contract is a call option, as in Innes (1990). Section 3 presents our main

results. It derives the gains from increased signal precision, and in particular relates the

effect on effort incentives to the underlying parameters of the agency problem. Section

4 concludes. Appendix A contains all proofs not in the main text.

1 The Model

We consider a standard principal-agent model with risk neutrality and limited liability,

as in Innes (1990). At time t = −1, the principal offers a contract to the agent. At

t = 0, the agent chooses effort e ∈ {0, e}, where e = 0 (low effort, shirking) costs him

zero and e = e (high effort, working) costs him C > 0. At t = 1, output q is realized.

Since output is a signal of the agent’s effort, we sometimes refer to q as the “signal”

going forwards. While effort is unobservable, output is contractible. The agent is paid

a wage W (q) and the principal receives R (q) = q −W (q).

The distribution of output belongs to a location family with effort e being its

location parameter. More precisely, output equals

q = e+ ε, (1)

where ε is continuously distributed according to a probability density function (“PDF”)

gθ, with full support on an interval of the real line. Equation (1) is without loss of
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generality, since we can always define “noise” ε as the difference between effort and

output. In practice, noise can result from a market or industry shock, the contribution

of other managers, or measurement error. To belong to a location family, the noise

distribution gθ cannot be a function of e: exerting effort shifts the entire distribution

of output rightward without affecting its shape.

LetGθ(ε) denote the cumulative distribution function (“CDF”) of ε, and let fθ(q|e) ≡
gθ(q − e) and Fθ(q|e) ≡ Gθ(q − e) denote the PDF and CDF of output conditional on

effort e. High output is good news about effort in the sense of the monotone likelihood

ratio property (“MLRP”): gθ(q−ē)
gθ(q)

is strictly increasing in q for any fixed θ.3

The real-valued parameter θ orders the precision of the signal distribution in the

sense of second-order stochastic dominance (“SOSD”).4 It thus captures the informa-

tiveness of the signal q for the agent’s effort ε. Formally, the mean of ε is independent

of θ and

θ ≥ θ′ =⇒
∫ t

−∞
Gθ(ε)dε ≤

∫ t

−∞
Gθ′(ε)dε (2)

for all t. Thus, increases in θ generate more precise signal distributions. The parameter

θ may be chosen by the principal, or result from exogenous changes such as a reduction

in economic uncertainty. Our goal is to analyze the value of information, which applies

to either setting.

The agent is risk-neutral and so maximizes his expected wage

E [W (q)|e] =

∫ ∞
−∞

W (q)fθ (q|e) dq,

less the cost of effort. His reservation utility is zero and there is no discounting. The

principal is also risk-neutral and chooses a contract W (·) and an effort level e to

maximize expected output E [q] less the expected wage E [W ].

Following Innes (1990), we make two assumptions on the set of feasible contracts.

3Using the definition of fθ, we can rewrite this condition as the usual definition: fθ(q1|ē)
fθ(q1|0) >

fθ(q0|ē)
fθ(q0|0)

for all q1 and q0 with q1 > q0.
4 Following Innes (1990), the principal contracts on output q. Since signal equals output, changes in

the precision of the signal automatically lead to changes in the volatility of output. A previous version
of the paper assumed that q was non-contractible and instead that there was a separate signal s = q+η
on which contracts could be written. Thus, the precision of the signal s could be affected without
changing the volatility of output. All results continue to hold (because of risk neutrality, changing
the volatility of output has no effect), but the notation is more complex due to the introduction of an
additional variable.
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First, there is a limited liability constraint (“LL”) on the agent: W (q) ≥ 0 ∀ q. Second,

a monotonicity constraint ensures the principal’s payoff is non-decreasing in output:

η ≥ W (q + η)−W (q) (3)

for all η > 0. Innes (1990) justifies this constraint on two grounds. First, if it did

not hold, the principal would have incentives to sabotage output. Second, if it did not

hold, the agent would gain more than one-for-one for increases in output. Thus, he

would have incentives to borrow on his own account to increase output.

In the first best, effort is verifiable. There is no incentive constraint (“IC”) and

only an individual rationality constraint (“IR”). As long as E [q|e] − E [q|0] ≥ C, the

principal wishes to induce high effort, in which case the optimal contract is determined

by the binding IR: E [W (q) |e] = C.

In the second best, the agent’s effort is unverifiable and so the contract must satisfy

an IC. The agent works if and only if:

E[W (q)|e]− E [W (q)|0] ≥ C. (4)

Following standard arguments, this IC will bind, in which case the IR will be slack and

can be ignored in the analysis that follows. We define Xθ implicitly by the binding IC:∫ ∞
Xθ

(q −Xθ) [fθ(q|e)− fθ(q|0)] dq = C. (5)

We will show in Lemma 1 that Xθ exists and is unique. The intuition behind (5) is

that, if the agent is given a call option on q, Xθ is the strike price such that working

increases the option’s value by an amount equal to the cost of effort, so that the IC is

satisfied with equality.

We make the following assumption to ensure that e = e is second-best optimal:

E [q|e]− E [q|0] ≥
∫ ∞
Xθ

(q −Xθ)fθ(q|e)dq. (6)

The left-hand side (“LHS”) is the benefit to the principal of inducing e = e and the

right-hand side (“RHS”) is the cost of the contract required to do so.

Given θ, the principal’s problem is to choose a contract Wθ (·) to minimize the
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expected wage E [Wθ (q) |ē] subject to the IC, LL, and monotonicity constraints:

E [Wθ (q) |e] ≥ E [Wθ (q) |0] + C, (7)

Wθ (q) ≥ 0 ∀ q, and (8)

ε ≥ Wθ (q + ε)−Wθ (q) . (9)

To ensure that limε↘−∞Gθ(ε) and limε↗∞Gθ(ε) are differentiable with respect to θ,

we make the technical assumptions that Gθ is differentiable with respect to θ and that

the sequences {Gθ(−n)}n∈N ,
{
∂Gθ
∂θ

(−n)
}
n∈N , {Gθ(n)}n∈N ,

{
∂Gθ
∂θ

(n)
}
n∈N are uniformly

convergent. These assumptions are automatically satisfied if the noise has bounded

support and are also satisfied under standard unbounded distributions (such as normal,

uniform, logistic, Cauchy, and Laplace).

One difference from Innes (1990) is that he features a continuous action set. His

focus was to derive the form of the optimal contract and thus he wishes to do so in the

most general setting. Our goal is different: given that the optimal contract is a call

option, we study how changes in precision affect the agent’s incentives and thus the

strike price. We thus specialize to a binary effort level. With a continuous effort level,

a change in precision may alter the optimal effort level. It is well known that solving

for the optimal effort level in addition to the cheapest contract that induces a given

effort level is extremely complex (see, e.g., Grossman and Hart (1983)), and thus many

papers focus on the implementation of a given effort level, such as the related paper

by Dittmann, Maug, and Spalt (2013) on indexation. (Indeed, Innes (1990) does not

solve for the optimal effort level or study how it is affected by the parameters of the

setting, but shows that an optimum exists.) Edmans and Gabaix (2011) show that,

if the benefits of effort are multiplicative in firm size and the firm is sufficiently large,

it is always optimal for the principal to implement the highest effort level and so the

optimal effort level is indeed fixed. We thus consider a binary effort setting where high

effort is optimal. Appendix B.4 presents a continuous effort analog of the core model.5

5A second difference is that, in Innes, the agent offers the contract and maximizes his utility
subject to the principal’s participation constraint. Since it is the principal who will typically invest
in information, we model her as offering the contract so that she will reap the benefits.
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2 The Optimal Contract

This section solves for the optimal contract for a given level of precision θ. The analysis

is similar to Innes (1990). Our main results will come in Section 3, which analyzes the

gains from increasing θ.

Let Wθ (·) and Rθ (·) denote the optimal payments to the agent and principal for

a given θ. Lemma 1 establishes that Wθ (·) is a call option on q, where the strike

price Xθ is chosen to satisfy the binding IC (5). Alternatively, Rθ (·) can be viewed as

risky debt with face value Xθ. This application is relevant for both mature firms, and

also young firms since they frequently raise debt and the entrepreneur holds levered

equity, as shown by Robb and Robinson (2014). We will initially discuss the former

application, as this will allow us to use option theory to explain the intuition.

Lemma 1 (Optimal Contract) For each θ, there exists an optimal contract with

Wθ(q) = max{0, q −Xθ}, (10)

Rθ (q) = min {q,Xθ} (11)

where Xθ is the unique solution of (6). Any optimal contract coincides with Wθ(q)

except on a set of outputs with probability zero under effort ē.

As in Innes (1990), the intuition is as follows. The absolute value of the likelihood

ratio is highest in the tails of the distribution of q, so output is most informative

about effort in the tails. The left tail cannot be used for incentive purposes due to

limited liability, and so incentives are concentrated in the right tail. This maximizes

the likelihood that positive payments are received by a working agent. With an upper

bound on the slope, the optimal contract involves call options on q with the maximum

feasible slope, i.e. ∂
∂q
Wθ(q) = 1.

Lemma 2 below shows that the strike price falls with the cost of effort, which

parametrizes the severity of the agency problem.

Lemma 2 (Effect of effort cost on strike price): Let Xθ be the strike price in the

optimal contract for a given θ. Then, Xθ is strictly decreasing in the cost of effort C.
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3 The Value of Information

This section calculates the value of information to the principal, by studying the effect

of changes in signal precision on the optimal contract and its cost to the principal.

Section 3.1 provides a condition that relates the effect of precision on effort to the

strike price of the option and thus the severity of the agency problem. Section 3.2

graphically illustrates the value of precision for the normal distribution. It also proves

analytically that, for this distribution, the value of precision is monotonically increasing

in the cost of effort, and thus monotonically decreasing in the initial strike price.

Section 3.3 discusses applications of our results to executive compensation, employee

compensation, and financing contracts.

3.1 Distribution in the Location Family

The total effect of precision on the expected wage can be decomposed as follows:

d

dθ
E [W (q)|e] =

∂

∂θ
E [W (q) |e]︸ ︷︷ ︸
direct effect

+
∂

∂Xθ

E [W (q) |e] dXθ

dθ︸ ︷︷ ︸
incentive effect

. (12)

The first component is the direct effect, ∂
∂θ
E [W (q) |e]. Holding constant the strike

price, an increase in signal precision changes the value of the option; we will later prove

that this effect is negative. This reduction in pay is the benefit of precision highlighted

by Bebchuk and Fried (2004) in their argument that the lack of RPE is inefficient. In

the Holmstrom (1979) setting of a risk-averse agent, additional information reduces

the risk borne by the agent and thus allows the principal to lower the expected wage.

In our setting of risk neutrality and limited liability, an increase in precision directly

reduces the expected wage by lowering the value of the option.

The second component is the incentive effect, ∂
∂Xθ

E [W (q) |e] dXθ
dθ

, which arises be-

cause the increase in precision requires the strike price to rise by dXθ
dθ

to maintain incen-

tive compatibility. ∂
∂Xθ

E [W (q) |e] is negative – any increase in the strike price reduces

the value of the option – but the sign of dXθ
dθ

is unclear and depends on how changes

in precision affect the IC (4). The agent’s incentives arise because exerting effort in-

creases the option value. If he works, his option is worth E [W (q) |e]; we refer to this

as an “option-when-working.” If he shirks, he receives an “option-when-shirking”worth
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E [W (q) |0]. His effort incentives are given by the difference, i.e.

E [W (q) |e]− E [W (q) |0] . (13)

Since a change in precision θ affects the option-when-working and the option-when-

shirking to different degrees, it affects the agent’s effort incentives (13). When increas-

ing precision raises the agent’s effort incentives,

∂

∂θ
{E [W (q) |e]− E [W (q) |0]} > 0, (14)

we say that precision and effort are complements; when it reduces incentives, they are

substitutes.

Even when dXθ
dθ

< 0 and the incentive effect counteracts the direct effect, it can never

outweigh it. The total effect d
dθ
E [W (q) |e] is always weakly negative from revealed

preference. If reducing precision reduced the expected wage, the principal would have

added in randomness to the contract, and so the initial contract would not have been

optimal. Appendix B.1 presents an example of the limit case where the incentive effect

exactly offsets the direct effect, so that the total value of information equals exactly

zero.6

Proposition 1 states that whether effort and information are complements or sub-

stitutes depends on the initial strike price of the option:

Proposition 1 (Effect of information on the strike price): There exist X̂1 and X̂2 ≥
X̂1 such that

(i) If Xθ < X̂1, effort and information are complements and so dXθ
dθ
≥ 0

(ii) If Xθ > X̂2, effort and information are substitutes and so dXθ
dθ
≤ 0.

Effort and information are complements when the initial strike price Xθ is below a

threshold X̂1, substitutes when Xθ exceeds a higher threshold X̂2, and may be either

complements or substitutes for X̂1 ≤ Xθ ≤ X̂2. The intuition is as follows. A decrease

in precision (from θ to θ′) increases both tails of the signal distribution. If the initial

strike price of the option is sufficiently low (Xθ < X̂1), then the signal distribution

upon shirking has significant mass on both sides of Xθ. The agent benefits from high

6While we consider the effect of changing the precision of a given signal, Chaigneau, Edmans, and
Gottlieb (2016) derive a condition for whether the addition of a new signal has strictly positive value
for contracting under risk neutrality and limited liability.
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signal realizations (q > Xθ), since the option-when-shirking is in-the-money (“ITM”)

and so he exercises it, but does not lose from low signals (q < Xθ) as the option is

OTM and he does not exercise it. Thus, when precision falls, a shirking agent benefits

from the growth in the right tail, but does not lose from the growth in the left tail,

and so the value of the option-when-shirking increases significantly.

Working shifts the signal distribution rightwards. Thus, for Xθ < X̂1, the signal

distribution upon working is mostly to the right of Xθ, and remains this way after

precision falls. Since the option usually ends up ITM, the agent usually exercises it.

Thus, a working agent benefits from the growth in the right tail and loses from the

growth in the left tail, and so the value of the option-when-working is little changed.

Put differently, reductions in precision increase the value of an option due to its

asymmetric payoff: the agent benefits from q > Xθ, but does not lose from q < Xθ.

When Xθ is low and the agent shirks, the mean signal 0 is close to the kink Xθ and

the agent benefits from the asymmetry. When the agent works, the mean signal e is

far above the kink Xθ, and so he enjoys little asymmetry. Overall, a fall in θ raises the

value of the option-when-shirking more than the option-when-working and thus reduces

effort incentives. In simple language, the agent thinks “I’m not going to bother working,

because even if I do, I might be unlucky and so my performance will be low. I might

as well shirk, because even if I get unlucky and performance become very low, that

doesn’t matter, because I can’t get paid less than zero.”

For a sufficiently high strike price (Xθ > X̂2), the signal distribution upon shirking

is mostly to the left of Xθ – and remains this way even after precision falls and the

right tail expands. Thus, the option-when-shirking usually ends up OTM and its value

is little changed. In contrast, if the agent works, this shifts the signal distribution

rightward and so decreases in precision now push the right tail above Xθ. Thus, when

precision falls, a working agent benefits from the growth in the right tail (since the

option may end up ITM and he can now exercise it) but does not lose from the growth

in the left tail (since still he does not exercise it). Put differently, when Xθ is high and

the agent works, the mean signal e is close to the kink Xθ and the agent benefits from

the asymmetry. When the agent shirks, the mean signal 0 is far from the kink Xθ,

and so he enjoys little asymmetry. Overall, a fall in precision raises the value of the

option-when-working more than the option-when-shirking, and thus increases effort

incentives. In simple language, the agent thinks “If precision were high, I wouldn’t

bother working because the target Xθ is so high that I wouldn’t meet it, even if I did

14



Figure 1: Signal distributions in the location family.

work. But, now that the signal is more noisy, I will work – because if I do, and I get

lucky, I’ll meet the target.”

From Lemma 2, the initial strike price Xθ is decreasing in the cost of effort, and

thus the severity of the agency problem. When the agency problem is mild (severe), the

initial strike price is high (low); increases in precision reduce (increase) effort incentives,

causing the strike price to fall (rise). Thus, precision improves effort incentives if the

agency problem was initially severe.

However, for arbitrary distributions, it is unclear how changes in θ affect the distri-

bution between X̂1 and X̂2. A fall in θ need not consistently shift mass from the center

of the distribution towards the tails. It could shift some mass towards the center, as

long as it also moves mass towards a more extreme tail point. Figure 1 shows that,

while a fall in θ increases Gθ (q) for low q below a threshold q1 (i.e. increases the left

tail) and increases 1 − Gθ (q) for high q above a threshold q2 > q1 (i.e. increases the

right tail), the effect of θ on Gθ (q) is unclear for intermediate q. The CDFs Gθ and Gθ′

could cross many times between X̂1 and X̂2.

Definition 1 below introduces a simple regularity condition that guarantees that

falls in precision have a “consistent” effect on the distribution – they shift mass from
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Figure 2: Regular signal distributions.

the center towards the tails. Proposition 2 shows that, for regular distributions, X̂1 =

X̂2 = X̂, and so there is a single threshold below (above) which effort and information

are complements (substitutes): the CDFs cross at a single point X̂, as in Figure 2.

There is no intermediate range in which changes in precision have an ambiguous effect.

Thus, if the initial strike price is above (below) X̂, increases in precision lower (raise)

it; in both cases it moves towards X̂.

Definition 1 The distribution Gθ is regular if there exists X̂ such that

q

{
<

>

}
X̂ =⇒ ∂Gθ

∂θ
(q)

{
≤
≥

}
0.

Proposition 2 (Effect of precision with regular distributions): Suppose that the noise

distribution Gθ is regular. Then there exists X̂ such that dXθ
dθ
≥ 0 if Xθ < X̂, and

dXθ
dθ
≤ 0 if Xθ > X̂.

Regularity is not automatically implied by SOSD, but is satisfied by most standard

distributions. For example, it is automatically satisfied by a mean-preserving spread as
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defined in Rothschild and Stiglitz (1970) (see Machina and Pratt (1997)).7 In addition,

Corollary 1 shows that regularity is satisfied by any signal distribution that has a scale

parameter (in addition to a location parameter).

Corollary 1 (Distributions with a scale parameter): If the signal distribution F has

a scale parameter, i.e. its CDF can be written as Fσ(q|e) = G
(
q−e
σ

)
, then the noise

distribution G is regular and so there exists X̂ such that dXθ
dθ
≥ 0 if Xθ < X̂ , and

dXθ
dθ
≤ 0 if Xθ > X̂.

A distribution with a location and scale parameter can be fully characterized by

its mean e and standard deviation σ. It is natural to consider distributions with

scale parameters when studying changes in precision, since they can be represented by

changes in the scale parameter σ. Since the volatility of a signal is the inverse of its

precision, we have σ = 1√
θ

and so:

∂

∂σ
G

(
q − e
σ

)
= −q − e

σ2
g

(
q − e
σ

){
< 0 if q > e

> 0 if q < e
(15)

as required by Definition 1. Intuitively, the existence of a scale parameter σ means that

precision is characterized by the parameter σ, and so changes in σ have a consistent

effect on the shape of the distribution, moving mass towards its tails, thus satisfying

the regularity condition.

While regularity guarantees a single cutoff X̂, for general regular distributions we

do not know where this cutoff lies. Indeed, Claim 2 in Appendix B.2 shows that, for

distributions with a scale parameter, X̂ may lie anywhere between 0 and e. Proposition

3 shows that, when the distribution is not only regular but also symmetric (as with the

normal, uniform, logistic, Cauchy, and Laplace distributions), X̂ lies half-way between

0 and e, i.e. X̂ = ē
2
, as is intuitive. Thus, we can compare the initial strike price,

which depends on the underlying parameters of the agency problem (see Lemma 2) to

the threshold ē
2
. Hence, we can relate whether effort and information are complements

or substitutes to model primitives.

7A mean-preserving spread, as defined in Rothschild and Stiglitz (1970), is a change in the proba-
bility distribution which leaves the mean unchanged, and the probability mass or density is lower in
some interval and higher to the left and the right of this interval. Holding the mean constant, SOSD
is equivalent to a sequence of mean-preserving spreads (e.g., Gollier (2001, p.44)).
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Proposition 3 (Symmetric regular distributions): Suppose that the noise distribution

Gθ is regular and symmetric. Then, dXθ
dθ
≥ 0 if Xθ < X̂, and dXθ

dθ
≤ 0 if Xθ > X̂,

where X̂ ≡ ē
2
.

In addition to being sufficient for regularity, the presence of a scale parameter also

clarifies the intuition because we can fully parametrize changes in precision by changes

in volatility σ. We can thus examine how changes in σ affect the values of the two

options using the familiar concept of the option “vega”: the sensitivity of its value to

σ. The vega of each option depends on its strike price, and thus model primitives.

With a scale parameter, equation (14) now becomes

∂

∂σ
{E [W (q) |e]− E [W (q) |0]} < 0. (16)

The LHS of inequality (16) – the vega of the option-when-working minus the vega of

the option-when-shirking – represents the effect of changes in σ on incentives. The

vega of an option is always positive, highest for an at-the-money (“ATM”) option (see

Claim 3 in Appendix B.28), and declines when the option moves either ITM or OTM.

Thus, the vega of the option-when-working is highest at X = e, and so if it has a strike

price of X̂ = e
2
, it is ITM by e

2
. The vega of the option-when-shirking is highest at

X = 0, and so if it has a strike price of X̂ = e
2
, it is OTM by e

2
. Overall, at a strike

price of X̂ = e
2
, both options are equally away-from-the-money and have the same vega

(see Claim 4 in Appendix B.2), and so effort incentives are independent of σ. We thus

have dXσ
dσ

= 0. When X < X̂, the option-when-shirking is closer to ATM, and so it

has a higher vega. An increase in σ reduces effort incentives, and so dXσ
dσ

< 0. When

X > X̂, the option-when-working is closer to ATM than the option-when-shirking. An

increase in σ lowers effort incentives, and so dXσ
dσ

> 0.

Note that our analysis takes an optimal contracting approach, so the slope of the

contract is the maximum possible without violating the monotonicity constraint (9).

(W ′ (q) = 1 for q ≥ Xθ). Thus, the principal changes Xθ to ensure that the IC binds.

An alternative approach is to restrict the contract to comprising ATM options, e.g. for

accounting or tax reasons, and instead meet the IC by varying the slope of the contract.

Appendix B.3 demonstrates an analogous result to Proposition 3 for this case. With

ATM options, we have X = e ≥ X̂ = e
2

and so effort and information are substitutes.

8It is well-known that for lognormal distributions, the vega is highest for ATM options. Claim 3
in Appendix B.2 extends this result to all distributions with a location and scale parameter.
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An increase in precision requires the number of options granted to increase to maintain

incentive compatibility. This augments the expected wage, just like a decrease in the

strike price, and so the total effect of precision on expected pay is less than the direct

effect. Thus, the results of the core model, where X > X̂, extend to the case of ATM

options.

3.2 Normal Distribution

We now demonstrate graphically the direct and incentive effects. We need to assume

a specific distribution to enable us to calculate the derivatives, and so we consider the

common case of a normal distribution (which is symmetric and regular). Let ϕ and Φ

denote the PDF and CDF of the standard normal distribution, respectively. As shown

in Appendix A, the total and direct effects are respectively given by:

dE [W (q) |e]
dσ

= ϕ

(
Xσ − e
σ

)
−
[
1− Φ

(
Xσ − e
σ

)]
ϕ
(
Xσ−e
σ

)
− ϕ

(
Xσ
σ

)
Φ
(
Xσ
σ

)
− Φ

(
Xσ−e
σ

) , and (17)

∂E [W (q) |e]
∂σ

= ϕ

(
Xθ − e
σ

)
. (18)

Figure 3 illustrates how these effects change with the severity of the moral hazard

problem (parametrized by the cost of effort C). As is standard for graphs of option

values, the figure contains the strike price X on the x-axis; since X is strictly decreasing

in C (Lemma 2), there is a one-to-one mapping between X and C.

To understand Figure 3, recall from (12) that the total effect is given by dE[W (q)|e]
dσ

=
∂E[W (q)|e]

∂σ
+ ∂E[W (q)|e]

∂Xθ

dXθ
dσ

. The direct effect, ∂E[W (q)|e]
∂σ

, is the vega of the option-when-

working. It tends to zero as the strike price approaches either −∞ or∞, and is greatest

when the option is ATM, i.e. X = 1.

The incentive effect, ∂E[W (q)|e]
∂Xσ

dXσ
dσ

, consists of two components. The first is the

change in strike price required to maintain incentive compatibility, dXσ
dσ

. From Propo-

sition 3 and using σ = 1√
θ
, dXσ

dσ
> 0 if and only if X > X̂ = 1

2
. Indeed, for the normal

distribution, not only does dXσ
dσ

turn from negative to positive as X crosses above X̂,

but it is also monotonically increasing in X, i.e. monotonically decreasing in the cost

of effort. This result is stated in Lemma 3 below:

Lemma 3 (Normal distribution, change in strike price): Suppose ε is normally dis-

tributed. Then, the effect of volatility on the strike price is decreasing in the cost of
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Figure 3: Total and partial derivative of expected pay with respect to σ for a range of
values of X, for ē = 1 and σ = 1.

effort, i.e.
d2Xσ

dσdC
< 0. (19)

The second component is the change in the value of the option when the strike price

increases, ∂E[W (q)|e]
∂Xσ

. This change is always negative, and its negativity is increasing in

the moneyness of the option. Overall, as X falls below X̂ and the option becomes

increasingly in the money, both dXσ
dσ

and ∂E[W (q)|e]
∂Xσ

become increasingly negative, and so

the overall incentive effect ∂E[W (q)|e]
∂Xσ

dXσ
dσ

becomes monotonically more positive. However,

as X rises above X̂, the two components of the incentive effect move in opposite

directions. On the one hand, greater precision increasingly worsens incentives (dXσ
dσ

becomes more positive). On the other hand, ∂E[W (q)|e]
∂Xσ

rises towards zero: when the

option is deeply OTM, its value is small to begin with and thus little affected by the

strike price. Overall, the impact of X on incentives is non-monotonic. As X initially

rises above X̂, the incentive effect becomes increasingly negative but subsequently rises

to zero.

The total effect dE[W (q)|e]
dσ

combines these direct and incentive effects. While the

direct effect is initially increasing in X, this is outweighed by the fact that the incentive
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effect is initially decreasing in X. Thus, in Figure 3, the total gains from increased

precision are monotonically decreasing in X. Indeed, Proposition 4 proves for the

normal distribution that the value of information is monotonically increasing in C (the

exogenous parameter that drives X).

Proposition 4 (Normal distribution, effect of cost of effort on value of information)

Suppose ε is normally distributed. Then, d
dC

{
dE[W (q)|e]

dσ

}
> 0.

An analysis focusing purely on the direct effect would suggest that the value of

information is greatest when the initial option is ATM, which in turn corresponds to a

moderate strike price and a moderate cost of effort. In contrast, considering the total

effect shows that the value of information is monotonically increasing in the severity

of the agency problem.

3.3 Applications

We now discuss applications of our results, starting with employment contracts. First,

our results highlight the conditions under which employers should invest in increasing

the precision with which they monitor their managers’ performance. Our analysis sug-

gests that investing in precision is worthwhile where agency problems are strong, and

thus incentives are high-powered to begin with. Thus, managers with high-powered

incentives (such as CEOs) should be evaluated more precisely than those with low-

powered incentives (such as rank-and-file managers). Relatedly, the model has im-

plications for the optimality of pay-for-luck. The results suggest that RPE need not

be optimal, as it can reduce effort incentives. This effect is particularly likely where

incentives are low-powered to begin with, consistent with RPE being even rarer for

rank-and-file employees than for executives.

Second, Proposition 2 suggests that exogenous changes in volatility (see Gormley,

Matsa, and Milbourn (2013) and De Angelis, Grullon, and Michenaud (2015) for nat-

ural experiments) will have different effects on the incentives of agents depending on

the moneyness of their outstanding options. In particular, increases in precision will

lower (raise) the incentives of agents with OTM (ITM) options. Thus, firms may wish

to reduce the strike prices of OTM options to restore incentives. Option repricing is

documented empirically by Brenner, Sundaram, and Yermack (2000), although they
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do not study if it is prompted by falls in volatility.9

Third, the model has implications for how precision affects the frequency of firing

decisions. We can think of Xθ as a performance target below which the manager is fired,

and above which he is given a linear contract such as a piece rate. Simple intuition

would suggest that more precise monitoring will always increase the probability of

firing. However, our results show that this is not the case. If the agency problem is

weak to begin with (the target Xθ is initially high), more precise monitoring reduces

the agent’s effort incentives. To preserve incentive compatibility, the target threshold

must be lowered, reducing the probability of firing. Against that, when the threshold

is initially high, the agent only avoids being fired upon high performance realizations.

A reduction in signal volatility lowers the likelihood of high realizations. Thus, for

general distributions, the overall effect on firing probability is ambiguous, contrary to

intuition. Moreover, Claim 1 shows that, under certain conditions, firing probability

unambiguously falls with precision.

Claim 1 Suppose that the noise distribution Gθ is regular and symmetric. Then, for

increases in θ that increase precision in the sense of mean-preserving spreads, we have
dPr(q≤Xθ)

dθ
≤ 0 for Xθ ∈ [ ē

2
, ē].

Fourth, Proposition 3 implies that, for all symmetric regular distributions, improve-

ments in precision draw X towards X̂ = ē
2
. In the current discrete model, there are

two effort levels, ē and 0. In a continuous-effort analog (see Appendix B.4), where the

principal wishes to implement ē, the contract must induce the agent to exert ē rather

than ē + ε or ē − ε, i.e. the IC must be “local”. In our discrete model, a local IC

resembles the case in which the high effort level (ē) is very close to the low effort level

(0). Thus, improvements in precision (e.g. increases in stock market efficiency) will

draw X towards X̂ = ē
2
' 0. Moreover, since the contract implements effort ē, the

mean value of the signal is ē and so an ATM option will have a strike price of ē ' 0;

thus, increases in precision bring the option closer to ATM. Bebchuk and Fried (2004)

argue that the almost universal practice of granting ATM options is inefficient and

advocate OTM options as they reward the agent only for exceptional performance (see

also Rappaport (1999)). However, such views ignore the incentive effect: OTM options

have lower deltas and so more would be required to achieve incentive compatibility.

9Acharya, John, and Sundaram (2000) also study the repricing of options theoretically, although
in responses to changes in the mean rather than volatility of the signal.
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Murphy (2002) notes that ITM options would provide the strongest incentives, but are

discouraged by the tax code. One interpretation is that the tax code leads to firms

choosing ATM options when ITM options may be more efficient. Our analysis instead

suggests that increases in precision lead to options optimally being close to ATM.10

A second application is to financing contract, where the principal (investor) receives

debt with face value of Xθ, and the entrepreneur holds equity – a call option on firm

value with a strike price equal to the face value of debt. Our results shed light on

the investor’s incentives to reduce output volatility via risk management.11 Standard

intuition would suggest that these incentives are increasing in the size of her debt claim,

and thus her value-at-risk, but this intuition ignores the effect of risk management on

effort. If the initial agency problem is strong (Xθ < X̂), the face value Xθ must be

low to induce effort. A fall in output volatility raises effort incentives, and allows

the investor to request a higher face value while preserving incentive compatibility.12

This reinforces the direct effect of risk management, that it increases the value of the

investor’s risky debt due to its concave payoff structure. If the initial agency problem is

weak (Xθ > X̂), risk management reduces effort incentives, offsetting the direct effect.

Indeed, if Proposition 4 holds, the value of information is monotonically increasing

in the severity of the agency problem and thus decreasing in the face value of debt,

opposite to conventional wisdom.

Our results also have implications for a firm’s ability to raise financing. With

a strong agency problem, the entrepreneur needs sufficient incentives to exert effort,

which requires him to retain a high share of output and thus results in low pledgeable

income and a low face value of debt (Innes (1990), Holmstrom and Tirole (1997), and

Tirole (2006)). Our results show that there is a second effect of a strong agency problem

– it increases the investor’s incentives to engage in risk management, which increases

10Hall and Murphy (2000) restrict the contract to consist of options, rather than taking an optimal
contracting approach, and calibrate the optimal strike price depending on the CEO’s risk aversion
and the proportions of his wealth in stock and options. They show that, in most cases, the range of
optimal strike prices includes the current stock price, i.e. corresponds to an ATM option.

11Since debt contracts are on output, rather than on a separate signal, for the debt application we
take the literal interpretation of changes in θ as affecting the volatility of output (cf. footnote 4.)

12This result does not rely on the assumption that the investor has all the bargaining power (see
footnote 2 in Innes (1990)). For example, consider the same model except for the assumption that the
entrepreneur (rather than investor) has full bargaining power. For each θ, let xθ be the maximum face
value of debt satisfying incentive compatibility (i.e., the entrepreneur’s “pledgeable income”). Then

xθ = Xθ for any θ, so that it remains the case that, for xθ < X̂, higher signal precision increases effort
incentives and thus pledgeable income.
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pledgeable income and thus the face value of debt. Thus, taking into account the

endogenous change in risk management incentives mitigates the effect of the agency

problem on the firm’s pledgeable income.

4 Conclusion

This paper studies the value of information to the principal in a contracting setting. By

taking an optimal contracting approach, we can be specific on how the contract changes

in response to increases in precision. This allows us to relate the value of information

to the underlying parameters of the agency problem and identify settings in which

the value of information is greatest. Under the standard setting of risk neutrality and

limited liability, the agent has an option (or, alternatively, the principal holds risky

debt). The direct effect of higher signal precision is that it reduces the value of the

option and thus expected pay. The focus of the paper is on the indirect effect – we

show changes in precision affect the agent’s effort incentives and solve precisely for how

the contract changes in response.

If effort and information are substitutes, increases in precision weaken incentives.

Thus, the principal must reduce the strike price to preserve incentives, increasing the

cost of compensation and offsetting the direct effect. Our key result is that we relate

whether effort and information are substitutes or complements to the initial strike

price of the option, and thus the severity of the agency problem. When the initial

strike price is above a threshold, i.e. incentives are weak to begin with, an increase

in precision reduces effort incentives. The principal therefore optimally invests less in

information. In contrast, if the initial strike price is below a second (lower) threshold,

i.e. incentives are strong to begin with, an increase in precision raises effort incentives.

This provides an additional gain over and above the direct effect of reducing volatility

traditionally focused upon. Thus, the value of information depends on the initial

strike price, and thus the severity of the underlying agency problem. For regular signal

distributions, such as those with a scale parameter, both thresholds coincide at a single

point. Improvements in precision move the strike price towards this point: they lower

it if it is initially high, and raise it if initially low.

In an employment setting, our results have implications for the situations in which

informativeness is most valuable, for how firms should recontract in response to changes

in the informativeness of the performance measure, for how volatility affects the fre-
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quency of firing decisions, and for the optimality of at-the-money options. In a financing

setting, they have implications for the value of risk management and for how the firm’s

ability to raise external finance depends on the severity of the agency problem.
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A Proofs

Proof of Lemma 1

The principal’s problem is to design a contract that minimizes expected pay:

min
Wθ(·)

∫ ∞
−∞

Wθ (q) fθ (q|e) dq, (20)

subject to the monotonicity constraint, the agent’s LL, and the following IC:∫ ∞
−∞

Wθ (q) [fθ (q|e)− fθ (q|0)] dq ≥ C. (21)

The proof adopts Lemma 1 from Matthews (2001) to a setting with a continuum of

signals and general supports. For a given θ, the agent’s payoff from an option contract

is W ∗
θ (q) ≡ max{q − X, 0}, where X is the exercise price. Note that this contract

satisfies LL and monotonicity.

Let Ŵ (·) be a contract that satisfies monotonicity, LL, and IC, but differs from

an option contract for signals that have positive probability under effort ē, is not an

option contract. Without loss of generality, suppose IC holds with equality (otherwise,

Ŵ (·) cannot be an optimal contract):∫ ∞
−∞

Ŵ (q) [fθ (q|e)− fθ (q|0)] dq = C. (22)

For any such alternative contract, there exists a unique option contract with the

same expected payment, i.e.,∫ ∞
−∞

W ∗
θ (q)fθ (q|e) dq =

∫ ∞
−∞

Ŵ (q)fθ (q|e) dq. (23)

To see this, use the formula for the option contract to write∫ ∞
−∞

W ∗
θ (q)fθ (q|e) dq =

∫ ∞
X

(q −X) fθ (q|e) dq,

so that (23) can be rewritten as∫ ∞
X

(q −X) fθ (q|e) dq =

∫ ∞
−∞

Ŵ (q)fθ (q|e) dq. (24)
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Notice that the derivative of the LHS of (24) with respect to the exercise price is

− [1− Fθ (X|ē)] . As X ↗ +∞, the LHS of (24) converges to 0 < C, so that the LHS

is smaller than the RHS because of (22) and Ŵ (q) ≥ 0 ∀q due to LL. As X ↘ −∞,

the LHS of (24) converges to limX→−∞
∫∞
X

(q − X)fθ (q|e) dq, which is the maximum

payment that the agent can receive subject to the monotonicity constraint, and is

therefore larger than the RHS of (24). Thus, the Intermediate Value Theorem and the

monotonicity of the LHS ensure that a unique solution X to (24) exists.

First, we show that the incentives to exert low effort are higher with the alternative

contract than with the option contract:∫ ∞
−∞

Ŵ (q)fθ (q|0) dq >

∫ ∞
−∞

W ∗
θ (q)fθ (q|0) dq. (25)

Let V (q) ≡ Ŵ (q)−W ∗
θ (q) and note that V (q) 6= 0 in a set of positive measure under

high effort. By construction, V has mean zero under high effort; thus, V (q) > 0 for

some signals q and V (q) < 0 for other signals. Let k ≡ sup {q : V (q) > 0} , so that

V (q) ≤ 0 for all q > k. Since W ∗
θ is an option contract and Ŵ satisfies LL and

monotonicity, it follows that V (q) ≥ 0 for all q < k.

Recall that, by MLRP, fθ(q1|0)
fθ(q1|e) <

fθ(q0|0)
fθ(q0|e) whenever q1 > q0. Then,∫ ∞

−∞
V (q)fθ (q|0) dq =

∫ ∞
−∞

V (q)
fθ (q|0)

fθ (q|e)
fθ (q|e) dq

=

∫ k

−∞
V (q)

fθ (q|0)

fθ (q|e)
fθ (q|e) dq +

∫ ∞
k

V (q)
fθ (q|0)

fθ (q|e)
fθ (q|e) dq

>

∫ k

−∞
V (q)

fθ (k|0)

fθ (k|e)
fθ (q|e) dq +

∫ ∞
k

V (q)
fθ (k|0)

fθ (k|e)
fθ (q|e) dq

=
fθ (k|e)
fθ (k|0)

∫ ∞
−∞

V (q)fθ (q|e) dq (26)

= 0, (27)

where the first line multiplies and divides by fθ (q|e); the second line splits the integral

between q < k and q > k; the third line uses MLRP, k > q, and the fact that

V (q) ≤ (≥)0 if q > (<)k, where each inequality is strict in a set of positive probability

measure under high effort; the fourth line takes fθ(k|e)
fθ(k|0)

outside of the integral; and the

last line uses fθ(k|e)
fθ(k|0)

> 0 and the fact that, by equation (23),
∫∞
−∞ V (q)fθ (q|e) dq = 0.
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We have thus established that (25) holds.

Since both contracts pay the same expected amounts under ē and the option con-

tract pays less under zero effort, it follows that the IC does not bind:∫ ∞
−∞

W ∗
θ (q)fθ (q|e) dq =

∫ ∞
−∞

Ŵ (q)fθ (q|e) dq (28)

=

∫ ∞
−∞

Ŵ (q)fθ (q|0) dq + C >

∫ ∞
−∞

W ∗
θ (q)fθ (q|0) dq + C. (29)

Therefore, there exists a small enough increase in the exercise price X such that the

new contract, denoted W ∗+
θ , remains incentive compatible but has a lower expected

payment: ∫ ∞
−∞

W ∗+
θ (q)fθ (q|e) dq <

∫ ∞
−∞

W ∗
θ (q)fθ (q|e) dq. (30)

Thus, this new option contract W ∗+
θ satisfies monotonicity, LL, and IC, and has a lower

expected cost than the initial non-option contract Ŵ . Uniqueness of the exercise price

follows from the fact that the IC must bind and the existence of a unique exercise

price that makes the IC hold as an equality. Thus, the optimal contract is an option

contract with an exercise price Xθ that is the unique solution of (6). Moreover, any

other optimal contract coincides with this option with probability 1 (under effort ē).

Proof of Lemma 2

Denoting the lower bound of the support of q by q and the upper bound by q, we

first show that the IC (5) can also be rewritten as∫ q

Xθ

[Fθ (q|0)− Fθ (q|e)] dq = C. (31)

Opening the expressions inside the brackets in equation (5), we obtain∫ q

Xθ

qfθ (q|e) dq −
∫ q

Xθ

qfθ (q|0) dq = [Fθ (Xθ|0)− Fθ (Xθ|e)]Xθ + C. (32)

Integration by parts (for e ∈ {0, e}) yields:∫ q

Xθ

qfθ (q|e) dq =

[
qFθ (q|e)−

∫
Fθ (q|e) dq

]q
Xθ

= q −XθFθ (Xθ|e)−
∫ q

Xθ

Fθ (q|e) dq.
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Substituting into (32) yields:[
q −XθFθ (Xθ|e)−

∫ q

Xθ

Fθ (q|e) dq
]
−
[
q −XθFθ (Xθ|0)−

∫ q

Xθ

Fθ (q|0) dq

]
= [Fθ (Xθ|0)− Fθ (Xθ|e)]Xθ + C.

Canceling terms gives equation (31). Applying the implicit function theorem to (31)

yields:
dXθ

dC
= − 1

F (Xθ|0)− F (Xθ|e)
< 0. (33)

Proof of Proposition 1

It is helpful to start by rewriting the value of the option. Integration by parts yields

E [W (q) |e] = E [q|e]−Xθ +

∫ Xθ

−∞
Fθ (q|e) dq. (34)

The area under the CDF for signals below Xθ (the third term) is the value of a put

option with a strike price of Xθ:

Pr (q < Xθ|e)E [(Xθ − q) |q < Xθ, e] =

∫ Xθ

−∞
− (q −Xθ) f(q|e)dq =

∫ Xθ

−∞
Fθ (q|e) dq,

where the last equality follows from integration by parts. Therefore, equation (34)

can be interpreted as the put-call parity equation. The agent’s call option equals the

expected value of the signal, minus the strike price, plus the value of a put option.

To study whether precision and effort are complements, we examine each of the

three terms on the RHS of (34). While E [q|e] depends on e, it is independent of θ

since changes in θ do not affect the mean. In addition, Xθ depends on θ but not e.

Thus, θ and e are neutral in their effect on both of these terms, and non-neutral only

in their effect on the third term
∫ Xθ
−∞ Fθ (q|e) dq. This observation leads to the following

Lemma:

Lemma 4 Precision and effort are complements (substitutes) if and only if

∂

∂θ

∫ Xθ

−∞
[Fθ(q|e)− Fθ(q|0)] dq ≥ (≤)0. (35)
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We can now present the proof of the Proposition.

Since Fθ(q|e) = Gθ (q − e), we have

∂

∂θ

∫ Xθ

−∞
[Fθ (q|e)− Fθ (q|0)] dq =

∂

∂θ

{∫ Xθ

−∞
Gθ (q − e) dq −

∫ Xθ

−∞
Gθ (q) dq

}

=
∂

∂θ

{∫ Xθ−e

−∞
Gθ (q) dq −

∫ Xθ

−∞
Gθ (q) dq

}
=

∂

∂θ

{
−
∫ Xθ

Xθ−e
Gθ (q) dq

}

= −
∫ Xθ

Xθ−e

∂Gθ

∂θ
(q) dq. (36)

Therefore, effort and information are complements if and only if (36) > 0.

Let ξ(θ) ≡ limε↘−∞Gθ (ε) = 0. Since ξ is differentiable at −∞, it follows that

ξ′(θ) = 0. Similarly, ξ̂(θ) ≡ limε↗∞Gθ (ε) = 1 and the differentiability of ξ̂ at ∞
implies that ξ̂′(θ) = 0. Moreover, it is straightforward to show that SOSD implies13

∫ Xθ

−∞

∂Gθ

∂θ
(q − e) dq ≤ 0 (37)

∀ Xθ. Thus, ∂Gθ
∂θ
≤ 0 for q small enough. As a result, there exists X̂1 such that∫ X̂1

X̂1−e
∂Gθ
∂θ

(q) dq < 0. Thus, (36) > 0 and so effort and information are complements.

In addition, ∂Gθ
∂θ

= 0 for q →∞. Thus, ∂Gθ
∂θ

must eventually turn positive: ∂Gθ
∂θ
≥ 0

for q large enough. As a result, there exists X̂2 such that
∫ X̂2

X̂2−e
∂Gθ
∂θ

(q) dq > 0. Thus,

(36) < 0 and so effort and information are substitutes. In sum, there exists X̂1 such

that dXθ
dθ
≥ 0 if Xθ < X̂1, and X̂2 ≥ X̂1 such that dXθ

dθ
≤ 0 if Xθ > X̂2. However, for

X̂1 < Xθ < X̂2 , it is possible for ∂Gθ
∂θ

to alternate signs several times, and so we cannot

sign (36) .

Proof of Proposition 2

From the definition of regular distributions (Definition 1), ∂Gθ
∂θ

alternates signs only

13Recall that SOSD requires that for all θ′ ≥ θ∫ X

−∞
Gθ′ (s− e) ds ≤

∫ X

−∞
Gθ (s− e) ds.

Taking the limit as θ′ ↘ θ gives ∫ X

−∞

∂Gθ
∂θ

(s− e) ds ≤ 0.

34



once. Furthermore, we know from Proposition 1 that ∂Gθ
∂θ
≤ ( ≥ ) 0 for q small

(large) enough. Therefore, there exists X̂ such that −
∫ Xθ
Xθ−e

∂Gθ
∂θ

(q) dq is nonnegative

for Xθ < X̂, and nonpositive for Xθ > X̂. It follows from Proposition 1 that dXθ
dθ
≥ 0

if Xθ < X̂ and dXθ
dθ
≤ 0 if Xθ > X̂.

Proof of Proposition 3

We know from Proposition 1 that dXθ
dθ
≥ (≤)0 if

−
∫ Xθ

Xθ−e

∂Gθ

∂θ
(q) dq ≥ (≤) 0. (38)

If G is regular and symmetric for any θ, then

G(x) = 1−G(−x)

∂Gθ

∂θ
(x) = −∂Gθ

∂θ
(−x)

∂Gθ

∂θ
(x) ≥ 0 ⇔ x ≥ 0.

It follows that, for Xθ = e/2, the LHS of equation (38) is∫ e/2

−e/2
−∂Gθ

∂θ
(q) dq = 0. (39)

For Xθ − e ≥ 0, ∫ Xθ

Xθ−e
−∂Gθ

∂θ
(q) dq ≤ 0, (40)

and for Xθ ≤ 0, ∫ Xθ

Xθ−e
−∂Gθ

∂θ
(q) dq ≥ 0. (41)

Finally, for Xθ ∈ (0, e),

∂

∂Xθ

{∫ Xθ

Xθ−e
−∂Gθ

∂θ
(q) dq

}
=
∂Gθ

∂θ
(Xθ − e)−

∂Gθ

∂θ
(Xθ) ≤ 0 (42)

Combining (39)-(42) shows that dXθ
dθ
≥ 0 if Xθ <

e
2

, and dXθ
dθ
≤ 0 if Xθ >

e
2
.

Proof of Equations (17) and (18)
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First, with σ instead of θ, the decomposition in (12) can be rewritten as

d

dσ
E [W (q) |e] =

∂

∂σ
E [W (q) |e]︸ ︷︷ ︸
direct effect

+
∂

∂Xσ

E [W (q) |e] dXσ

dσ︸ ︷︷ ︸
incentive effect

(43)

Second,

∂E[W (q) |e]
∂σ

=
∂

∂σ

∫ ∞
Xσ

(q −Xσ)
1

σ
ϕ

(
q − e
σ

)
dq =

∂

∂σ

∫ ∞
Xσ−e

q + e−Xσ

σ
ϕ
( q
σ

)
dq

=
∂

∂σ

∫ ∞
Xσ−e

q

σ
ϕ
( q
σ

)
dq − (Xσ − e)

∂

∂σ

∫ ∞
Xσ−e

1

σ
ϕ
( q
σ

)
dq

=
∂

∂σ

{[
−σϕ

( q
σ

)]∞
Xσ−e

}
− (Xσ − e)

∂

∂σ

{
1− Φ

(
Xσ − e
σ

)}
= ϕ

(
Xσ − e
σ

)
− σXσ − e

σ2
ϕ′
(
Xσ − e
σ

)
+ (Xσ − e)

(
−Xσ − e

σ2

)
ϕ

(
Xσ − e
σ

)
= ϕ

(
Xσ − e
σ

)
− Xσ − e

σ
ϕ′
(
Xσ − e
σ

)
+
Xσ − e
σ

ϕ′
(
Xσ − e
σ

)
= ϕ

(
Xσ − e
σ

)
(44)

where the fourth and sixth equalities use ϕ′(x) = −xϕ(x), and the fifth equality uses

ϕ(x)→x→∞ 0. This establishes (18). In addition, it follows that

∂

∂σ
{E [W (q) |ē]− E [W (q) |0]} = ϕ

(
Xσ − ē
σ

)
− ϕ

(
Xσ

σ

)
. (45)

Third,
∂E[W (q) |e]

∂Xσ

=
∂

∂Xσ

∫ ∞
Xσ

(q −Xσ)
1

σ
ϕ

(
q − e
σ

)
dq

=

∫ ∞
Xσ

− 1

σ
ϕ

(
q − e
σ

)
dq = −

(
1− Φ

(
Xσ − e
σ

))
. (46)

It follows that

∂

∂Xσ

{E [W (q) |ē]− E [W (q) |0]} = −
(

1− Φ

(
Xσ − ē
σ

))
+

(
1− Φ

(
Xσ

σ

))

= Φ

(
Xσ − ē
σ

)
− Φ

(
Xσ

σ

)
. (47)
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which is strictly negative because of MLRP, which implies FOSD.

Fourth, according to Lemma 1, following a change in σ the exercise price Xσ adjusts

so that the IC remains satisfied as an equality, so:

∂ {E[W (q) |ē]− E[W (q) |0]}
∂σ

+
∂ {E[W (q) |ē]− E[W (q) |0]}

∂Xσ

dXσ

dσ
= 0

Rearranging and using the results in equations (45) and ( 47):

dXσ

dσ
= −

ϕ
(
Xσ−ē
σ

)
− ϕ

(
Xσ
σ

)
Φ
(
Xσ−ē
σ

)
− Φ

(
Xσ
σ

) . (48)

Using the results above, we can rewrite (43) as

dE[W (q) |ē]
dσ

= ϕ

(
Xσ − e
σ

)
+

[
1− Φ

(
Xσ − e
σ

)]
ϕ
(
Xσ−ē
σ

)
− ϕ

(
Xσ
σ

)
Φ
(
Xσ−ē
σ

)
− Φ

(
Xσ
σ

) (49)

This establishes (17).

Proof of Lemma 3

As Xσ is strictly decreasing in C (see Lemma 2), inequality (19) holds if and only

if
d dXσ
dσ

dX
> 0. As established in the proof of equations (17) and (18) above,

dXσ

dσ
= −

ϕ
(
Xσ−ē
σ

)
− ϕ

(
Xσ
σ

)
Φ
(
Xσ−ē
σ

)
− Φ

(
Xσ
σ

) .
To simplify notation, define

x ≡ Xσ

σ
, t ≡ ē

σ
.

We wish to show that ∀t > 0,

f(x, t) ≡ [ϕ(x)− ϕ(x− t)]2 − [Φ(x)− Φ(x− t)][ϕ′(x)− ϕ′(x− t)] > 0, ∀x, (50)

where

ϕ(x) =
1√
2π
e−

x2

2

Φ(x) =

∫ x

−∞
ϕ(y) dy.

For t = 0, f(x, 0) is trivially 0. Since ϕ(x) = ϕ(−x), we have Φ(x) − Φ(x − t) =
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Φ(−x + t) − Φ(−x) and ϕ′(x) − ϕ′(x − t) = ϕ′(−x + t) − ϕ′(−x). As a consequence,

f(x, t) = f(−x+ t, t). We thus only have to study x ≥ t
2
> 0.

We first analyze the term ϕ′(x)− ϕ′(x− t). Since

ϕ′(x) = − x√
2π
e−

x2

2 ,

ϕ′(x)− ϕ′(x− t) = ϕ(x− t)(−xe−t(x−t/2) + x− t).

When x ≥ t/2, the function e−t(x−t/2) − 1 + t
x

is only equal to zero at one point, since

it monotonically decreases from 2 to −1. Let that point be x0. Then

ϕ′(x)− ϕ′(x− t)


< 0 t

2
≤ x < x0

= 0 x = x0

> 0 x > x0

.

We know that when x ∈ [ t
2
, x0], f(x, t) > 0 since [ϕ(x) − ϕ(x − t)]2 > 0 and Φ(x) −

Φ(x− t) > 0 ∀x, so that (50) is proven for x ∈ [ t
2
, x0]

We now prove (50) for x > x0. In this interval (omitting the argument t):

f(x, t) > 0 ⇐⇒ g(x) ≡ f(x, t)

ϕ′(x)− ϕ′(x− t)
> 0.

To prove the latter, we first calculate

g′(x) =
2[ϕ(x)− ϕ(x− t)][ϕ′(x)− ϕ′2 − [ϕ(x)− ϕ(x− t)]2[ϕ′′(x)− ϕ′′(x− t)]

[ϕ′(x)− ϕ′2

− [ϕ(x)− ϕ(x− t)]

=
[ϕ(x)− ϕ(x− t)]ϕ(x− t)2

[ϕ′(x)− ϕ′2
[(
e−t(x−t/2) − 1

)2
+ t2e−t(x−t/2)

]
< 0, x ∈ (x0,∞),

where in the last step we used the fact that ϕ(x) < ϕ(x− t) when x > t/2. Therefore,

g(x) > 0 ∀x ∈ (x0,∞) ⇐⇒ lim
x→∞

g(x) ≥ 0.
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Since

g(x) =
[ϕ(x)− ϕ(x− t)]2

ϕ′(x)− ϕ′(x− t)
− Φ(x) + Φ(x− t)

=
1√
2π
e−(x−t)2/2

(
e−t(x−t/2) − 1

)2

−xe−t(x−t/2) + x− t
− Φ(x) + Φ(x− t),

it is clear that

lim
x→∞

g(x) = 0.

Proof of Proposition 4

Using the chain rule,

d

dC

{
dE[W (q) |e]

dσ

}
=

d

dXσ

{
dE[W (q) |e]

dσ

}
dXσ

dC

Since dXσ
dC

< 0 (Lemma 2), we have d
dC

{
dE[W (q)|e]

dσ

}
> 0 if and only if d

dXσ

{
dE[W (q)|e]

dσ

}
<

0.

Using (17) and ϕ′(x) = −xϕ(x) for the normal distribution, we have

d

dXσ

{
dE[W (q) |e]

dσ

}
=

d

dXσ

{
ϕ

(
Xσ − e
σ

)
−
[
1− Φ

(
Xσ − e
σ

)]
ϕ
(
Xσ−e
σ

)
− ϕ

(
Xσ
σ

)
Φ
(
Xσ
σ

)
− Φ

(
Xσ−e
σ

)}

=
1

σ

(
−Xσ − e

σ
ϕ

(
Xσ − e
σ

)
+

[
Xσ − e
σ

ϕ

(
Xσ − e
σ

)
− Xσ

σ
ϕ

(
Xσ

σ

)]
1− Φ

(
Xσ−e
σ

)
Φ
(
Xσ
σ

)
− Φ

(
Xσ−e
σ

)
+

[
ϕ

(
Xσ − e
σ

)
− ϕ

(
Xσ

σ

)]
ϕ
(
Xσ−e
σ

)
Φ
(
Xσ
σ

)
− Φ

(
Xσ−e
σ

)
−

1− Φ
(
Xσ−e
σ

)(
Φ
(
Xσ
σ

)
− Φ

(
Xσ−e
σ

))2

(
ϕ

(
Xσ − e
σ

)
− ϕ

(
Xσ

σ

))2
)

(51)

Multiplying all terms by σ
(
Φ
(
Xσ
σ

)
− Φ

(
Xσ−e
σ

))
> 0, the expression in (51) has the

same sign as
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[
ϕ
(
Xσ−e
σ

)
− ϕ

(
Xσ
σ

)
Φ
(
Xσ
σ

)
− Φ

(
Xσ−e
σ

) − Xσ

σ

] [
ϕ

(
Xσ

σ

)[
1− Φ

(
Xσ − e
σ

)]
− ϕ

(
Xσ − e
σ

)[
1− Φ

(
Xσ

σ

)]]
− e

σ
ϕ

(
Xσ − e
σ

)[
1− Φ

(
Xσ

σ

)]
. (52)

Since the last term in (52) is always negative, the expression in (52) is negative if the

first line in (52) is negative. We now prove the latter.

The hazard rate ϕ(x)/(1 − Φ(x)) of the normal distribution is increasing, which

implies that
ϕ
(
Xσ
σ

)
1− Φ

(
Xσ
σ

) > ϕ
(
Xσ−e
σ

)
1− Φ

(
Xσ−e
σ

) .
Rearranging, we have

ϕ

(
Xσ

σ

)[
1− Φ

(
Xσ − e
σ

)]
− ϕ

(
Xσ − e
σ

)[
1− Φ

(
Xσ

σ

)]
> 0 (53)

Define

d(Xσ, e) ≡
ϕ
(
Xσ−e
σ

)
− ϕ

(
Xσ
σ

)
Φ
(
Xσ
σ

)
− Φ

(
Xσ−e
σ

) .
If d(Xσ, e) <

Xσ
σ

, then combining with (53) establishes that (52) is negative, as desired.

We now show that d(Xσ, e) <
Xσ
σ

, by proving first that d(Xσ, e) −→e→0
Xσ
σ

and second

that d(Xσ, e) is decreasing in e.

First,

ϕ

(
Xσ − e
σ

)
− ϕ

(
Xσ

σ

)
= −ϕ′

(
Xσ

σ

)
e

σ
+O(e2)

Φ

(
Xσ

σ

)
− Φ

(
Xσ − e
σ

)
=
e

σ
ϕ

(
Xσ

σ

)
+O(e2).

Using ϕ′(x) = −xϕ(x) for the normal distribution, we have

ϕ
(
Xσ−e
σ

)
− ϕ

(
Xσ
σ

)
Φ
(
Xσ
σ

)
− Φ

(
Xσ−e
σ

) −→e→0

ϕ
(
Xσ
σ

)
eXσ
σ2

e
σ
ϕ
(
Xσ
σ

) =
Xσ

σ
.
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Second,

d

de

{
ϕ
(
Xσ−e
σ

)
− ϕ

(
Xσ
σ

)
Φ
(
Xσ
σ

)
− Φ

(
Xσ−e
σ

)} =
d

de


∫ Xσ/σ

(Xσ−e)/σ q exp
{
− q2

2

}
dq∫ Xσ/σ

(Xσ−e)/σ exp
{
− q2

2

}
dq


=

1

σ

Xσ−e
σ

exp
{
− (Xσ−e)2

2σ2

}∫ Xσ/σ
(Xσ−e)/σ exp

{
− q2

2

}
dq − exp

{
− (Xσ−e)2

2σ2

}∫ Xσ/σ
(Xσ−e)/σ q exp

{
− q2

2

}
dq(∫ Xσ/σ

(Xσ−e)/σ exp
{
− q2

2

}
dq
)2 .

This expression has the same sign as

Xσ − e
σ

∫ Xσ/σ

(Xσ−e)/σ
exp

{
−q

2

2

}
dq −

∫ Xσ/σ

(Xσ−e)/σ
q exp

{
−q

2

2

}
dq

=

∫ Xσ/σ

(Xσ−e)/σ

[
Xσ − e
σ

− q
]

exp

{
−q

2

2

}
dq < 0.

This establishes that d(Xσ, e) is decreasing in e, which completes the proof.

Proof of Claim 1

First, with a symmetric regular distribution, we know from Proposition 3 that

dXθ

dθ
≤ 0 for Xθ ≥

ē

2
, and

d

dXθ

∫ Xθ

−∞
fθ(q|ē)dq = fθ(Xθ|ē) ≥ 0. (54)

Second, for Xθ < ē, we have∫ ē

−∞
fθ(q|ē)dq =

1

2
∀θ ⇒

∫ ē

−∞

dfθ(q|ē)
dθ

dq = 0

In addition, for a symmetric regular distribution, and with changes in θ being mean-

preserving spreads, there exists za such that

dfθ(q|ē)
dθ

≤ 0 ∀q < za, (55)

dfθ(q|ē)
dθ

≥ 0 ∀q ∈ [za, ē]. (56)

This implies that ∫ Xθ

−∞

dfθ(q|ē)
dθ

dq ≤ 0 ∀Xθ ≤ ē.
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In equilibrium,

Pr(q ≤ Xθ) =

∫ Xθ

−∞
fθ(q|ē)dq.

Furthermore,

d

dθ

∫ Xθ

−∞
fθ(q|ē)dq =

d

dXθ

∫ Xθ

−∞
fθ(q|ē)dq

dXθ

dθ
+

∫ Xθ

−∞

dfθ(q|ē)
dθ

dq.

This gives Claim 1.
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B Supplementary Appendix: Not for Publication

B.1 Information Has Zero Value

This section gives an example where the value of information is exactly zero. Denoting

the lower bound of the support of q by q and the upper bound by q, from (34) the

principal’s payoff is

E[q|e]−Xθ +

∫ Xθ

q

Fθ(q|e)dq,

where Xθ solves the IC (31):∫ q

Xθ

[Fθ (q|0)− Fθ (q|e)] dq = C. (57)

Let q = 0 and q = 2. Suppose that, under low effort, q is uniformly distributed in [0, 1]

for any θ:

Fθ(q|0) = q × 1 (0 ≤ q ≤ 1) .

This assumption is for concreteness only; the example can be generalized to distribu-

tions that, conditional on low effort, are not functions of θ : Fθ(q|0) = ζ(q).

Assume θ ∈ {θL, θH}. Under high effort and high precision, q is uniformly dis-

tributed in [0, 2]:

fH(q|1) =
1

2
, FH(q|1) =

q

2
.

Under high effort and low precision, q has the following density function:

fL(q|1) =


1
4

if q ≤ .25 or .75 ≤ q < 1
3
4

if .25 < q < .75
1
2

if 1 < q ≤ 2

.

Notice that fL second-order stochastically dominates fH . Integrating, we obtain the

CDF

FL(q|1) =


q
4

if q ≤ 1
4

1
16

+ 3
4

(
q − 1

4

)
if 1

4
< q < 3

4
7
16

+ 1
4

(
q − 3

4

)
if 3

4
≤ q < 1

q
2

if q ≥ 1

Suppose the parameters are such that Xθ ≥ 1. For q ≥ 1, the CDF are the same
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under both θH and θL so that, for Xθ ≥ 1, the IC (57) yields:∫ 2

Xθ

(
1− q

2

)
dq = C ∴ (2−Xθ)−

1

2

[
2−

(
X2
θ

2

)]
= C

∴
X2
θ

4
−Xθ + (1− C) = 0.

The solution to this quadratic equation is

Xθ =
1±
√
C

2
.

The relevant root is the smallest one, otherwise we can relax the IC (57) by reducing

the strike price Xθ:

Xθ =
1−
√
C

2
,

so the indirect effect is zero (the strike price is the same for both precision levels). The

direct effect is also zero since
∫ x

0
FθH (q|e)dq =

∫ x
0
FθL(q|e)dq ∀ x ≥ 1. 14 Indeed, we

can calculate this expression explicitly:∫ 1

0

FθH (q|e)dq =

∫ 1

0

FθL(q|e)dq =
1

4
.

Thus, the expected wage is independent of precision: precision has exactly zero value.

B.2 Additional Results for Location-Scale Distributions

Claim 2 states that, if the distribution of q has a location and scale parameter, X̂ ∈
(0, e).

14This follows because, since s|e has the same mean under both θH and θL, integration by parts
gives: ∫ 2

0

FθH (s|e)ds =

∫ 2

0

FθL(s|e)ds.

Thus,
∫ 2

1
FθH (s|e)ds =

∫ 2

1
FθL(s|e)ds implies that∫ 1

0

FθH (s|e)ds =

∫ 1

0

FθL(s|e)ds.
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Claim 2 Suppose the distribution of q belongs to the location-scale family. Then,
dXθ
dθ
≥ 0 if Xθ < X̂, and dXθ

dθ
≤ 0 if Xθ > X̂, where X̂ ∈ (0, e). When Gθ is symmetric,

X̂ ≡ e
2
.

Proof. Since Fθ(q|e) = G
(
q−e
σ

)
, condition (36) from Proposition 1 becomes

−
∫ Xθ

Xθ−e

∂G
(
q
σ

)
∂θ

dq ≥ 0.

Using σ = 1√
θ
, this becomes

−
∫ Xθ

Xθ−e

∂G
(
q
√
θ
)

∂θ
dq ≥ 0 ⇐⇒ −

∫ Xθ

Xθ−e

q

2
√
θ
g
(
q
√
θ
)
dq ≥ 0. (58)

For a distribution symmetric about its mean of zero, (58) holds if and only if

(Xθ − e) +Xθ ≤ 0, (59)

that is, if and only if Xθ ≤ e
2
. Since dXθ

dθ
≥ 0 if (36) > 0 and dXθ

dθ
≤ 0 if (36) < 0, we

conclude that dXθ
dθ
≥ 0 if Xθ ≤ e

2
, and dXθ

dθ
≤ 0 if Xθ ≥ e

2
.

Now consider asymmetric distributions. Since g ≥ 0, (58 ) holds for Xσ ≤ 0,

whereas the LHS of (58) is nonpositive for Xσ ≥ ē. In addition,

∂

∂Xθ

{
−
∫ Xθ

Xθ−e

q

2
√
θ
g
(
q
√
θ
)
dq

}
=
Xθ − e
2
√
θ
g
(

(Xθ − e)
√
θ
)
− Xθ

2
√
θ
g
(
Xθ

√
θ
)

(60)

which is strictly negative for Xθ ∈ (0, e), as both terms on the RHS are negative. We

conclude that there exists a unique X̂ ∈ (0, e) such that condition (36) is satisfied if

Xθ ≤ X̂, in which case dXθ
dθ
≥ 0, whereas the LHS of (36) is nonpositive for Xθ ≥ e, in

which case dXθ
dθ
≤ 0.

Under the Black-Scholes assumption that the stock price is lognormally distributed,

the vega of a stock option is highest when the option is ATM. Claim 3 shows that this

result extends to distributions with location and scale parameters.

Claim 3 For distributions parametrized with e and σ such that Fσ (q|e) = G
(
q−e
σ

)
, the

option vega is highest when Xσ = e.
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Proof. Denoting the lower bound of the support of q by q and the upper bound by q,

the agent’s expected pay under effort e is given by

E [W (q) |e] =

∫ q

Xθ

(q −Xθ) fθ (q|e) dq. (61)

Integration by parts yields:∫ q

Xθ

qfθ (q|e) dq = q −XFθ (q|e)−
∫ q

Xθ

Fθ (q|e) dq.

Substituting into (61) yields:

E [W (q) |e] = q −XFθ (q|e)−
∫ q

Xθ

Fθ (q|e) dq −X [1− Fθ (q|e)]

= q −X −
∫ q

Xθ

Fθ (q|e) dq. (62)

The vega of the option is

ν =
∂

∂σ
E [W (q) |e] =

∂

∂σ

{
q −X −

∫ q

Xσ

Fσ (q|e) dq
}

(63)

where we use (62) to derive the second equality. Since Fσ (q|e) = G
(
q−e
σ

)
, we have

ν =
∂

∂σ

{
−
∫ q

Xσ

G

(
q − e
σ

)
dq

}
=

1

σ

∫ q

Xσ

q − e
σ

g

(
q − e
σ

)
dq (64)

Using the change of variables y = q−e
σ

gives

ν =

∫ q−e
σ

Xσ−e
σ

yg(y)dq (65)

Since g(y) > 0, this expression is maximized for Xσ = e, i.e., for an ATM option.15

Claim 4 shows that, for symmetric distributions with unbounded support, the vegas

of the option-when-working and option-when-shirking are equal for Xσ = e
2
.

15With high effort, e = e, so the option-when-working is ATM for Xσ = e. With low effort, e = 0,
so the option-when-shirking is ATM for Xσ = 0.
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Claim 4 For symmetric distributions with unbounded support parametrized by e and

σ such that Fσ (q|e) = G
(
q−e
σ

)
, the vegas of the option-when working and the option-

when-shirking are equal for Xσ = e
2
.

Proof. We rely on (65) and use the fact that, for a distribution with unbounded

support, q =∞.

For Xσ = e
2
, the vega νe of the option-when-working (e = e) is

νe =

∫ ∞
Xσ−e
σ

yg(y)dq =

∫ ∞
− e

2σ

yg(y)dq. (66)

For Xσ = e
2
, the vega ν0 of the option-when-shirking (e = 0) is

ν0 =

∫ ∞
Xσ
σ

yg(y)dq =

∫ ∞
e

2σ

yg(y)dq. (67)

In addition, ∫ ∞
− e

2σ

yg(y)dq =

∫ e
2σ

− e
2σ

yg(y)dq +

∫ ∞
e

2σ

yg(y)dq (68)

For a symmetric distribution, we have
∫ e

2σ

− e
2σ

yg(y)dq = 0. Equation (68) then implies

that νe = ν0.

B.3 At-The-Money Options

This Appendix shows that Proposition 3 continues to hold when the principal is re-

stricted to granting ATM options.

As in Proposition 3, we consider symmetric distributions with a location and a scale

parameter. However, we now assume that the contract takes the form of ATM options.

Considering ATM options requires that we derive the t = 0 stock price. To simplify the

exposition, we assume that the firm has a single share outstanding. Denoting the stock

price at time 0 by S0, we have S0 = E[q] given the assumptions of a zero discount rate

and risk neutrality. In addition, with a symmetric distribution with location parameter

e, we have S0 = e (= ē in equilibrium).

For an ATM option, X is fixed at S0 = ē, and so the number n ≤ 1 of ATM options

granted adjusts to satisfy the IC.16 We have the following results:

16We only consider the cases such that there exists an incentive compatible contract with ATM
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Lemma 5 (Effect of volatility on number of options) With ATM options, dn
dσ
< 0.

Proof. Totally differentiating the LHS of the IC in (4) with respect to σ yields

d

dσ
{E[W (q) |ē]− E[W (q) |0]}

=
∂

∂σ
{E[W (q) |ē]− E[W (q) |0]}+

∂

∂n
{E[W (q) |ē]− E[W (q) |0]} dn

dσ
= 0

so that
dn

dσ
= −

∂
∂σ
{E[W (q) |ē]− E[W (q) |0]}

∂
∂n
{E[W (q) |ē]− E[W (q) |0]}

. (69)

First, if the agent receives n options instead of 1, we have

E[W (q) |ē]− E[W (q) |0] = n

∫ ∞
X

[F (q|0)− F (q|ē)] dq

for any given X. With distributions with a location parameter e and scale parameter

σ, the numerator of the RHS of (69 ) is then

∂

∂σ
{E[W (q) |ē]− E[W (q) |0]} = n

∂

∂σ

∫ ∞
X

[
G
( q
σ

)
−G

(
q − ē
σ

)]
dq

= n

∫ ∞
X

[
− q

σ2
g
( q
σ

)
+
q − ē
σ2

g

(
q − ē
σ

)]
dq

= n

[∫ ∞
X
σ

−yLg (yL) dq +

∫ ∞
X−ē
σ

yHg (yH) dq

]
= n

∫ X
σ

X−ē
σ

yg (y) dq,

where we used the changes of variables yL = q
σ

and yH = q−ē
σ

. Given the symmetry

of g, we have
∫ X

σ
X−ē
σ

yg (y) dq ≥ 0 if and only if X
σ
> −X−ē

σ
, which is always true with

ATM options, i.e., with X = ē. We conclude that the numerator of the RHS of (69) is

strictly positive.

Second, for an agent who receives n ATM options, the denominator of the RHS of

(69) equals
∂

∂n

{∫ ∞
X

n(q −X)f(q|ē)dq −
∫ ∞
X

n(q −X)f(q|0)dq

}
=

∫ ∞
X

(q −X)f(q|ē)dq −
∫ ∞
X

(q −X)f(q|0)dq > 0. (70)

options subject to the constraint n ≤ 1.
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Since both the numerator and the denominator of the RHS of (69) are strictly positive,

we have
dn

dσ
< 0. (71)

With ATM options, X = ē > ē
2
. Thus, an increase in precision (fall in σ) reduces

effort incentives, and so n must rise to maintain incentive compatibility.

Corollary 2 compares the partial and total effects of changes in precision on the

expected wage.

Corollary 2 (Partial and total effects of precision on expected wage):

dE[W (q) |ē]
dσ

<
∂E[W (q) |ē]

∂σ

Proof. First,
dE[W (q) |ē]

dσ
=
∂E[W (q) |ē]

∂σ
+
∂E[W (q) |ē]

∂n

dn

dσ

Second,

∂E[W (q) |ē]
∂n

=
∂

∂n

{∫ ∞
X

n(q −X)f(q|ē)dq
}

=

∫ ∞
X

(q −X)f(q|ē)dq > 0

Corollary 2 then follows from this inequality and Lemma 5.

With ATM options, the total change in expected pay from a change in precision is

smaller than the partial change: while an improvement in precision lowers the value of

the agent’s options, it also requires that the agent receives more options for incentive

compatibility. This incentive effect partially offsets the benefits to the principal.

B.4 Continuous Effort Model

In this section, we present a continuous effort analog of the core model. The model

remains the same, except for the following assumptions:

(A1) The agent chooses effort in e ∈ [0,∞).

(A2) The agent’s objective function is E[W (q) |e] − cξ(e), with c > 0, ξ > 0, ξ′ >

0, ξ′′ > 0.

(A3) MLRP: d
dq

{
fe(q|e)
f(q|e)

}
> 0, where f(π|e) denotes the PDF of q conditional on e,

and fe(π|e) denotes its first derivative with respect to e.
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(A4) E[max{q − z, 0}|e] − cξ(e) is concave in e for all z, and W (q) is piecewise

smooth with a right derivative, which guarantees that the first-order approach to the

effort choice problem applies (see footnote 12 in Innes (1990)).

As in the core model, the principal induces a given level of effort ē > 0. As

in Proposition 2, we consider continuously distributed regular distributions with a

location parameter, denoted by e. This implies that we can write q = e + ε, where

E [ε|e] = 0.

For a given θ, the principal’s problem is to choose a function W (·) to minimize

E[W (q) |ē] subject to LL, monotonicity, and the following IC:

d

de

∫ ∞
−∞

W (q) f(q|ē)dq = cξ′(ē). (72)

Proposition 1 in Innes (1990) implies that, for a given θ, the optimal contract is:

W (q) = max {0, q −Xθ} . (73)

As in the core model, there is a unique Xθ that satisfies the IC in (72) with equality.

Denoting by ψ(·|e) the PDF of the distribution of q conditional on e, the IC in (72)

can be rewritten as∫ ∞
−∞

W ′(q)ψ(q|ē)dq = cξ′(ē) ⇔
∫ ∞
X

ψ(q|ē)dq = cξ′(ē). (74)

We consider changes in precision in the sense of a mean-preserving spread (“MPS”)

of the distribution. Denote by ψ̄ the PDF of ε after a decrease in θ, i.e., after a

mean-preserving spread of the distribution. By definition of the PDF,∫ ∞
−∞

(
ψ(q|ē)− ψ̄(q|ē)

)
dq = 0. (75)

An increase in precision θ in a MPS sense reduces the LHS of the IC in (72) if and only

if ∫ ∞
X

(
ψ(q|ē)− ψ̄(q|ē)

)
dq < 0. (76)

Using the definition of a MPS (Rothschild and Stiglitz (1970)), there exists qa and qb,
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with qa < qb, such that ∫ qa

−∞

(
ψ(q|ē)− ψ̄(q|ē)

)
dq < 0, (77)∫ qb

qa

(
ψ(q|ē)− ψ̄(q|ē)

)
dq > 0, (78)∫ ∞

qb

(
ψ(q|ē)− ψ̄(q|ē)

)
dq < 0. (79)

These inequalities and (75) imply that there exists X̂ ∈ (qa, qb) such that (76) is satisfied

if and only if X > X̂. In particular, for symmetric distributions, we have X̂ = ē and∫ ∞
ē

ψ(q|ē)dq =
1

2
=

∫ ∞
ē

ψ̄(q|ē)dq. (80)

As in the core model, the LHS of the IC is strictly decreasing in X. Therefore, for

the IC to still be satisfied following a rise in θ with symmetric distributions, we have

dXθ

dθ
< 0 if and only if Xθ > ē. (81)

Thus, as precision θ increases in a MPS sense, Xθ approaches ē and the option becomes

closer to ATM.

This analysis has held constant the implemented effort level at ē, i.e. solves for the

first stage of Grossman and Hart (1983). We thus follow Dittmann, Maug, and Spalt

(2013) who study how a specific form of increased precision (indexation) affects the cost

of implementing a given effort level; it is well-known that solving also for the optimal

effort level is very difficult. Edmans and Gabaix (2011) show that, if the benefits of

effort are multiplicative in firm size and the firm is sufficiently large, it is always optimal

for the principal to implement the highest effort level and so the optimal effort level is

indeed fixed. If this result does not hold, the principal may respond to greater precision

by changing the implemented effort level, and so our analysis provides a lower bound

for the gains for precision. Where precision has a large (small) effect in reducing the

cost of implementing a given effort level, it likely also will have a large (small) effect in

changing the optimal effort level. Thus, the situations in which precision has greatest

value in implementing a given effort level (the focus of this paper) will also be the

situations in which precision has greatest value to the principal overall.
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